
Chapter 6. Congruences and Modular Arithmetic

6.1 Definition: Let n ∈ Z+. For a, b ∈ Z we say that a is equal (or congruent) to b
modulo n, and we write a = b mod n, when n

∣∣(a − b) or, equivalently, when a = b + kn
for some k ∈ Z.

6.2 Theorem: Let n ∈ Z+. For a, b ∈ Z we have a = b mod n if and only if a and b have
the same remainder when divided by n. In particular, for every a ∈ Z there is a unique
r ∈ Z with a = r mod n and 0 ≤ r < n.

Proof: Let a, b ∈ Z. Use the Division Algorithm to write a = qn + r with 0 ≤ r < n and
b = pn + s with 0 ≤ s < n. We need to show that a = b mod n if and only if r = s.
Suppose that a = b mod n, say a = b + kn where k ∈ Z. Then since a = qn + r and
a = b + kn = (pn + s) + kn = (p + k)n + s with 0 ≤ r < n and 0 ≤ s < n, it follows that
q = p+s and r = s by the uniqueness part of the Division Algorithm. Conversely, suppose
that r = s. Then we have 0 = r − s = (a − qn) − (b − pn) so that a = b + (q − p)n, and
hence a = b mod n.

6.3 Example: Find 117 mod 35.

Solution: We are being asked to find the unique integer r with 0 ≤ r < n such that
117 = r mod 35 or, in other words, to find the remainder r when 117 is divided by 35.
Since 117 = 3 · 35 + 12 we have 117 = 12 mod 35.

6.4 Definition: An equivalence relation on a set S is a binary relation ∼ on S such
that

E1. ∼ is reflexive: for every a ∈ S we have a ∼ a,
E2. ∼ is symmetric: for all a, b ∈ S, if a ∼ b then b ∼ a, and
E3. ∼ is transitive: for all a, b, c ∈ S, if a ∼ b and b ∼ c then a ∼ c.

When ∼ is an equivalence relation on S and a ∈ S, the equivalence class of a in S is the
set

[a] =
{
x ∈ S

∣∣x ∼ a
}
.

6.5 Theorem: Let n ∈ Z+. Then congruence modulo n is an equivalence relation on Z.

Proof: Let a ∈ Z. Since a = a + 0 · n we have a = a mod n. Thus congruence modulo
n satisfies Property E1. Let a, b ∈ Z and suppose that a = b mod n, say a = b + kn
with k ∈ Z. Then b = a + (−k)n so we have b = a mod n. Thus congruence modulo n
satisfies Property E2. Let a, b, c ∈ Z and suppose that a = b mod n and b = c mod n.
Since a = b mod n we can choose k ∈ Z so that a = b + kn. Since b = c mod n we can
choose ` ∈ Z so that b = c + `n. Then a = b + kn = (c + `n) + kn = c + (k + `)n and so
a = c mod n. Thus congruence modulo n satisfies Property E3.

6.6 Definition: A partition of a set S is a set P of nonempty disjoint subsets of S whose
union is S. This means that

P1. for all A ∈ P we have ∅ 6= A ⊆ S,
P2. for all A,B ∈ P, if A 6= B then A ∩B = ∅, and
P3. for every a ∈ S we have a ∈ A for some A ∈ P.

6.7 Example: P =
{
{1, 3, 5}, {2}, {4, 6}

}
is a partition of S = {1, 2, 3, 4, 5, 6}.
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6.8 Theorem: Let ∼ be an equivalence relation on a set S. Then P =
{

[a]
∣∣a ∈ S

}
is a

partition of S.

Proof: For a ∈ S, it is clear from the definition of [a] that [a] ⊆ S, and we have [a] 6= ∅
because a ∼ a so a ∈ [a]. This shows that P satisfies P1.

Let a, b ∈ S. We claim that a ∼ b if and only if [a] = [b]. Suppose that a ∼ b. Let
x ∈ S. Suppose that x ∈ [a]. Then x ∼ a by the definition of [a]. Since x ∼ a and a ∼ b
we have x ∼ b since ∼ is transitive. Since x ∼ b we have x ∈ [b]. This shows that [a] ⊂ [b].
Since a ∼ b implies that b ∼ a by symmetry, a similar argument shows that [b] ⊆ [a]. Thus
we have [a] = [b]. Conversely, suppose that [a] = [b]. Then since a ∼ a we have a ∈ [a].
Since a ∈ [a] and [a] = [b], we have a ∈ [b]. Since a ∈ [b], we have a ∼ b. Thus a ∼ b if and
only if [a] = [b], as claimed.

Let a, b ∈ S. We claim that if [a] 6= [b] then [a] ∩ [b] = ∅. Suppose that [a] ∩ [b] 6= ∅.
Choose c ∈ [a]∩[b]. Since c ∈ [a] so that c ∼ a we have [c] = [a] (by the above claim). Since
c ∈ [b] so that c ∼ b we have [c] = [b]. Thus [a] = [c] = [b], as required. This completes the
proof that P satisfies P2.

Finally, note that P satisfies P3 because given a ∈ S we have a ∈ [a] ∈ P .

6.9 Definition: Let ∼ be an equivalence relation on a set S. The quotient of the set S
by the relation ∼, denoted by S

/
∼, is the partition P of the above theorem, that is

S
/
∼ =

{
[a]
∣∣a ∈ S

}
.

6.10 Remark: In Appendix 1, the above quotient construction is used to define Z from
N and to define Q from Z.

6.11 Definition: Let n ∈ Z+. Let ∼ be the equivalence relation on Z defined for a, b ∈ Z
by a ∼ b⇐⇒ a = b mod n, and write [a] = {x ∈ Z|x ∼ a} = {x ∈ Z|x = a mod n}. The
set of integers modulo n, denoted by Zn, is defined to be the quotient set

Zn = Z
/
∼ =

{
[a]
∣∣a ∈ Z

}
.

Since every a ∈ Z is congruent modulo n to a unique r ∈ Z with 0 ≤ r < n, we have

Zn =
{

[0], [1], [2], · · · , [n− 1]
}

and the elements listed in the above set are distinct so that Zn is an n-element set.

6.12 Example: We have

Z3 =
{

[0], [1], [2]
}

=
{
{· · · ,−3, 0, 3, 6, · · ·} , {· · · ,−2, 1, 4, 7, · · ·} , {· · · ,−1, 2, 5, 8, · · ·}

}
.
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6.13 Theorem: (Addition and Multiplication Modulo n) Let n ∈ Z+. For a, b, c, d ∈ Z,
if a = c mod n and b = d mod n then a + b = c + d mod n and ab = cd mod n. It follows
that we can define addition and multiplication operations on Zn by defining

[a] + [b] = [a + b] and [a] [b] = [ab]

for all a, b ∈ Z. When n ≥ 2, the set Zn is a commutative ring using these operations with
zero and identity elements [0] and [1].

Proof: Let a, b, c, d ∈ Z. Suppose that a = c mod n and b = d mod n. Since a = c mod n
we can choose k ∈ Z so that a = c + kn. Since b = d mod n we can choose ` ∈ Z so that
b = d+`n. Then a+b = (c+kn)+(d+`n) = (c+d)+(k+`)n so that a+b = c+d mod n,
and ab = (c + kn)(d + `n) = cd + c`n + knd + kn`n = cd + (kd + `c + k`n)n so that
ab = cd mod n.

It follows that we can define addition and multiplication operations in Zn by defining
[a] + [b] = [a+ b] and [a] [b] = [ab] for all a, b ∈ Z. It is easy to verify that these operations
satisfy all of the Axioms R1 - R8 which define a commutative ring. As a sample proof, we
shall verify that one half of the distributivity Axiom R7 is satisfied. Let a, b, c ∈ Z. Then

[a]
(
[b] + [c]

)
= [a] [b + c] , by the definition of addition in Zn

=
[
a(b + c)

]
, by the definition of multiplication in Zn,

= [ab + ac] , by distributivity in Z.

= [ab] + [ac] , by the definition of addition in Zn,

= [a] [b] + [a] [c] , by the definition of multiplication in Zn.

6.14 Note: When no confusion arises, we shall often omit the square brackets from our
notation so that for a ∈ Z we write [a] ∈ Zn simply as a ∈ Zn. Using this notation, for
a, b ∈ Z we have a = b in Zn if and only if a = b mod n in Z.

6.15 Example: Addition and multiplication in Z6 are given by the following tables.

+ 0 1 2 3 4 5

0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 4
5 5 0 1 2 3 4

× 0 1 2 3 4 5

0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 2 1

6.16 Example: Find 251 · 329 + (41)2 mod 16.

Solution: Since 251 = 15 · 16 + 11 and 329 = 20 · 16 + 9 and 41 = 2 · 16 + 9, working in Z16

we have 251 = 11 and 329 = 41 = 9 so that

251 · 329 + (41)2 = 11 · 9 + 92 = (11 + 9) · 9 = 20 · 9 = 4 · 9 = 36 = 4.

Thus 251 · 329 + (41)2 = 4 mod 16.

6.17 Example: Show that for all a ∈ Z, if a = 3 mod 4 then a is not equal to the sum
of 2 perfect squares.

Solution: In Z4 we have 02 = 0, 12 = 1, 22 = 4 = 0 and 32 = 9 = 1 so that x2 ∈ {0, 1} for all
x ∈ Z4. It follows that for all x, y ∈ Z4 we have x2+y2 ∈ {0+0, 0+1, 1+0, 1+1} = {0, 1, 2}
so that x2 + y2 6= 3. Equivalently, for all x, y ∈ Z we have x2 + y2 6= 3 mod 4.
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6.18 Example: Show that there do not exist integers x and y such that 3x2 + 4 = y3.

Solution: In Z9 we have

x 0 1 2 3 4 5 6 7 8

x2 0 1 4 0 7 7 0 4 1
x3 0 1 8 0 1 8 0 1 8
3x2 0 3 3 0 3 3 0 3 3

3x2 + 4 4 7 7 4 7 7 4 7 7

From the table we see that for all x, y ∈ Z9 we have 3x2 + 4 ∈ {4, 7} and y3 ∈ {0, 1, 8} and
so 3x2 + 4 6= y3. It follows that for all x, y ∈ Z we have 3x2 + 4 6= y3.

6.19 Example: There are several well known tests for divisibility which can be easily
explained using modular arithmetic. Suppose that a positive integer n is written in decimal
form as n = d` · · · d1d0 where each di is a decimal digit, that is di ∈ {0, 1, · · · , 9}. This
means that

n =
∑̀
k=0

10idi.

Since 2
∣∣10 we have 10 = 0 mod 2. It follows that in Z2 we have 10 = 0 so n =

∑̀
i=0

10idi = d0.

Thus in Z, we have 2|n⇐⇒n = 0 mod 2⇐⇒ d0 = 0 mod 2⇐⇒ 2|d0. In other words,

2 divides n if and only if 2 divides the final digit of n.

More generally for k ∈ Z with 1 ≤ k ≤ `, since 2k
∣∣10k it follows that in Z2k we have

10k = 0, hence 10i = 0 for all i ≥ k, and so n =
∑̀
i=0

10idi =
k−1∑
i=0

10idi. Thus in Z, we have

2k
∣∣n if and only if 2k

∣∣∣ k−1∑
i=0

10idi. In other words,

2k divides n if and only if 2k divides the tailing k-digit number of n.

Similarly, since 5k
∣∣10k it follows that

5k divides n if and only if 5k divides the tailing k-digit number of n.

Since 10 = 1 mod 3 it follows that in Z3 we have 10 = 1 so that n =
∑̀
i=1

10idi =
∑̀
i=0

di.

Thus in Z, 3|n⇐⇒n = 0 mod 3⇐⇒
∑̀
i=0

di = 0 mod 3⇐⇒ 3
∣∣ ∑̀
i=0

. In other words, 3 divides

n if and only if 3 divides the sum of the digits of n. Similarly, since 10 = 1 mod 9,

9 divides n if and only if 9 divides the sum of the digits of n.

Since 10 = −1 mod 11, in Z11 we have 10 = −1 so that n =
∑̀
i=0

10idi =
∑̀
i=0

(−1)idi. Thus

in Z, 11
∣∣n⇐⇒ 11

∣∣ ∑̀
i=0

(−1)idi. In other words,

11 divides n if and only if 11 divides the alternating sum of the digits of n.

6.20 Exercise: Use the divisibility tests described in the above example to find the prime
factorization of the number 28880280. Also, consider the problem of factoring the number
28880281.
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6.21 Remark: For a, b ∈ Z and n ∈ Z+ note that if a = b mod n so that [a] = [b] ∈ Zn

then we have gcd(a, n) = gcd(b, n) and so it makes sense to define gcd([a], n) = gcd(a, n).

6.22 Theorem: (Inverses Modulo n) Let n ∈ Z with n ≥ 2. For a ∈ Z, [a] is a unit in
Zn if and only if gcd(a, n) = 1 in Z.

Proof: Let a ∈ Z and let d = gcd(a, n). Suppose that [a] is a unit in Zn. Choose b ∈ Z so
that [a] [b] = [1] ∈ Zn. Then [ab] = [1] ∈ Zn and so ab = 1 mod n in Z. Since ab = 1 mod n
we can choose k so that ab = 1 + kn. Then we have ab − kn = 1. Since d|a and d|n it
follows that d

∣∣(ax + ny) for all x, y ∈ Z so in particular d
∣∣(ab− kn), that is d|1. Since d|1

and d ≥ 0, we must have d = 1.
Conversely, suppose that d = 1. By the Euclidean Algorithm with Back-Substitution,

we can choose s, t ∈ Z so that as+nt = 1. Then we have as = 1−nt so that as = 1 mod n.
Thus in Zn, we have [as] = [1] so that [a][s] = [1]. Thus [a] is a unit with [a]−1 = [s].

6.23 Example: Determine whether 125 is a unit in Z471 and if so find 125−1.

Solution: The Euclidean Algorithm gives

471 = 3 · 125 + 96 , 125 = 1 · 96 + 29 , 96 = 3 · 29 + 9 , 29 = 3 · 9 + 2 , 9 = 4 · 2 + 1

and so d = gcd(125, 471) = 1 and it follows that 125 is a unit in Z471. Back-Substitution
gives the sequence

1 , −4 , 13 , −43 , 56 , −211

so we have 125(−211) + 471(56) = 1. It follows that in Z471 we have 125−1 = −211 = 260.

6.24 Example: Solve the pair of equations 3x + 4y = 7 (1) and 11x + 15y = 8 (2) for
x, y ∈ Z20.

Solution: We work in Z20. Since 3 · 7 = 21 = 1 we have 3−1 = 7. Multiply both sides
of Equation (1) by 7 to get x + 8y = 9, that is x = 9 − 8y (3). Substitute x = 9 − 8y
into Equation (2) to get 11(9 − 8y) + 15y = 8, that is 19 − 8y + 15y = 8 or equivalently
7y = 9 (4). Multiply both sides of Equation (4) by 7−1 = 3 to get y = 7. Put y = 7 into
Equation (3) to get x = 9− 8 · 7 = 9− 16 = 13. Thus the only solution is (x, y) = (13, 7).

6.25 Definition: A group is a set G with an element e ∈ G and a binary operation
∗ : G×G→ G, where for a, b ∈ G we write ∗(a, b) as a ∗ b or simply as ab, such that

G1. ∗ is associative: for all a, b, c ∈ G we have (ab)c = a(bc),
G2. e is an identity element: for all a ∈ G we have ae = ea = a, and
G3. every a ∈ G has an inverse: for every a ∈ G there exists b ∈ G such that ab = ba = e.

A group G is called abelian when

G4. ∗ is commutative: for all a, b ∈ G we have ab = ba.

6.26 Definition: When R is a ring under the operations + and ×, the set R is also a
group under the operation + with identity element 0. The group R under + is called the
additive group of R. The set R is not a group under the operation × because not every
element a ∈ R has an inverse under × (in particular, the element 0 has no inverse). The
set of all invertible elements in R, however, is a group under multiplication, and we denote
it by R∗, so we have

R∗ =
{
a ∈ R

∣∣a is a unit
}
.

The group R∗ is called the group of units of R.
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6.27 Example: When F is a field, every nonzero element in F is invertible so we have
F ∗ = F \ {0}. In Z, the only invertible elements are ±1 and so Z∗ = {1,−1}.

6.28 Definition: For n ∈ Z with n ≥ 2, the group of units of Zn is called the group of
units modulo n and is denoted by Un. Thus

Un =
{
a ∈ Zn

∣∣ gcd(a, n) = 1
}
.

For convenience, we also let U1 be the trivial group U1 = Z1 = {1}. For a set S, let
|S| denote the cardinality of S, so that in particular when S is a finite set, |S| denotes
the number of elements in S. We define the Euler phi function, also called the Euler
totient function, ϕ : Z+ → Z+ by

ϕ(n) =
∣∣Un

∣∣
so that ϕ(n) is equal to the number of elements a ∈ {1, 2, · · · , n} such that gcd(a, n) = 1.

6.29 Example: Since U20 = {1, 3, 7, 9, 11, 13, 17, 19} we have ϕ(20) = 8.

6.30 Example: When p is a prime number and k ∈ Z+ notice that

Upk = {1, 2, 3, · · · , pk} \ {p, 2p, 3p, · · · , pk}
and so

ϕ(pk) = pk − pk−1.

6.31 Theorem: (Fermat’s Little Theorem) Let p be a prime number. Then

(1) For all a ∈ Z with gcd(a, p) = 1 we have ap−1 = 1 mod p.
(2) For all a ∈ Z we have ap = a mod p.

Proof: To prove Part (1), let a ∈ Z with gcd(a, p) = 1. Then we have a ∈ Up. Define
F : Up → Up by F (x) = ax (note that when a and x are units in a ring, the product ax is
also a unit with (ax)−1 = x−1a−1, so the map F is well-defined). Notice that F is bijective
with inverse G : Up → Up given by G(x) = a−1x. Since F is bijective, it follows that the
list of elements 1a, 2a, 3a, · · · , (p−1)a is a permutation (that is a a re-orderring) of the list
1, 2, 3, · · · , p− 1. Thus in Up we have

1a · 2a · 3a · . . . · (p− 1)a = 1 · 2 · 3 · . . . · (p− 1)

(p− 1)! ap−1 = (p− 1)!

Multiply both sides by the inverse of (p− 1)! in Up to get ap−1 = 1 in Up, as required.
To prove Part (2), let a ∈ Z be arbitrary. If gcd(a, p) = 1 then by Part (1) we have

ap−1 = 1 mod p and so we can multiply by a to get ap = a mod p. If gcd(a, p) 6= 1 then since
p is prime it follows that p|n and so we have a = 0 mod p hence ap = 0p = 0 = a mod p.
In either case, we have ap = a mod p, as required.

6.32 Example: If today is Tuesday, then what day will it be in 2100 days?

Solution: By Fermat’s Little Theorem we have 26 = 1 mod 7. It follows that the list of
powers of 2 repeats every 6 terms in Z7. Since 100 = 16 · 6 + 4 so that 100 = 4 mod 6, it
follows that 2100 = 24 = 16 = 2 mod 7. Thus in 2100 days it will be Thursday.
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6.33 Example: Show that 270 + 370 is not prime.

Solution: In Z2 we have 270 + 370 = 070 + 170 = 1 6= 0. In Z3, we have 270 + 370 =
(−1)70 + 070 = 1 6= 0. In Z5, by Fermat’s Little Theorem the list of powers of 2 and 3
repeats every 4 terms, and 70 = 2 mod 4, so we have 270 + 370 = 22 + 32 = 4 + 9 = 3 6= 0.
In Z7, the list of powers of 2 and 3 repeats every 6 terms, and 70 = 4 mod 6, so we have
270+370 = 24+34 = 42+92 = 42+22 = 2+4 = 6 6= 0. In Z11, the list of powers of 2 and 3
repeats every 10 terms, and 70 = 0 mod 10, so we have 270+370 = 2=+30 = 1+1 = 2 6= 0.
In Z13, the list of powers of 2 and 3 repeats every 12 terms, and 70 = 10 mod 12, so we
have 270 + 370 = 210 + 310 = 24 · 24 · 22 + 33 · 33 · 31 = 3 · 3 · 4 + 1 · 1 · 3 = 10 + 3 = 0. Since
270 + 370 = 0 ∈ Z13 it follows that 13

∣∣(270 + 370) in Z, and so 270 + 370 is not prime.

6.34 Theorem: (Euler-Fermat) Let n ∈ Z+. For all a ∈ Z with gcd(a, n) = 1 we have
aϕ(n) = 1 mod n.

Proof: Let a ∈ Z with gcd(a, n) = 1. Then we have a ∈ Un. Let ϕ = ϕ(n) and let
x1, x2, · · · , xϕ be a list of all the elements in Un. Define F : Un → Un by F (x) = ax. Then
F is bijective with inverse G : Un → Un given by G(x) = a−1x. Since F is bijective, it
follows that the list ax1, ax2, · · · , axϕ is a permutation of the list x1, x2, · · · , xϕ, and so in
Un we have

ax1 · ax2 · . . . · axϕ = x1 · x2 · · · · · xϕ( ϕ∏
i=1

xi

)
aϕ =

ϕ∏
i=1

xi

Multiply both sides by the inverse of
ϕ∏

i=1

xi in Un to get aϕ = 1 in Un, as required.

6.35 Remark: For any finite abelian group G, the above proof is valid and it shows that
a|G| = e for all a ∈ G. The same result holds even in non-abelian finite groups, but a
different proof is required.

6.36 Theorem: (The Linear Congruence Theorem) Let n ∈ Z+, let a, b ∈ Z, and let
d = gcd(a, n). Consider the congruence ax = b mod n.

(1) The congruence has a solution x ∈ Z if and only if d|b, and
(2) if x = u is one solution to the congruence, then the general solution is

x = u mod n
d .

Proof: Suppose that the congruence ax = b mod n has a solution. Let x = u be a
solution so we have au = b mod n. Since au = b mod n we can choose k ∈ Z so that
au = b + kn, that is au − nk = b. Since d|a and d|n it follows that d|(ax + ny) for all
x, y ∈ Z, and so in particular d

∣∣(au−nk), hence d|b. Conversely, suppose that d|b. By the
Linear Diophanitine Equation Theorem, the equation ax + ny = b has a solution. Choose
u, v ∈ Z so that au + nv = b. Then since au = b − nv we have au = b mod n and so the
congruence ax = b mod n has a solution (namely x = u).

Suppose that x = u is a solution to the given congruence, so we have au = b mod n.
We need to show that for every k ∈ Z if we let x = u + k n

d then we have ax = b mod n
and, conversely, that for every x ∈ Z such that ax = b mod n there exists k ∈ Z such
that x = u + k n

d . Let k ∈ Z and let x = u + k n
d . Then ax = a

(
u + k n

d

)
= au + ka

d n.

Since ax = au + ka
d n and d|a so that ka

d ∈ Z, it follows that ax = au mod n. Since
ax = au mod n and au = b mod n we have ax = b mod n, as required.
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Conversely, let x ∈ Z and suppose that ax = b mod n. Since ax = b mod n and
au = b mod n we have ax = au mod n. Since ax = au mod n we can choose ` ∈ Z so that
ax = au + `n. Then we have a(x− u) = `n and so a

d (x− u) = n
d `. Since n

d

∣∣a
d (x− u) and

gcd
(
a
d ,

n
d

)
= 1, it follows that n

d

∣∣(x − u). Thus we can choose k ∈ Z so that x − u = k n
d

and then we have x = u + k n
d , as required.

6.37 Example: Solve 221x = 595 mod 323.

Solution: The Euclidean Algorithm gives

323 = 1 · 221 + 102 , 221 = 2 · 102 + 17 , 102 = 6 · 17 + 0

and so gcd(221, 323) = 17. Note that 595
17 = 35, so the congruence has a solution. Back-

Substitution gives the sequence
1 , −2 , 3

so we have 221 · 3 − 323 · 2 = 17. Multiply by 35 to get 221 · 105 − 323 · 70 = 595. Thus
one solution to the given congruence is x = 105. Since 323

17 = 19 and 105 = 5 · 19 + 10, the
general solution is given by x = 105 = 10 mod 19.

6.38 Theorem: (The Chinese Remainder Theorem) Let n,m ∈ Z+ and let a, b ∈ Z.
Consider the pair of congruences

x = a mod n,

x = b mod m.

(1) The pair of congruences has a solution x ∈ Z if and only if gcd(n,m)
∣∣(b− a), and

(2) if x = u is one solution, then the general solution is x = u mod lcm(n,m).

Proof: Suppose that the given pair of congruences has a solution and let d = gcd(n,m).
Let x = u be a solution, so we have u = a mod n and u = b mod m. Since u = a mod n
we can choose k ∈ Z so that u = a + kn. Since u = b mod m we can choose ` ∈ Z so that
u = b + `m. Since u = a + kn = b + `n we have b − a = nk − m`. Since d|n and d|m
it follows that d

∣∣(nx + my) for all x, y ∈ Z so in particular d
∣∣(nk −m`), hence d|(b − a).

Conversely, suppose that d|(b − a). By the Linear Diophantine Equation Theorem, the
equation nx + my = b− a has a solution. Choose k, ` ∈ Z so that nk −m` = b− a. Then
we have a+nk = b+m`. Let u = a+nk = b+m`. Since u = a+nk we have u = a mod n
and since u = b + m` we have u = b mod m. Thus x = u is a solution to the pair of
congruence.

Now suppose that u = a mod n and u = b mod m. Let ` = lcm(n,m). Let k ∈ Z be
arbitrary and let x = u + k`. Since x− u = k` we have `

∣∣(x− u). Since n|` and `
∣∣(x− u)

we have n
∣∣(x − u) so that x = u mod n. Since x = u mod n and u = a mod n we have

x = a mod n. Similarly x = b mod m.
Conversely, let x ∈ Z and suppose that x = a mod n and x = b mod m. Since

x = a mod n and u = a mod n we have x = u mod n so that n
∣∣(x−u). Since x = b mod m

and u = b mod m we have x = u mod m so that m
∣∣(x−u). Since n

∣∣(x−u) and m
∣∣(x−u)

and ` = lcm(n,m), it follows that `
∣∣(x− u) so that x = u mod `.
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6.39 Example: Solve the pair of congruences x = 2 mod 15 and x = 13 mod 28.

Solution: We want to find k, ` ∈ Z such that x = 2+15k = 13+28`. We need 15k−28` = 11.
The Euclidean Algorithm gives

28 = 1 · 15 + 13 , 15 = 1 · 13 + 2 , 13 = 6 · 2 + 1

so that gcd(15, 28) = 1 and Back-Substitution gives the sequence

1 , −6 , 7 , −13

so that (15)(−13) + (28)(7) = 1. Multiplying by 11 gives (15)(−143) + (28)(77) = 11, so
one solution to the equation 15k− 28` = 11 is given by (k, l) = (−143, 77). It follows that
one solution to the pair of congruences is given by u = 2 + 15k = 2 − 15 · 143 = −2143.
Since lcm(15, 28) = 15 · 28 = 420, and −2143 = −6 · 420 + 377, the general solution to the
pair of congruences is x = −2143 = 377 mod 420.

6.40 Exercise: Solve the congruence x3 + 2x = 18 mod 35.

6.41 Exercise: Find the last 2 digits of 1414
14

in its decimal representation.

6.42 Theorem: (The Generalized Chinese Remainder Theorem) Let ` ∈ Z+, let ni ∈ Z+

and ai ∈ Z for all indices i with 1 ≤ i ≤ `. Consider the system of ` congruences
x = ai mod ni for all indices i with 1 ≤ i ≤ `.

(1) The system has a solution x if and only if gcd(ni, nj)
∣∣(ai − aj) for all i, j, and

(2) if x = u is one solution then the general solution is x = u mod lcm(n1, n2, · · · , n`).

Proof: The proof is left as an exercise.

6.43 Exercise: Solve the system x = 17 mod 25, x = 14 mod 18 and x = 22 mod 40.

6.44 Theorem: Let n =
∏̀
i=1

pi
kk where ` ∈ Z+ and the pi are distinct primes and each

ki ∈ Z+. Then

ϕ(n) =
∏̀
i=1

ϕ
(
pi

ki
)
.

Proof: I may include a proof later.

6.45 Example: When p and q are distinct primes, we have ϕ(pq) = (p− 1)(q − 1).
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