
Chapter 4. Recursion and Induction

4.1 Theorem: (Mathematical Induction) Let F (n) be a statement about n ∈ Z and let
m ∈ Z. Suppose that F (m) is true. Suppose that for all n ∈ Z with n ≥ m, if F (n) is true
then F (n + 1) is true. Then F (n) is true for all n ∈ Z with n ≥ m.

Proof: Let S =
{
k ∈ Z

∣∣k ≥ m and F (k) is false
}

. To prove that F (n) is true for all
n ≥ m, we shall prove that S = ∅. Suppose, for a contradiction, that S 6= ∅. Since S 6= ∅
and S is bounded below by m, it follows from the Well-Ordering Property of Z that S has
a minimum element. Let a = min(S). Since a ∈ S it follows that a ≥ m and F (a) is false.
Since F (m) is true and F (a) is false, it follows that a 6= m. Since a ≥ m and a 6= m it
follows that a > m and so a − 1 ≥ m. We claim that F (a − 1) is true. Suppose, for a
contradiction, that F (a− 1) is false. Since a− 1 ≥ m and F (a− 1) is false, it follows that
a−1 ∈ S. Since a = min(S) and a−1 ∈ S, we have a ≤ a−1. But we know that a > a−1
so we have obtained the desired contradiction (to the assumption that F (a − 1) is false).
Thus F (a− 1) is true, as claimed. Since a− 1 ≥ m and F (a− 1) is true, it follows by the
hypothesis in the statement of the theorem that F (a) is true. But, as mentioned earlier,
since a ∈ S we know that F (a) is false, so we have obtained the desired contradiction (to
the assumption that S 6= ∅). Thus S = ∅, as required.

4.2 Note: It follows, from the above theorem, that in order to prove that F (n) is true for
all n ≥ m, we can do the following.

1. Prove that F (m) is true (this is called proving the base case).
2. Let n ≥ m and suppose that F (n) is true (this is called the induction hypothesis).
3. Prove that F (n + 1) is true.

Alternatively, we can prove that F (n) is true for all n ≥ m as follows: prove that F (m) is
true, let n > m and suppose that F (n− 1) is true, then prove that F (n) is true.

4.3 Definition: For a sequence (an)n≥m, a formula for an in terms of n is called a closed-
form formula for an, and a formula for an in terms of n along with previous terms ak with
k < n is called a recursion formula for an.

4.4 Example: For the sequence (an)n≥0 given in closed-form by an = n2 for n ≥ 0, we
have

(an)n≥0 = (0, 1, 4, 9, 16, 25, 36, · · ·).

For the sequence (an)n≥0 defined recursively by a0 = 2 and an+1 = 2an − 1 for n ≥ 0, we
have

(an)n≥0 = (2, 3, 5, 9, 17, 33, 62, · · ·).

The Fibonacci sequence is defined recursively by a0 = 0, a1 = 1 and an = an−1 + an−2
for n ≥ 2, so we have

(an)n≥0 = (0, 1, 1, 2, 3, 5, 8, 13, 21, 34, · · ·).

4.5 Example: When we write

Sn =
n∑

k=m

ak = am + am+1 + · · ·+ an

what we really mean is that the sequence Sn is defined recursively by Sm = am and
Sn = Sn−1 + an for all n > m.
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4.6 Example: When we write

Pn =
n∏

k=m

ak = am · am+1 · . . . · an

what we really mean is that the sequence Pn is defined recursively by Pm = am and
Pn = Pn−1 · an for n > m.

4.7 Example: When we say that n! (read as n factorial) is defined for n ∈ N by 0! = 1
and n! = 1 · 2 · 3 · . . . · n, what we really mean is that n! is defined recursively by 0! = 1
and n! = n · (n− 1)! for n ≥ 1.

4.8 Example: Let a1 = 1 and let an+1 = n
n+1 an + 1 for all n ≥ 1. Find a closed-form

formula for an.

Solution: Using the given recursion formula, the first few terms in the sequence (an)n≥1
are as follows.

n 1 2 3 4 5 6
an 1 3

2 2 5
2 3 7

2

It appears, from the table, that an = n+1
2 for all n ≥ 1. Here is a proof by induction.

When n = 1 we have n+1
2 = 1+1

2 = 1 = a1 = an. Let n ≥ 1 be arbitrary and suppose,
inductively, that an = n+1

2 (for this one particular value of n). Then we have

an+1 = n
n+1 an + 1 by the recursion formula

= n
n+1 ·

n+1
2 + 1 by the induction hypothesis

= n
2 + 1 = (n+1)+1

2 , as required.

By induction, it follows that an = n+1
2 for all n ≥ 1.

4.9 Example: Find
n∏

k=2

(
1− 1

k2

)
.

Solution: Let Pn =
n∏

k=2

(
1− 1

k2

)
for n ≥ 2. This means that the sequence (Pn)n≥2 is defined

recursively by P2 = 1− 1
4 = 3

4 and Pn = Pn−1
(
1− 1

n2

)
for all n ≥ 3. The first few values of

Pn are as follows. P2 = 1− 1
4 = 3

4 , P3 = P2

(
1− 1

9

)
= 3

4 ·
8
9 = 2

3 , P4 = P3

(
1− 1

16

)
= 2

3 ·
15
16 = 5

8 ,

P5 = P4

(
1− 1

25

)
= 5

8 ·
24
25 = 3

5 , and P6 = P5

(
1− 1

36

)
= 3

5 ·
35
36 = 7

12 . It appears, from these
first few values, that Pn = n+1

2n for all n ≥ 2. When n = 2 we have n+1
2n = 3

4 = P2. Let
n ≥ 3 and suppose, inductively, that Pn−1 = n

2(n−1) . Then

Pn = Pn−1
(
1− 1

n2

)
, by the recursion formula for Pn

= n
2(n−1) ·

n2−1
n2 , by the induction hypothesis

= n
2(n−1) ·

(n−1)(n+1)
n2 = n+1

2n , as required.

By induction, it follows that Pn = n+1
2n for all n ≥ 2.

4.10 Exercise: Find
n∑

k=1

k and find
n∑

k=1

k3.
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4.11 Exercise: Let (an)n≥0 be the Fibonacci sequence.

(a) Show that a0 + a1 + a2 + · · ·+ an = an+2 − 1 for all n ≥ 0.
(b) Show that a0

2 + a1
2 + a2

2 + · · ·+ an
2 = anan+1 for all n ≥ 0.

(c) Show that an−1an+1 = an
2 + (−1)n for all n ≥ 1.

(d) Show that an−1
2 + an

2 = a2n−1 for all n ≥ 1.

4.12 Theorem: (Strong Mathematical Induction) Let F (n) be a statement about n ∈ Z
and let m ∈ Z. Suppose that for all n ∈ Z with n ≥ m, if F (k) is true for all k ∈ Z with
m ≤ k < n then F (n) is true. Then F (n) is true for all n ≥ m.

Proof: Let G(`) be the statement “F (k) is true for all k ∈ Z with m ≤ k < `”. Note that
G(m) is true vacuously because there are no values of k ∈ Z with m ≤ k < m. Let ` ≥ m
and suppose, inductively, that G(`) is true or, in other words, suppose that F (k) is true
for all k ∈ Z with m ≤ k < `. Since F (k) is true for all k ∈ Z with m ≤ k < `, it follows
from the hypothesis in the statement of the theorem that F (`) is true. Since F (k) is true
for all k ∈ Z with m ≤ k < ` and F (`) is true, it follows that F (k) is true for all k ∈ Z
with m ≤ k < ` + 1 or, in other words, it follows that G(` + 1) is true, as required. By
induction, it follows that G(`) is true for all ` ≥ m.

Let n ≥ m be arbitrary. Since G(`) is true for all ` ≥ m, in particular G(n + 1) is
true, so F (k) is true for all k ∈ Z with m ≤ k < n + 1. Since F (k) is true for all k ∈ Z
with m ≤ k < n + 1, in particular F (n) is true. Since n ≥ m was arbitrary, it follows that
F (n) is true for all n ≥ m.

4.13 Note: In order to prove that F (n) is true for all n ≥ m, we can do the following.

1. Let n ≥ m and suppose that F (k) is true for all k ∈ Z with m ≤ k < n.
2. Prove that F (n) is true.

Although strong induction, used as above, does not require the proof that F (m) is true (the
base case), there are situations in which one ore more base cases must be verified to make
this method of proof valid. For example, if a sequence (xn)n≥1 is defined by specifying the
values of x1 and x2 and by giving a recursion formula for xn in terms of xn−1 and xn−2
for all n ≥ 3, then in order to prove that xn satisfies the closed-form formula xn = f(n)
for all n ≥ 1 it suffices to prove that x1 = f(1) and x2 = f(2) (two base cases) and to
prove that for all n ≥ 3, if xn−1 = f(n− 1) and xn−2 = f(xn−2) then xn = f(n).

4.14 Example: Let a0 = a1 = 2 and let an = 2an−1 + 3an−2 for all n ≥ 2. Find a
closed-form formula for an.

Solution: The first few values of an are as follows.

n 0 1 2 3 4 5
an 2 2 10 26 82 242

It appears that an = 3n + (−1)n for all n ≥ 0. Here is a proof by induction. When n = 0
we have 3n + (−1)n = 30 + (−1)0 = 1 + 1 = 2 = a0 = an and when n = 1 we have
3n + (−1)n = 31 + (−1)1 = 3− 1 = 2 = a1 = an. Let n ≥ 2 and suppose, inductively, that
ak = 3k + (−1)k for all k ∈ Z with 0 ≤ k < n (in particular for k = n− 1 and k = n− 2).
Then

an = 2an−1 + 3an−2 , by the recursion formula for an

= 2
(
3n−1 + (−1)n−1

)
+ 3
(
3n−2 + (−1)n−2

)
, by the induction hypothesis

= 2 · 3n−1 − 2(−1)n + 3n−1 + 3(−1)n = 3n + (−1)n , as required.

By induction, it follows that an = 3n + (−1)n for all n ≥ 0.
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4.15 Note: One shortcoming with the method that we used in the above example is that
we needed to guess a closed-form formula for the sequence and, for many sequences, such
a closed-form formula can be extremely difficult to guess. For this reason it is useful to
develop a method which allows us to calculate such a closed-form formula.

4.16 Theorem: (Quadratic Linear Recursion) Let a, b, p, q ∈ R with q 6= 0 and define
(xn)n≥m recursively by xm = a, xm+1 = b and xn = pxn−1 + qxn−2 for all n ≥ m+ 2. Let
f(x) = x2−px−q and suppose that f(x) factors as f(x) = (x−u)(x−v) for some u, v ∈ R
with u 6= v. Then there exist unique numbers A,B ∈ R such that xn = Aun +Bvn for all
n ≥ m.

Proof: Since x2 − px− q = f(x) = (x− u)(x− v) = x2 − (u + v)x + pq we have u + v = p
and uv = −q. Since q 6= 0 and uv = −q it follows that u 6= 0 and v 6= 0.

In order to have xn = Aun+Bvn for all n ≥ m we must have Aum+Bvm = xm = a (1)
and Aum+1 +Bvm+1 = b (2). Multiplying Equation (1) by v and subtracting Equation (2)
gives A(vum−um+1) = av− b, so we must choose A = av−b

um(v−u) . Multiplying Equation (1)

by u and subtracting (2) gives B(uvm− vm+1) = au− b , so we must choose B = au−b
vm(u−v) .

Let A = av−b
um(v−u) and B = au−b

vm(u−v) . We claim that xn = Aun + Bvn for all n ≥ m.

Here is a proof by induction. When n = m we have

Aun + Bvn = Aum + Bvm = av−b
v−u + au−b

u−v = av−b−au+b
v−u = a = xm = xn

and when n = m + 1 we have

Aun + Bvn = Aum+1 + Bvm+1 = (av−b)u
v−u + (au−b)v

u−v = auv−bu−auv+bv
v−u = b = xm+1 = xn.

Let n ≥ m+2 and suppose, inductively, that xk = Auk+Bvk for all k ∈ Z with m ≤ k < n
(in particular for k = n− 1 and k = n− 2. Then

xn = pxn−1 + qxn−2 , by the recursion formula for xn

= (u + v)xn−1 − (uv)xn−2 , since u + v = p and uv = −q
= (u + v)

(
Aun−1 + Bvn−1

)
− (uv)

(
Aun−2 + Bvn−2

)
, by the induction hypothesis

= A
(
(u + v)un−1 − (uv)un−2)+ B

(
(u + v)vn−1 − (uv)vn−2

)
= Aun + Bvn , as required.

It follows, by induction, that xn = Aun + Bvn for all n ≥ m.

4.17 Theorem: (Linear Recursion) Let a0, a1, a2, · · · , ad−1 and c0, c1, c2, · · · , cd−1 be real
(or complex) numbers with c0 6= 0. Let (xn)n≥m be the sequence defined recursively by
xm = a0 , xm+1 = a1 , xm+2 = a2 , · · · , xm+d−1 = ad−1 and

xn + cd−1xn−1 + cd−2xn−2 + · · ·+ c1xn−d+1 + c0xn−d = 0.

Let f(x) = xd + cd−1x
d−1 + cd−2x

d−2 + · · · + c1x + c0 and suppose that f(x) factors as

f(x) =
∏̀
i=1

(x−ui)
ki where the ui are distinct real (or complex) numbers. Then there exist

unique polynomials p1(x), p2(x), · · · , p`(x), with each pi(x) of degree less than ki, such that

xn =
∑̀
i=1

pi(n)ui
n for all n ≥ m.

Proof: This is a stronger version of the previous theorem, but we omit the proof.
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4.18 Example: Let x0 = 4, x1 = −1 and xn = 3xn−1 + 10xn−2 for n ≥ 2. Find a
closed-form formula for xn.

Solution: The first few terms xn are as follows.

n 0 1 2 3 4
4 −1 37 101 673 3029

It seems difficult to guess a closed-form formula for xn from the information in the above
table. Instead, we make use of the above theorem with p = 3 and q = 10. Let

f(x) = x2 − px− q = x2 − 3x− 10 = (x− 5)(x + 2).

From the above theorem, we know that for some A,B ∈ R we have xn = A(5)n +B(−2)n

for all n ≥ 0. In particular, we must have A(5)0 +B(−2)0 = x0, that is A+B = 4 (1) and
we must have A(5)1 + B(−2)1 = x1, that is 5A− 2B = −1 (2). Multiply Equation (1) by
2 and add Equation (2) to get 7A = 7 so that A = 1, and multiply Equation (1) by 5 and
subtract Equation (2) to get 7B = 21 so that B = 3. Thus xn = 5n + 3(−2)n for all n ≥ 0.

4.19 Exercise: Find a closed-form formula for the terms of the Fibonacci sequence.

4.20 Note: Suppose that we choose k of n objects, When the objects are chosen with
replacement (so that repetition is allowed) and the order of the chosen objects matters (so
the chosen objects form an ordered k-tuple), the number of ways to choose k of n objects
is equal to nk (since we have n choices for each of the k objects). For example, the number
of ways to roll 3 six-sided dice is equal to 63 = 216.

When the objects are chosen without replacement (so that the k chosen objects are
distinct) and the order matters, the number of ways to choose k of n objects is equal to
n(n−1)(n−2) · · · (n−k+1) = n!

(n−k)! (since we have n choices for the first object and n−1

choices for the second object and so on). In particular, the number of ways to arrange n
objects in order (to form an ordered n-tuple) is equal to n!.

When the objects are chosen without replacement and the order does not matter (so
the chosen objects form a k-element set), the number of ways to choose k of n objects is

equal to n!
k!(n−k)! = n(n−1)(n−2)···(n−k+1)

k! (since each k-element set can be ordered in k! ways

to form k! ordered k-tuples, and there are n!
(n−k)! such ordered k-tuples). For example, the

number of 4-element subsets of the set {1, 2, 3, 4, 5, 6, 7} is equal to 7!
4!3! = 7·6·5·4

4·3·2·1 = 7·5 = 35.

4.21 Definition: For n, k ∈ N with 0 ≤ k ≤ n, we define the binomial coefficient
(
n
k

)
,

read as “n choose k”, by (
n
k

)
=

n!
k!(n−k)! =

n(n−1)(n−2)···(n−k+1)
k! .

4.22 Theorem: (Pascal’s Triangle) For k, n ∈ N with 0 ≤ k ≤ n we have(
n
0

)
=
(
n
n

)
= 1 ,

(
n
k

)
=
(

n
n−k

)
and

(
n
k

)
+
(

n
k+1

)
=
(
n+1
k+1

)
.

Proof: The formulas
(
n
0

)
=
(
n
n

)
= 1 and

(
n
k

)
=
(

n
n−k

)
are immediate from the definition

of
(
n
k

)
(since 0! = 1) and we have(

n
k

)
+
(

n
k+1

)
=

n!
k!(n−k)! +

n!
(k+1)!(n−k−1)! = (k+1)n!

(k+1)!(n−k)! +
(n−k)n!

(k+1)!(n−k)!

=
(k+1+n−k)n!
(k+1)!(n−k)! =

(n+1)!
(k+1)!((n+1)−(k+1))! =

(
n+1
k+1

)
.

4.23 Exercise: Make a table displaying the values
(
n
k

)
for 0 ≤ k ≤ n ≤ 10. The table

forms a triangle of positive integers in which each entry is obtained by adding two of the
entries above.
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4.24 Notation: Let R be a ring and let a ∈ R. For k ∈ Z+ we write ka = a+ a+ · · ·+ a
with k terms in the sum, and we write (−k)a = k(−a), and we write ak = a · a · . . . · a with
k terms in the product. For 0 ∈ Z we write 0a = 0 and a0 = 1. When a ∈ R is a unit, for
k ∈ Z+ we write a−k = (a−1)k.

4.25 Exercise: Let R be a ring and let a, b ∈ R. Show that for all k, l ∈ Z we have
(−k)a = −(ka), (k + l)a = ka + la and (ka)(lb) = (kl)(ab). Show that for all k, l ∈ Z+ we
have ak+l = akal. Show that if ab = ba then for all k, l ∈ Z+ we have (ab)k = akbk. Show
that if a is a unit, then for all k, l ∈ Z we have a−k = (ak)−1 and ak+l = akal.

4.26 Theorem: (Binomial Theorem) Let R be a ring, let a, b ∈ R with ab = ba, and let
n ∈ N. Then

(a + b)n =

n∑
k=0

(
n
k

)
akbn−k =

n∑
k=0

(
n
k

)
an−kbk

=
(
n
0

)
an +

(
n
1

)
an−1b +

(
n
2

)
an−2b2 + · · ·+

(
n

n−1
)
a bn−1 +

(
n
n

)
bn.

Proof: We shall prove, by induction, that (a + b)n =
n∑

k=0

(
n
k

)
an−kbk for all n ≥ 0.

When n = 0 we have
n∑

k=0

(
n
k

)
an−kbk =

(
0
0

)
a0b0 = 1 = (a + b)0 = (a + b)n.

When n = 1 we have
n∑

k=0

(
n
k

)
an−kbk =

(
1
0

)
a1b0 +

(
1
1

)
a0b1 = a + b = (a + b)1 = (a + b)n.

Let n ≥ 1 and suppose, inductively that (a + b)n =
n∑

k=0

(
n
k

)
an−kbk. Then

(a + b)n+1 = (a + b)(a + b)n = (a + b)
n∑

k=0

(
n
k

)
an−kbk

= (a + b)
( (

n
0

)
an +

(
n
1

)
an−1b +

(
n
2

)
an−2b2 + · · ·+

(
n

n−1
)
a bn−1 +

(
n
n

)
bn
)

=
(
n
0

)
an+1 +

(
n
1

)
anb +

(
n
2

)
an−1b2 + · · ·+

(
n

n−1
)
a2 bn−1 +

(
n
n

)
a bn

+
(
n
0

)
anb +

(
n
1

)
an−1b2 + · · ·+

(
n

n−2
)
a2bn−1 +

(
n

n−1
)
a bn +

(
n
n

)
bn+1

= an+1 +
((

n
0

)
+
(
n
1

))
anb +

((
n
1

)
+
(
n
2

))
an−1b + · · ·

+
((

n
n−2

)
+
(

n
n−1

))
a2bn−1 +

((
n

n−1
)

+
(
n
n

))
a bn + bn+1

=
(
n+1
0

)
an+1 +

(
n+1
1

)
anb +

(
n+1
2

)
an−1b2 + · · ·+

(
n+1
n−1

)
a2 bn +

(
n+1
n+1

)
a bn

=
n+1∑
k=0

(
n+1
k+1

)
an+1−kbk

as required, since
(
n
0

)
= 1 =

(
n+1
0

)
and

(
n
n

)
= 1 =

(
n+1
n+1

)
and

(
n
k

)
+
(

n
k+1

)
=
(
n+1
k+1

)
for

all k with 0 ≤ k ≤ n. By induction, we have (a + b)n =
n∑

k=0

(
n
k

)
an−kbk for all n ≥ 0.

Finally note that, by interchanging a and b, we also have (a + b)n =
n∑

k=0

(
n
k

)
akbn−k

for all n ≥ 0.
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4.27 Example: Expand (x + 2)6.

Solution: By the Binomial Theorem, we have

(x + 2)6 =
(
6
0

)
x6 +

(
6
1

)
x521 +

(
6
2

)
x422 +

(
6
3

)
x323 +

(
6
4

)
x224 +

(
6
5

)
x125 +

(
6
6

)
26

= x6 + 6 · 2x5 + 15 · 4x4 + 20 · 8x3 + 15 · 16x2 + 6 · 32x + 64

= x6 + 12x5 + 60x4 + 160x3 + 240x2 + 192x + 64.

4.28 Example: Find the coefficient of x8 in the expansion of
(
5x3 − 2

x2

)11
.

Solution: By the Binomial Theorem, we have(
5x3 − 2

x2

)11
=

11∑
k=0

(
11
k

)
(5x3)11−k(2x−2)k =

11∑
k=0

(−1)k
(
11
k

)
511−k2k x3(11−k)−2k.

In order to get 3(11− k)− 2k = 8, we need 33− 5k = 8, so we choose the term with k = 5.
Thus the coefficient of x8 is equal to

(−1)5
(
11
5

)
56 25 = − 11·10·9·8·7

5·4·3·2·1 56 25 = −11 · 3 · 7 · 106 = −231,000,000.

4.29 Example: Find
n∑

k=0

(
2n
2k

)
1
2k

.

Solution: Notice that(
1+ 1√

2

)2n
=
(
2n
0

)
+
(
2n
1

)
1√
2

+
(
2n
2

)
1
2 +
(
2n
3

)
1

2
√
2

+
(
2n
4

)
1
22 +· · ·+

(
2n

2n−1
)

1
2n−1

√
2

+
(
2n
2n

)
1
2n(

1− 1√
2

)2n
=
(
2n
0

)
−
(
2n
1

)
1√
2

+
(
2n
2

)
1
2−
(
2n
3

)
1

2
√
2

+
(
2n
4

)
1
22−· · ·−

(
2n

2n−1
)

1
2n−1

√
2

+
(
2n
2n

)
1
2n

Add these and divide by 2 to get

1
2

((
1+ 1√

2

)2n
+
(
1− 1√

2

)2n)
=
(
2n
0

)
+
(
2n
2

)
1
2 +

(
2n
4

)
1
22 + · · ·+

(
2n
2n

)
1
2n =

n∑
k=0

(
2n
2k

)
1
2k
.

4.30 Exercise: Let n be a positive integer. By calculating
n∑

k=0

(
(k + 1)m+1 − km+1

)
in

two different ways, find a recursion formula for the sum Sm =
n∑

k=0

km.

4.31 Exercise: There are n points on a circle around a disc. Each of the
(
n
2

)
pairs of

points is connected by a line segment. No three of these line segments have a common
point of intersection. Determine the number of regions into which the disc is divided by
the line segments.

4.32 Exercise: Let n ∈ Z+. Show that every positive real number has a unique positive
nth root. When n is odd, show that every real number has a unique real nth root.

4.33 Notation: When n ∈ Z+ and x ∈ R (with x ≥ 0 in the case that n is even) we
denote the unique nth root of x by x1/n or by n

√
x. In the case n = 2 and x ≥ 0, we also

write x1/2 as
√
x.

4.34 Exercise: (The Quadratic Formula) Show that for all a, b, c, x ∈ R with a 6= 0 we
have

ax2 + bx + c = 0⇐⇒ b2 − 4ac ≥ 0 and x =
−b±

√
b2 − 4ac

2a
.

Be careful to notice (and prove) any familiar algebraic properties of R, which you need to
use in your proof, but which have not yet been mentioned in these course notes.

7


