Chapter 4. Recursion and Induction

4.1 Theorem: (Mathematical Induction) Let F(n) be a statement about n € Z and let
m € Z. Suppose that F(m) is true. Suppose that for all n € Z with n > m, if F(n) is true
then F(n+ 1) is true. Then F(n) is true for all n € Z with n > m.

Proof: Let S = {k € Z}k > m and F(k) is false}. To prove that F(n) is true for all
n > m, we shall prove that S = (). Suppose, for a contradiction, that S # (. Since S # ()
and S is bounded below by m, it follows from the Well-Ordering Property of Z that S has
a minimum element. Let a = min(.S). Since a € S it follows that a > m and F'(a) is false.
Since F'(m) is true and F(a) is false, it follows that a # m. Since a > m and a # m it
follows that a > m and so a — 1 > m. We claim that F(a — 1) is true. Suppose, for a
contradiction, that F'(a — 1) is false. Since a —1 > m and F'(a — 1) is false, it follows that
a—1¢€S. Since a = min(S) and a—1 € S, we have a < a—1. But we know that a > a—1
so we have obtained the desired contradiction (to the assumption that F'(a — 1) is false).
Thus F'(a — 1) is true, as claimed. Since a —1 > m and F(a — 1) is true, it follows by the
hypothesis in the statement of the theorem that F'(a) is true. But, as mentioned earlier,
since a € S we know that F'(a) is false, so we have obtained the desired contradiction (to
the assumption that S # @). Thus S = (), as required.

4.2 Note: It follows, from the above theorem, that in order to prove that F'(n) is true for
all n > m, we can do the following.

1. Prove that F(m) is true (this is called proving the base case).
2. Let n > m and suppose that F'(n) is true (this is called the induction hypothesis).
3. Prove that F(n + 1) is true.

Alternatively, we can prove that F'(n) is true for all n > m as follows: prove that F'(m) is
true, let n > m and suppose that F'(n — 1) is true, then prove that F'(n) is true.

4.3 Definition: For a sequence (ay,)n>m, a formula for a,, in terms of n is called a closed-
form formula for a,,, and a formula for a,, in terms of n along with previous terms a; with
k < n is called a recursion formula for a,,.

4.4 Example: For the sequence (a,),>o given in closed-form by a,, = n? for n > 0, we
have
(an)nzo =(0,1,4,9,16,25,36, - ).

For the sequence (a,)n>0 defined recursively by ap = 2 and ay,4+1 = 2a,, — 1 for n > 0, we
have
(an)ns0 = (2,3,5,9,17,33,62,- - -).

The Fibonacci sequence is defined recursively by ag =0, a; =1 and a,, = a1 + apn_o
for n > 2, so we have

(an)n>0 =(0,1,1,2,3,5,8,13,21,34, - - ).
4.5 Example: When we write

Sn: Zak:am+am+1+"'+an

k=m
what we really mean is that the sequence S, is defined recursively by S,, = a,, and
S, =S5,_1+a, for all n > m.



4.6 Example: When we write
n
P, = H Ak = Gy * Q1 * - - -~ Ay
k=m
what we really mean is that the sequence P, is defined recursively by P,, = a,, and
P,=P,_1-a, for n >m.

4.7 Example: When we say that n! (read as n factorial) is defined for n € N by 0! = 1
and n! =1-2-3-...-n, what we really mean is that n! is defined recursively by 0! = 1
and n! =n-(n—1)! forn > 1.

4.8 Example: Let a; = 1 and let a,41 = nLH an + 1 for all n > 1. Find a closed-form
formula for a,,.

Solution: Using the given recursion formula, the first few terms in the sequence (ay)n>1

are as follows.
n 1

a, 1

I DN

3
2

N~

5
3

NI [STAN

1

T

n

It appears, from the table, that a, = for all n > 1. Here is a proof by induction.
When n = 1 we have "TH = % =1=a; = a,. Let n > 1 be arbitrary and suppose,

inductively, that a, = 23 (for this one particular value of n). Then we have

M‘

py1 = RLH an + 1 by the recursion formula

_ _n_ . n—i—l
T n+l

_ _(+1)+1
_%_|_1_”T

+ 1 by the induction hypothesis
, as required.

By induction, it follows that a,, = "TH for all n > 1.

4.9 Example: Find [] (1- 7).
k=2

n

Solution: Let P, = [] (1—7%) for n > 2. This means that the sequence (P,),>2 is defined
k=2

recursively by P, = 1— i = % and P, = P,,_1 (1 — —) for all n > 3. The first few values of

P,, are as follows. szl—%l:%,Pg Pg(l 9):% %— P4—P3(1 16)—% %2 g,

P = P4(1 — —) = % . gg = 5, and Py = P;5 (1 — —) = % gg = 172 It appears from these

first few values, that P, = "+1 for all n > 2. When n = 2 we have ”—J;l = 4 = P,. Let
n > 3 and suppose, mductlvely, that P, 1 = 2(n— 3 Then

P,=P, (1 — ) by the recursion formula for P,
= Q(nn_l) : ”n—Zl by the induction hypothesis
= 5meT) (= 1,{(2"“) = 2l | as required.

By induction, it follows that P, = ”2—47;1 for all n > 2.

4.10 Exercise: Find Y k and find Y k3.
k=1 k=1



4.11 Exercise: Let (a,)n>0 be the Fibonacci sequence.

(a) Show that ag + a1 +as + -+ ay = anqio — 1 for all n > 0.
(b) Show that ag? + a1? + as? + -+ + a,? = ana, 1 for all n > 0.
(c) Show that a,_1a,41 = a,? + (—=1)" for all n > 1.

(d) Show that a,_1% + a,? = as,_1 for all n > 1.

4.12 Theorem: (Strong Mathematical Induction) Let F'(n) be a statement about n € Z
and let m € Z. Suppose that for all n € Z with n > m, if F(k) is true for all k € Z with
m < k <n then F(n) is true. Then F(n) is true for all n > m.

Proof: Let G(¢) be the statement “F(k) is true for all k € Z with m < k < £”. Note that
G(m) is true vacuously because there are no values of k € Z with m <k <m. Let £ > m
and suppose, inductively, that G(¢) is true or, in other words, suppose that F(k) is true
for all k € Z with m < k < £. Since F(k) is true for all k € Z with m < k < ¢, it follows
from the hypothesis in the statement of the theorem that F'(¢) is true. Since F'(k) is true
for all k € Z with m < k < £ and F({) is true, it follows that F'(k) is true for all k € Z
with m < k < £+ 1 or, in other words, it follows that G(¢ + 1) is true, as required. By
induction, it follows that G(¢) is true for all £ > m.

Let n > m be arbitrary. Since G(¢) is true for all £ > m, in particular G(n + 1) is
true, so F'(k) is true for all k € Z with m < k < n + 1. Since F(k) is true for all k € Z
with m < k < n+ 1, in particular F/(n) is true. Since n > m was arbitrary, it follows that
F(n) is true for all n > m.

4.13 Note: In order to prove that F'(n) is true for all n > m, we can do the following,.

1. Let n > m and suppose that F(k) is true for all k£ € Z with m <k < n.
2. Prove that F'(n) is true.

Although strong induction, used as above, does not require the proof that F'(m) is true (the
base case), there are situations in which one ore more base cases must be verified to make
this method of proof valid. For example, if a sequence (z,),>1 is defined by specifying the
values of 1 and x5, and by giving a recursion formula for x, in terms of x,_1 and x,_»
for all n > 3, then in order to prove that x,, satisfies the closed-form formula x,, = f(n)
for all n > 1 it suffices to prove that z; = f(1) and 22 = f(2) (two base cases) and to
prove that for all n > 3, if x,,_1 = f(n — 1) and z,,_2 = f(x,_2) then z,, = f(n).

4.14 Example: Let ag = a; = 2 and let a,, = 2a,_1 + 3a,_o for all n > 2. Find a
closed-form formula for a,,.

Solution: The first few values of a,, are as follows.

n 01 2 3 4 5)

a, 2 2 10 26 82 242
It appears that a,, = 3" + (—1)" for all n > 0. Here is a proof by induction. When n =0
we have 3" + (-1)" = 3°+(-1)° =1+1 =2 = ay = a, and when n = 1 we have
3"+ (-1)"=3"+(-1)! =3-1=2=a; =a,. Let n > 2 and suppose, inductively, that
ap = 3% + (=1)* for all k € Z with 0 < k < n (in particular for k =n — 1 and k = n — 2).
Then

ap = 2051 + 3an,_o , by the recursion formula for a,,
=2(3""1 + (=1)"1) +3(3" %2 4+ (=1)""?) , by the induction hypothesis
=2-3""1 2(—1)" 43" 4 3(—1)" = 3" + (—1)" , as required.
By induction, it follows that a,, = 3" + (—1)™ for all n > 0.



4.15 Note: One shortcoming with the method that we used in the above example is that
we needed to guess a closed-form formula for the sequence and, for many sequences, such
a closed-form formula can be extremely difficult to guess. For this reason it is useful to
develop a method which allows us to calculate such a closed-form formula.

4.16 Theorem: (Quadratic Linear Recursion) Let a,b,p,q € R with ¢ # 0 and define
(Zn )n>m recursively by z,, = a, Tm+1 = b and x,, = px,,—1 +qx,—2 for alln > m+2. Let
f(z) = 22 —pz — q and suppose that f(x) factors as f(z) = (z—u)(z —v) for some u,v € R
with u # v. Then there exist unique numbers A, B € R such that x,, = Au™ + Bv"™ for all
n>m.

Proof: Since 22 —pr — ¢ = f(z) = (x —u)(z —v) = 22 — (u +v)x + pg we have u +v = p

and uv = —q. Since ¢ # 0 and uv = —q it follows that v # 0 and v # 0.

In order to have z,, = Au™+ Bv™ for all n > m we must have Au™+Bv"™ = z,,, = a (1)
and Au™*! 4+ By™T1 = p (2). Multiplying Equation (1) by v and subtracting Equation (2)
(

gives A(vu™ —u™*1) = av — b, so we must choose A = urﬁz’v_fu). Multiplying Equation (1)

by v and subtracting (2) gives B(uv™ —v™*!) = au —b , so we must choose B =

au—b
v (u—wv) "
Let A = uﬂ?'&)_fu) and B = vﬁz‘u__bv). We claim that z,, = Au™ + Bv" for all n > m.
Here is a proof by induction. When n = m we have

n n __ m m __ av—>b au—b _ av—b—au+b __ _ o
Au" + By = Au™ + By = T2 S0 = SRR = g = oy, = Ty

and when n = m + 1 we have

Aun + By = Aum—H + va—f—l — (av—b)u + (au—b)v — auv—bu—auv+bv

v—u u—v v—u

=b=2Tmi1 = Tp.
Let n > m+2 and suppose, inductively, that z,, = Au*+Bv* for all k € Zwithm < k <n
(in particular for k =n — 1 and kK =n — 2. Then
Ty = PTpn_1 + qTy_o , by the recursion formula for xz,
= (u+v)ry—1 — (W)xy_2 , since u+v =p and uv = —q
= (u+v)(Au""" + Bv" ) — (uv) (Au""% + Bv""?) | by the induction hypothesis
= A((u+v)u"! = (w)u"?) + B((u+ v)o" " — (uww)o™?)
= Au" + Bv" , as required.

It follows, by induction, that z,, = Au™ + Bv™ for all n > m.

4.17 Theorem: (Linear Recursion) Let ag, a1, az, -+ ,aq—1 and cg,¢1,C2, -+, Cq—1 be real
(or complex) numbers with ¢y # 0. Let (x,,)n>m be the sequence defined recursively by
T =0, Tl = A1, Tmy2 = 02, Tmpd—1 = Gd—1 and

Ty + C4—1Tp—1 + C4d—2Tp—2 + ++* + C1Tp—_g41 + CoTp—q = 0.

Let f(x) = 2% + cgo1297 ! + 02?2 + - -+ + 12 + o and suppose that f(x) factors as

¢
f(x) = ] (x —u;)* where the u; are distinct real (or complex) numbers. Then there exist
i=1

unique polynomials p1(x),pa(x), - -, pe(x), with each p;(x) of degree less than k;, such that
‘
T, = Y. pi(n)u;™ for all n > m.
i=1

Proof: This is a stronger version of the previous theorem, but we omit the proof.



4.18 Example: Let 2 = 4, 1 = —1 and z,, = 3z,_1 + 10x,,_o for n > 2. Find a
closed-form formula for z,,.

Solution: The first few terms z,, are as follows.

n 0 1 2 3 4
4 -1 37 101 673 3029

It seems difficult to guess a closed-form formula for z,, from the information in the above
table. Instead, we make use of the above theorem with p = 3 and ¢ = 10. Let

fx)=2*—pr—q=2° -3z —10 = (x — 5)(z + 2).

From the above theorem, we know that for some A, B € R we have z,, = A(5)" + B(—2)"
for all n > 0. In particular, we must have A(5)° + B(—2)" = o, that is A+ B =4 (1) and
we must have A(5)! + B(—2)! = 21, that is 54 — 2B = —1 (2). Multiply Equation (1) by
2 and add Equation (2) to get 7A = 7 so that A = 1, and multiply Equation (1) by 5 and
subtract Equation (2) to get 7B = 21 so that B = 3. Thus z,, = 5" +3(—2)" for all n > 0.

4.19 Exercise: Find a closed-form formula for the terms of the Fibonacci sequence.

4.20 Note: Suppose that we choose k of n objects, When the objects are chosen with
replacement (so that repetition is allowed) and the order of the chosen objects matters (so
the chosen objects form an ordered k-tuple), the number of ways to choose k of n objects
is equal to n” (since we have n choices for each of the k objects). For example, the number
of ways to roll 3 six-sided dice is equal to 63 = 216.

When the objects are chosen without replacement (so that the k& chosen objects are
distinct) and the order matters, the number of ways to choose k of n objects is equal to
nn—1)(n—2)---(n—k+1) = (nf—'k), (since we have n choices for the first object and n—1
choices for the second object and so on). In particular, the number of ways to arrange n
objects in order (to form an ordered n-tuple) is equal to n!.

When the objects are chosen without replacement and the order does not matter (so

the chosen objects form a k-element set), the number of ways to choose k of n objects is
n(n—1)(n—2)---(n—k+1) (
k!

since each k-element set can be ordered in k! ways

to form k! ordered k-tuples, and there are (nf—'k), such ordered k-tuples). For example, the

number of 4-element subsets of the set {1,2,3,4,5,6, 7} is equal to 47—:;, = % =7-5=235.

4.21 Definition: For n,k € N with 0 < k£ < n, we define the binomial coefficient (Z),
read as “n choose k”, by

equal to k!(:ik)! =

(n) o n! _ n(n—1)(n—2)---(n—k+1)
k) 7 kl(n—k)! — k! )

4.22 Theorem: (Pascal’s Triangle) For k,n € N with 0 < k < n we have
(5) =) =1, (2) = (.2) and () + (1) = (i)
Proof: The formulas (”) = (Z) =1 and (Z) = (nﬁk) are immediate from the definition

0
of () (since 0! = 1) and we have

n n . n! n! o (k+1)n! (n—k)n!
(7)) + () = Hn—f)! T e DIin—F=1)1 — Gk D=k T (et DI(n—R)!
_ (k+14+n—Kk)n! (n+1)! o (n—l—l)
= e DI =R — GeF Dt —oF D) — \kt1)-

4.23 Exercise: Make a table displaying the values (Z) for 0 < k < n < 10. The table
forms a triangle of positive integers in which each entry is obtained by adding two of the
entries above.



4.24 Notation: Let R be a ring and let a € R. For k € Z* we write ka=a+a+---+a
with k terms in the sum, and we write (—k)a = k(—a), and we write a* = a-a-...-a with
k terms in the product. For 0 € Z we write 0a = 0 and a® = 1. When a € R is a unit, for
k€ Z* we write a=% = (a=1)*.

4.25 Exercise: Let R be a ring and let a,b € R. Show that for all k,I € Z we have
(—=k)a = —(ka), (k+1)a = ka + la and (ka)(Ib) = (kl)(ab). Show that for all k,] € Z™ we
have a**! = a*a!. Show that if ab = ba then for all k,1 € Z* we have (ab)* = a*b*. Show
that if a is a unit, then for all k,1 € Z we have a=* = (a*)~! and o**! = a*a!.

4.26 Theorem: (Binomial Theorem) Let R be a ring, let a,b € R with ab = ba, and let
n € N. Then

n n

@ =3 (Rt = 3 (1) e

k=0 k=0
= (5)a"+ (1) "o+ (5) " 7202 4+ (1 )ab" 1 4 () 7.

Proof: We shall prove, by induction, that (a 4+ b)™ = Y- (}) a"~*b* for all n > 0.
k=0

When n =0 we have Y (7)a" *bF = (8) a’’ =1=(a+0b)°=(a+0b)"
k=0

When n =1 we have i( Jamr Rk = (1) att® + (1) a%' =a+b=(a+b)' = (a+b)"
k=0

Let n > 1 and suppose, inductively that (a 4+ b)™ = Y (}) "~ *b*. Then
k=0

(0™ = @+ b)(a+5)" = (a+8) 3 (7)a" 0

=(a+0)( () am+ (1) a to+ (3)am 2% 4+ (1 )Jab o+ (1) 0)
= (o) a™ + () ab+ (3) " 107 + -4 (1 )a? 01+ () ad”
+(5)amb+ () a" 0 -4 (2,)a®bn 4 (1) )a b + () 07
=a" "+ ((5) + (1))a"b+ ((7) + (5))a" "o+
+((G2) + () + (2 )+(n))ab”+b"+1

<n+1)an+1_|_ (’I’L—ll—l) nb+ (n+1) n— 1b2 cee (Zi—i)QQ bn (nii)abn
nz (Zi_})anq_l—kbk
as requived, since (3) = 1= ("}1) and (7) = 1 = <z¢1> and (3) + () = (1) fo
all £ with 0 < k < n. By induction, we have (a + i (Z) a” kpk for all n > 0.
k=

Finally note that, by interchanging a and b, we also have (a + b)™ = Y (}) a*b"*

k=0
for all n > 0.



4.27 Example: Expand (z + 2)°.
Solution: By the Binomial Theorem, we have
(x+2)° = (5) 2+ (1) 2%2! + (5) @22 + (5) 2°2° + (§) 2°2" + (5) #'2° + (5) 2°
=2%+6-22°+15-42* +20-82° +15- 162> + 6 - 322 + 64
= 2% +122° + 60z* + 1602° + 2402° + 1927 + 64.
4.28 Example: Find the coefficient of z® in the expansion of (5:83 — %)11.

Solution: By the Binomial Theorem, we have

x2

11 11
(5273 . 3)11 _ kzo (1k1)(5x3)11—k(2x—2)k _ kzo(_l)k(lkl) 5ll—kok ;.3(11—k)—2k_

In order to get 3(11 — k) — 2k = 8, we need 33 — 5k = 8, so we choose the term with k = 5.

Thus the coefficient of 28 is equal to
(—1)5 (L) 5625 = ~ L0987 5695 — _17.3.7.10% = —231,000,000.

4.29 Example: Find ) (32)2%
k=0

n

Solution: Notice that
2n n n n n
(1+%) - (20 )+(21 )%4'(22 )%+(23 )ﬁ
2n n n n n
(1-%)" =) - (1) 5+(5)5-(F) 55
Add these and divide by 2 to get

S+ )+ (-5 = () + ()5 + () E+ -+ Gk = 3 ()%

n
4.30 Exercise: Let n be a positive integer. By calculating Y. ((k + 1)+t — k™*1) in
k=0

n
two different ways, find a recursion formula for the sum S,, = > k™.
k=0
4.31 Exercise: There are n points on a circle around a disc. Each of the (g) pairs of
points is connected by a line segment. No three of these line segments have a common
point of intersection. Determine the number of regions into which the disc is divided by
the line segments.

4.32 Exercise: Let n € Z™. Show that every positive real number has a unique positive
nt" root. When n is odd, show that every real number has a unique real nt" root.

4.33 Notation: When n € Z* and z € R (with > 0 in the case that n is even) we

denote the unique n*® root of 2 by '/ or by /z. In the case n = 2 and x > 0, we also
write 21/2 as \/z.

4.34 Exercise: (The Quadratic Formula) Show that for all a,b,c,xz € R with a # 0 we

have
—b+ Vb2 — 4dac
2a '

Be careful to notice (and prove) any familiar algebraic properties of R, which you need to
use in your proof, but which have not yet been mentioned in these course notes.

ax’ +br+c=0< b*> —4dac>0and z =




