Chapter 6. Congruences and Modular Arithmetic

6.1 Definition: Let n € Z*. For a,b € Z we say that a is equal (or congruent) to b
modulo n, and we write a = b mod n, when n’(a — b) or, equivalently, when a = b+ kn
for some k € Z.

6.2 Theorem: Letn € Z™. For a,b € Z we have a = b mod n if and only if a and b have
the same remainder when divided by n. In particular, for every a € Z there is a unique
reZ witha=rmodnand0<r <n.

Proof: Let a,b € Z. Use the Division Algorithm to write a = gn + r with 0 < r < n and
b=pn+s with 0 < s < n. We need to show that a = b mod n if and only if r = s.
Suppose that a = b mod n, say a = b+ kn where k € Z. Then since a = gn + r and
a=b+kn=(pn+s)+kn=(p+kn+swith0<r<nand0 < s <n, it follows that
g = p+ s and r = s by the uniqueness part of the Division Algorithm. Conversely, suppose
that r = s. Then we have 0 = r — s = (a — gn) — (b — pn) so that a = b+ (¢ — p)n, and
hence a = b mod n.

6.3 Example: Find 117 mod 35.

Solution: We are being asked to find the unique integer r with 0 < r < n such that
117 = r mod 35 or, in other words, to find the remainder r when 117 is divided by 35.
Since 117 = 3 - 35 4+ 12 we have 117 = 12 mod 35.

6.4 Definition: An equivalence relation on a set S is a binary relation ~ on S such
that

E1l. ~ is reflexive: for every a € S we have a ~ a,
E2. ~ is symmetric: for all a,b € S, if a ~ b then b ~ a, and
E3. ~ is transitive: for all a,b,c € S, if a ~ b and b ~ ¢ then a ~ c.

When ~ is an equivalence relation on S and a € S, the equivalence class of a in S is the
set

[a] = {z € S|z ~ a}.
6.5 Theorem: Let n € Z*. Then congruence modulo n is an equivalence relation on Z.

Proof: Let a € Z. Since a = a + 0 -n we have a = a mod n. Thus congruence modulo
n satisfies Property E1. Let a,b € Z and suppose that a = b mod n, say a = b+ kn
with k € Z. Then b = a + (—k)n so we have b = a mod n. Thus congruence modulo n
satisfies Property E2. Let a,b,c € Z and suppose that a = b mod n and b = ¢ mod n.
Since a = b mod n we can choose k € Z so that a = b + kn. Since b = ¢ mod n we can
choose ¢ € Z so that b = c+ ¢n. Then a = b+ kn = (c+ In) + kn = ¢+ (k+ ¢)n and so
a = ¢ mod n. Thus congruence modulo n satisfies Property E3.

6.6 Definition: A partition of a set S is a set P of nonempty disjoint subsets of S whose
union is S. This means that

P1. for all A€ P we have ) £ A C S,

P2. for all A,B € P, if A+# B then AN B = (), and

P3. for every a € S we have a € A for some A € P.

6.7 Example: P = {{1,3,5},{2},{4,6}} is a partition of S = {1,2,3,4,5,6}.



6.8 Theorem: Let ~ be an equivalence relation on a set S. Then P = {[a]!a € S} is a
partition of S.

Proof: For a € S, it is clear from the definition of [a] that [a] C S, and we have [a] # ()
because a ~ a so a € [a]. This shows that P satisfies P1.

Let a,b € S. We claim that a ~ b if and only if [a] = [b]. Suppose that a ~ b. Let
x € S. Suppose that x € [a]. Then x ~ a by the definition of [a]. Since x ~ a and a ~ b
we have x ~ b since ~ is transitive. Since x ~ b we have = € [b]. This shows that [a] C [b].
Since a ~ b implies that b ~ a by symmetry, a similar argument shows that [b] C [a]. Thus

we have [a] = [b]. Conversely, suppose that [a| = [b]. Then since a ~ a we have a € [a].
Since a € [a] and [a] = [b], we have a € [b]. Since a € [b], we have a ~ b. Thus a ~ b if and
only if [a] = [b], as claimed.

Let a,b € S. We claim that if [a] # [b] then [a] N [b] = 0. Suppose that [a] N [b] # 0.
Choose ¢ € [a]N[b]. Since ¢ € [a] so that ¢ ~ a we have [c] = [a] (by the above claim). Since
c € [b] so that ¢ ~ b we have [c] = [b]. Thus [a] = [c] = [b], as required. This completes the

proof that P satisfies P2.
Finally, note that P satisfies P3 because given a € S we have a € [a] € P.

6.9 Definition: Let ~ be an equivalence relation on a set S. The quotient of the set §
by the relation ~, denoted by S/N, is the partition P of the above theorem, that is

S/~ = {la]|a € S}.

6.10 Remark: In Appendix 1, the above quotient construction is used to define Z from
N and to define Q from Z.

6.11 Definition: Let n € Z™. Let ~ be the equivalence relation on Z defined for a,b € Z
by a ~ b<=a = b mod n, and write [a] = {x € Z|x ~ a} = {z € Z|r = a mod n}. The
set of integers modulo n, denoted by Z,,, is defined to be the quotient set

Z, = Z)~ = {|a]|a € Z}.
Since every a € Z is congruent modulo n to a unique r € Z with 0 < r < n, we have
Z, = {[0]’ [, 2}, [n = 1]}
and the elements listed in the above set are distinct so that Z,, is an n-element set.

6.12 Example: We have
ZS = {[0]7[1]7[2]} = {{"'7_37073767"'}7 {"'7_27174777"'}7 {7_17275787}}



6.13 Theorem: (Addition and Multiplication Modulo n) Let n € Z*. For a,b,c,d € Z,
ifa =cmod n and b =d mod n then a +b = c+ d mod n and ab = cd mod n. It follows
that we can define addition and multiplication operations on Z,, by defining

[a] + [b] = [a+b] and [a] [b] = [ab]

for all a,b € Z. When n > 2, the set Z,, is a commutative ring using these operations with
zero and identity elements [0] and [1].

Proof: Let a,b,c,d € Z. Suppose that a = ¢ mod n and b = d mod n. Since a = ¢ mod n
we can choose k € Z so that a = ¢+ kn. Since b = d mod n we can choose ¢ € Z so that
b=d+/¢n. Thena+b = (c+kn)+(d+¥¢n) = (c+d)+ (k+{)n so that a+b = c+d mod n,
and ab = (¢ + kn)(d + ¢n) = cd + cbn + knd + knln = cd + (kd + fc + kfn)n so that
ab = cd mod n.

It follows that we can define addition and multiplication operations in Z,, by defining
[a] + [b] = [a+b] and [a] [b] = [ab] for all a,b € Z. Tt is easy to verify that these operations
satisfy all of the Axioms R1 - R8 which define a commutative ring. As a sample proof, we
shall verify that one half of the distributivity Axiom R7 is satisfied. Let a,b,c € Z. Then

[a]([b] + [c]) = [a] [b+ ¢] , by the definition of addition in Z,
= [a(b+ ¢)] , by the definition of multiplication in Z,,
= [ab + ac] , by distributivity in Z.
= [ab] + [ac] , by the definition of addition in Z,,
= [a] [b] + [a] [¢] , by the definition of multiplication in Z,,.

6.14 Note: When no confusion arises, we shall often omit the square brackets from our
notation so that for a € Z we write [a] € Z,, simply as a € Z,. Using this notation, for
a,b € Z we have a = b in Z,, if and only if a = b mod n in Z.

6.15 Example: Addition and multiplication in Zg are given by the following tables.

+ 01 2 3 4 5 x 01 2 3 4 5
0 01 2 3 4 5 0 0 0 0 0 0 O
1 1 2 3 4 5 0 1 01 2 3 4 5
2 2 3 4 5 01 2 0 2 4 0 2 4
3 3 4 5 0 1 2 3 03 0 3 0 3
4 4 5 01 2 4 4 0 4 2 0 4 2
5 5 0 1 2 3 4 5 0 5 4 3 2 1

6.16 Example: Find 251 - 329 + (41)2 mod 16.

Solution: Since 251 = 15-16+ 11 and 329 = 20-16+9 and 41 = 2-16 4+ 9, working in Z4
we have 251 = 11 and 329 = 41 = 9 so that

251-329 + (41)? =11-94+92=(11+9)-9=20-9=4-9 =36 = 4.
Thus 251 - 329 + (41)? = 4 mod 16.

6.17 Example: Show that for all a € Z, if a = 3 mod 4 then a is not equal to the sum
of 2 perfect squares.

Solution: In Z, we have 02 = 0,12 = 1,22 =4 = 0 and 3% = 9 = 1 so that 2 € {0, 1} for all
x € Zy. Tt follows that for all z,y € Z4 we have 22+y? € {0+0,0+1,1+0,1+1} = {0,1,2}
so that 22 4 y? # 3. Equivalently, for all z,y € Z we have 22 + y? # 3 mod 4.



6.18 Example: Show that there do not exist integers x and y such that 322 + 4 = y3.

Solution: In Zg we have

x 01 2 3 456 7 8
2 01 4 0 7 7 0 4 1
2 01 8 01 8 0 1 8
332 0 3 3 0 3 3 0 3 3

32244 4 7 7T 4 7T 7T 4 T 7

From the table we see that for all x,y € Zg we have 322 +4 € {4,7} and y3 € {0,1,8} and
so 3x2 + 4 # y3. It follows that for all z,y € Z we have 322 + 4 # y3.

6.19 Example: There are several well known tests for divisibility which can be easily
explained using modular arithmetic. Suppose that a positive integer n is written in decimal
form as n = dy---didy where each d; is a decimal digit, that is d; € {0,1,---,9}. This
means that

(o
n=73 10,
k=0

¢
Since 2‘10 we have 10 = 0 mod 2. It follows that in Zy we have 10 = 0son = Y 10%d; = do.
i=0
Thus in Z, we have 2|n<=n = 0 mod 2 <= dy = 0 mod 2 <= 2|dy. In other words,

2 divides n if and only if 2 divides the final digit of n.
More generally for k € Z with 1 < k < /| since 2’“‘10’“ it follows that in Zyx we have

k=1
10* = 0, hence 10* = 0 for all i > k, and so n = Z 10°d; = > 10%d;. Thus in Z, we have
1=0 1=0

2k|n if and only if 2%

Z 10°d;. In other words,

=

2% divides n if and only if 2% divides the tailing k-digit number of n.
Similarly, since 5’1“"1011C it follows that

5% divides n if and only if 5* divides the tailing k-digit number of n.

e ¢
Since 10 = 1 mod 3 it follows that in Z3 we have 10 = 1 so that n = > 10’d; = Z d;.
=1

Thus in Z, 3|n<=n = 0 mod 3 <= Z d; = 0 mod 3 < 3| Z In other words, 3 divides
1=0
n if and only if 3 divides the sum of the digits of n. Similarly, since 10 = 1 mod 9,

9 divides n if and only if 9 divides the sum of the digits of n.

e ¢ ,
Since 10 = —1 mod 11, in Z;; we have 10 = —1 so that n = > 10°d; = > (—1)"d;. Thus

é .
in Z, 11|n<:> 11! > (—1)*d;. In other words,
i=0
11 divides n if and only if 11 divides the alternating sum of the digits of n.

6.20 Exercise: Use the divisibility tests described in the above example to find the prime
factorization of the number 28880280. Also, consider the problem of factoring the number
28880281.



6.21 Remark: For a,b € Z and n € Z™ note that if a = b mod n so that [a] = [b] € Z,
then we have ged(a,n) = ged(b,n) and so it makes sense to define ged([al, n) = ged(a,n).

6.22 Theorem: (Inverses Modulo n) Let n € Z with n > 2. For a € Z, [a] is a unit in
Z,, if and only if ged(a,n) =1 in Z.

Proof: Let a € Z and let d = ged(a,n). Suppose that [a] is a unit in Z,,. Choose b € Z so
that [a] [b] = [1] € Z,,. Then [ab] = [1] € Z,, and so ab = 1 mod n in Z. Since ab =1 mod n
we can choose k so that ab = 1 4 kn. Then we have ab — kn = 1. Since d|a and d|n it
follows that d|(ax + ny) for all z,y € Z so in particular d|(ab — kn), that is d|1. Since d|1
and d > 0, we must have d = 1.

Conversely, suppose that d = 1. By the Euclidean Algorithm with Back-Substitution,
we can choose s,t € Z so that as+nt = 1. Then we have as = 1 —nt so that as = 1 mod n.
Thus in Z,, we have [as] = [1] so that [a][s] = [1]. Thus [a] is a unit with [a]~! = [s].

6.23 Example: Determine whether 125 is a unit in Z47; and if so find 12571,

Solution: The Euclidean Algorithm gives
471 =3-125+96 , 125=1-964+29, 96=3-294+9, 29=3-94+2,9=4-2+1

and so d = ged(125,471) = 1 and it follows that 125 is a unit in Z471. Back-Substitution
gives the sequence
1, -4, 13, —43, 56, —211

so we have 125(—211) +471(56) = 1. It follows that in Z47; we have 12571 = —211 = 260.

6.24 Example: Solve the pair of equations 3z + 4y = 7 (1) and 11z + 15y = 8 (2) for
T,y € ZQO-

Solution: We work in Zgg. Since 3 -7 = 21 = 1 we have 37! = 7. Multiply both sides
of Equation (1) by 7 to get z + 8y = 9, that is x = 9 — 8y (3). Substitute x = 9 — 8y
into Equation (2) to get 11(9 — 8y) + 15y = &, that is 19 — 8y + 15y = 8 or equivalently
7y = 9 (4). Multiply both sides of Equation (4) by 77! = 3 to get y = 7. Put y = 7 into
Equation (3) to get t =9 —8-7 =9 — 16 = 13. Thus the only solution is (x,y) = (13,7).

6.25 Definition: A group is a set G with an element e € G and a binary operation
% : G X G — G, where for a,b € G we write %(a,b) as a x b or simply as ab, such that

G1. * is associative: for all a,b,c € G we have (ab)c = a(bc),
G2. e is an identity element: for all « € G we have ae = ea = a, and
G3. every a € G has an inverse: for every a € G there exists b € G such that ab = ba = e.

A group G is called abelian when

G4. * is commutative: for all a,b € G we have ab = ba.

6.26 Definition: When R is a ring under the operations + and X, the set R is also a
group under the operation + with identity element 0. The group R under + is called the
additive group of R. The set R is not a group under the operation x because not every
element a € R has an inverse under X (in particular, the element 0 has no inverse). The
set of all invertible elements in R, however, is a group under multiplication, and we denote
it by R*, so we have

R*={ac R‘a is a unit }.

The group R* is called the group of units of R.



6.27 Example: When F' is a field, every nonzero element in F' is invertible so we have
F* = F\ {0}. In Z, the only invertible elements are £1 and so Z* = {1, —1}.

6.28 Definition: For n € Z with n > 2, the group of units of Z,, is called the group of
units modulo n and is denoted by U,,. Thus
U, ={ac Zn| ged(a,n) = 1}.

For convenience, we also let U; be the trivial group U; = Z; = {1}. For a set S, let
|S| denote the cardinality of S, so that in particular when S is a finite set, |\S| denotes
the number of elements in S. We define the Euler phi function, also called the Euler
totient function, ¢ : ZT — ZT by

p(n) = |Uy|
so that ¢(n) is equal to the number of elements a € {1,2,---,n} such that ged(a,n) = 1.
6.29 Example: Since Uy = {1,3,7,9,11,13,17,19} we have ¢(20) = 8.
6.30 Example: When p is a prime number and k € Z™* notice that
Upe ={1,2,3,--, 0"} \ {p,2p,3p, -, p"}

and so
p(p") =p" —p" .
6.31 Theorem: (Fermat’s Little Theorem) Let p be a prime number. Then

(1) For all a € Z with gcd(a,p) = 1 we have a?~! =1 mod p.
(2) For all a € Z we have a? = a mod p.

Proof: To prove Part (1), let a € Z with gcd(a,p) = 1. Then we have a € U,. Define
F :U, = Uy, by F(z) = ax (note that when @ and x are units in a ring, the product ax is
also a unit with (ax)™! = 271a™!, so the map F is well-defined). Notice that F is bijective
with inverse G : U, — U, given by G(z) = a~'z. Since F is bijective, it follows that the

list of elements la, 2a,3a, - - -, (p—1)a is a permutation (that is a a re-orderring) of the list
1,2,3,---,p— 1. Thus in U, we have
la-2a-3a-...-(p—1a=1-2-3-...-(p—1)

(p—Dla?™t = (p—1)!
Multiply both sides by the inverse of (p — 1)! in U, to get a?~! =1 in U, as required.
To prove Part (2), let a € Z be arbitrary. If ged(a,p) = 1 then by Part (1) we have
aP~! = 1 mod p and so we can multiply by a to get a? = a mod p. If ged(a, p) # 1 then since
p is prime it follows that p|n and so we have a = 0 mod p hence a? = 0P = 0 = a mod p.
In either case, we have a? = a mod p, as required.

6.32 Example: If today is Tuesday, then what day will it be in 2190 days?

Solution: By Fermat’s Little Theorem we have 2° = 1 mod 7. It follows that the list of
powers of 2 repeats every 6 terms in Z;. Since 100 = 16 - 6 + 4 so that 100 = 4 mod 6, it
follows that 2190 = 2% = 16 = 2 mod 7. Thus in 2'°° days it will be Thursday.



6.33 Example: Show that 27 4 370 is not prime.

Solution: In Zy we have 270 + 370 = 00 + 17 = 1 # 0. In Z3, we have 270 + 370 =
(=1)™ + 0™ =1 # 0. In Zs, by Fermat’s Little Theorem the list of powers of 2 and 3
repeats every 4 terms, and 70 = 2 mod 4, so we have 270 4+ 370 =22 4+ 32 =4+ 9 =3 £ 0.
In Z~, the list of powers of 2 and 3 repeats every 6 terms, and 70 = 4 mod 6, so we have
2704370 — 24 134 = 42492 = 42422 =244 =6 # 0. In Zq,, the list of powers of 2 and 3
repeats every 10 terms, and 70 = 0 mod 10, so we have 270 +370 =2=4+30 =141 =2 £ 0.
In Z,3, the list of powers of 2 and 3 repeats every 12 terms, and 70 = 10 mod 12, so we
have 270 4370 =210 1. 310 =94.24.92 1 33.33.31 =3.3.4+1-1-3=10+3 = 0. Since
270 4 370 = (0 € Z;5 it follows that 13}(270 +3™) in Z, and so 27° + 370 is not prime.

6.34 Theorem: (Euler-Fermat) Let n € Z*. For all a € Z with ged(a,n) = 1 we have
a?™) =1 mod n.

Proof: Let a € Z with ged(a,n) = 1. Then we have a € U,. Let ¢ = ¢(n) and let
x1,T2, -, %, be alist of all the elements in U,,. Define F' : U,, = U,, by F(z) = ax. Then
F is bijective with inverse G : U,, — U, given by G(x) = a~'x. Since F is bijective, it
follows that the list axq, axs, - -, ax, is a permutation of the list z1,z2, -, 2., and so in
U,, we have

aml-am2-...-ax@:m1.x2 ..... :EQD
¢ ¢
(1T zi)a? = ]
i=1 =1

©
Multiply both sides by the inverse of [] z; in U, to get a¥ =1 in U,, as required.

i=1
6.35 Remark: For any finite abelian group G, the above proof is valid and it shows that
al¢l = e for all @ € G. The same result holds even in non-abelian finite groups, but a
different proof is required.

6.36 Theorem: (The Linear Congruence Theorem) Let n € ZT, let a,b € Z, and let
d = ged(a,n). Consider the congruence ax = b mod n.

(1) The congruence has a solution x € Z if and only if d|b, and
(2) if x = u is one solution to the congruence, then the general solution is

x:umod%.

Proof: Suppose that the congruence axr = b mod n has a solution. Let x = u be a
solution so we have au = b mod n. Since au = b mod n we can choose k € Z so that
au = b+ kn, that is au — nk = b. Since d|a and d|n it follows that d|(axz + ny) for all
x,y € Z, and so in particular d|(au —nk), hence d|b. Conversely, suppose that d|b. By the
Linear Diophanitine Equation Theorem, the equation axz 4+ ny = b has a solution. Choose
u,v € Z so that au + nv = b. Then since au = b — nv we have au = b mod n and so the
congruence ax = b mod n has a solution (namely = = u).

Suppose that x = w is a solution to the given congruence, so we have au = b mod n.
We need to show that for every k € Z if we let x = u + k% then we have ax = b mod n
and, conversely, that for every x € Z such that ax = b mod n there exists k£ € Z such
that v = u + k3. Let k € Z and let * = u + k7. Then ax = a(u—i—kz%) = au + %Ln.
Since ar = au + %n and d|a so that %a € Z, it follows that az = au mod n. Since
ax = au mod n and au = b mod n we have ax = b mod n, as required.



Conversely, let x € Z and suppose that ax = b mod n. Since ax = b mod n and
au = b mod n we have ax = au mod n. Since ax = au mod n we can choose ¢ € Z so that
az = au + ¢n. Then we have a(z — u) = ¢n and so %(z — u) = 2{. Since 2|%(z — u) and
ged (%, 2) =1, it follows that 2|(z — u). Thus we can choose k € Z so that « — u = k2

and then we have x = u + k%, as required.
6.37 Example: Solve 221x = 595 mod 323.

Solution: The Euclidean Algorithm gives
323 =1-221+102, 221 =2-102+ 17, 102=6-17+0

and so ged(221,323) = 17. Note that % = 35, so the congruence has a solution. Back-
Substitution gives the sequence
1,-2,3

so we have 221 -3 — 323 - 2 = 17. Multiply by 35 to get 221 - 105 — 323 - 70 = 595. Thus
one solution to the given congruence is x = 105. Since % =19 and 105 =5-19 4 10, the

general solution is given by x = 105 = 10 mod 19.

6.38 Theorem: (The Chinese Remainder Theorem) Let n,m € Z%* and let a,b € Z.
Consider the pair of congruences
r = a mod n,

z = b mod m.

(1) The pair of congruences has a solution « € Z if and only if ged(n, m)|(b — a), and
(2) if = w is one solution, then the general solution is x = u mod lem(n,m).

Proof: Suppose that the given pair of congruences has a solution and let d = ged(n, m).
Let = u be a solution, so we have © = @ mod n and v = b mod m. Since v = a mod n
we can choose k € Z so that u = a + kn. Since u = b mod m we can choose ¢ € Z so that
u = b+ ¢m. Since u = a + kn = b+ ¢n we have b —a = nk — m{. Since d|n and d|m
it follows that d|(nx + my) for all z,y € Z so in particular d|(nk — mf), hence d|(b — a).
Conversely, suppose that d|(b — a). By the Linear Diophantine Equation Theorem, the
equation nx + my = b — a has a solution. Choose k, /¢ € Z so that nk — mf =b — a. Then
we have a+nk = b+ml. Let u = a+nk = b+ml. Since u = a+nk we have u = a mod n
and since u = b+ mf we have v = b mod m. Thus x = w is a solution to the pair of
congruence.

Now suppose that © = a mod n and © = b mod m. Let ¢ = lem(n, m). Let k € Z be
arbitrary and let # = u + k(. Since x — u = k¢ we have ¢|(z — u). Since n|¢ and £|(z — u)
we have n‘(x — u) so that z = u mod n. Since x = u mod n and u = a mod n we have
x = a mod n. Similarly = b mod m.

Conversely, let * € Z and suppose that + = a mod n and x = b mod m. Since
x = a mod n and u = a mod n we have = « mod n so that n|(:z:—u) Since = b mod m
and v = b mod m we have = u mod m so that m|(z —u). Since n|(z —u) and m|(z —u)
and ¢ = lem(n, m), it follows that ¢|(z — u) so that z = u mod .



6.39 Example: Solve the pair of congruences x = 2 mod 15 and = = 13 mod 28.

Solution: We want to find k, ¢ € Z such that x = 24+15k = 13+28¢. We need 15k—28¢ = 11.
The Euclidean Algorithm gives

28 =1-154+13, 15=1-134+2, 13=6-2+1
so that ged(15,28) = 1 and Back-Substitution gives the sequence
1, -6,7, —13

so that (15)(—13) + (28)(7) = 1. Multiplying by 11 gives (15)(—143) + (28)(77) = 11, so
one solution to the equation 15k — 28/ = 11 is given by (k,1) = (—143,77). It follows that
one solution to the pair of congruences is given by v = 2 + 15k = 2 — 15 - 143 = —2143.
Since lem(15,28) = 1528 = 420, and —2143 = —6 - 420 + 377, the general solution to the
pair of congruences is x = —2143 = 377 mod 420.

6.40 Exercise: Solve the congruence z3 + 2z = 18 mod 35.
6.41 Exercise: Find the last 2 digits of 141" in its decimal representation.

6.42 Theorem: (The Generalized Chinese Remainder Theorem) Let ¢ € Z%, let n; € Z
and a; € Z for all indices ¢+ with 1 < ¢ < (. Consider the system of ¢ congruences
x = a; mod n; for all indices 1 with 1 < g < /.

(1) The system has a solution x if and only if ged(n;, n;)|(a; — a;) for all i,j, and
(2) if x = w is one solution then the general solution is x = u mod lem(nq,ng, -+, ny).

Proof: The proof is left as an exercise.

6.43 Exercise: Solve the system x = 17 mod 25, z = 14 mod 18 and z = 22 mod 40.
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6.44 Theorem: Let n = [[ p;** where ¢ € Z" and the p; are distinct primes and each
i=1

ki € Zt. Then

p(n) = I o (pi*).

=1
Proof: I may include a proof later.

6.45 Example: When p and ¢ are distinct primes, we have ¢(pq) = (p — 1)(¢ — 1).



