Chapter 2. Mathematical Proof

2.1 Remark: At the end of the last chapter we raised the following questions. Given
first-order formulas F' and G, how can we determine whether F' = G7 Given a set of
formulas S and a formula K, how can we determine whether S = K? There is, in general,
no routine algorithmic procedure to solve these two problems, but sometimes we can con-
struct a mathematical proof. Just as a mathematical statement (normally expressed
using a combination of mathematical symbols and words from a natural language such as
English) can be expressed as a formula in a very precise formal symbolic language, so too
a mathematical proof can be translated into a very precise symbolic form of proof called a
derivation. In this chapter we shall describe two formal proof systems, one for deriving
equivalences and one for deriving valid arguments.

2.2 Note: To state our proof rules precisely, we need to introduce one somewhat subtle
concept, namely the concept of substitution, which is used in many mathematical proofs.
For example, if we know that a < x for every x € S and we know that b € S, then we can
conclude that a < b. In a detailed proof, we would break this into two steps, as follows.

1. Since Vz(z € S —a < x) it follows that b € S—a <b.
2. Sincebe S and b€ S—a <b it follows that a < b.

In the first step, we used a substitution. In the formula F' = (z € S — a < x) we replaced
x by b. If write [F];—: to denote the formula obtained from F by replacing the variable
symbol x by the term ¢, then the proof rule that was invoked at step 1 was as follows:
from VaxF we can conlude [F ;.

When we define [F),.,+, we want it to be the case that (once an interpretation has
been chosen) the formula [F],; has the same meaning about ¢ as the original formula F’
had about x. In general, this cannot be accomplished by simply replacing each occurrence
of the symbol x by the term t. For example, in the interpretation Z, the statement “x
divides y” can be expressed using the formula F' = dz y = xxz. We would like the formula
[F) 45y to mean “u divides y”, and this can be accomplished simply by replacing x by u
to obtain [F|, = 32 y = ux z. But we would also like the formula [F],.,, to mean “z
divides y” and if we simply replace x by z the formula becomes Jz y = z x z which has a
totally different meaning (it means “y is a perfect square”). To obtain the desired formula
[F] 2~ we first replace the bound variable z in F' by the next available variable symbol u,
then replace x by z afterwards, as follows

[Flos: = [F2 y = ax2] =July =wxu]___=3Juy=zxu

Tr—z =z
2.3 Definition: Given a formula F', a variable symbol z, and a term ¢, we define the
formula [F,.+ as follows. When F is obtained using rule F1 or F2, the formula [F|,. ¢
is obtained from F' by replacing all occurrences of the symbol x by the term ¢. To deal
with rules F3 and F4 we define [-F] sy = T F e and for x € {A\,V, =, <> } we define
(F+@)] ., = ([Flest * [Glamst). To deal with rule F5, for K € {V,3} we define
Kz F],,,

of z are bound), and for a variable symbol y (which is different than z) we define [Ky F|

= Kz F (note that we do not need to change the formula when all occurrences
Tt
as follows. If y does not occur in ¢, we define [Ky F] sy = Ky[Fzmse. If y does occur in ¢,

we define [Ky FLH . = Ku [[Flysu] s, Where u is the first variable symbol which is not z
and does not occur in F or in ¢. The formula [F],.; is called the formula obtained from
F' by substitution, by replacing (free occurrences of) x by t.
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2.4 Definition: For any formulas F', G and H, and any terms s and ¢, and any variables
x and y, we have the following logical equivalences which are called the basic equiva-
lences. The first 24 of these can be verified using truth-tables and the others are accepted
axiomatically, without proof.

(Identity)
(Double Negation)
(Commutativity)

(Associativity)
(DeMorgan’s Law)
(Distributivity)
(Idempotence)
(Absorption)
(Tautology)
(Contradiction)

(Contrapositive)

(Implication)

(If and Only If)
(Equality)

(Double Quantifier)

(Negate Quantifier)

(Separate Quantifier)

(Unused Variable)

(Changing Variables)

El.
E2.

E3.
E4.

E5.
E6.

ET.
ES.

E9.
E10.

E11.
E12.

E13.
E14.

E15.
E16.

E17.
E18.

E19.

E20.
E21.

E22.
E23.
E24.
E25.
E26.
E27.
E28.
E29.
E30.
E31.
E32.
E33.

E34.
E35.

F2F
F~--F
FANG=ZGAF
FVG2GVF
FANGANH) =
FVv(GVH)=
-(FAG) 2 (-FV-G

(FANG)NH

)

)

—(FVG) = (-FA-G)
)

)

(FVG)VH

FA(GVH)Z(FANG
FV(GNH)=(FVG
FANFXF
FVFF
FANFVG)2F
V(FANG)=F

A (GV-G)
V(GV-G)
(

V(FANH)
A(FV H)

AN (GA-G) =
FVv(GAN-G) =
F—-G=-G—-F
F—-G=-FVG
-~(F—-G)2FA-G
F&GE=(FAG)V (-FAN-G)
F&G2(-FVG)A(FV-G)
F&G2(FG)ANG—F)
s=t=t=s
VeVy F = VyVx F
Jx Iy F = 3yda F
Vo F' = Jx—-F
—Jdx F' = Vx -F
Ve (FANG) 2Vx F AV G
J(FVGE) =23 FVIxG
Vz F' = F if z is not free in F
Jox F = F if x is not free in F
Vo F = Vy [F|gey if y is not free in F
dx F' = 3y [Fzy if y is not free in F

= F
=2GEV
G A~
= F

~— — — ~—

When F' = G (or G = F) is one of the above basic equivalences, and H is a formula which
contains F' as a sub-formula, and K is the formula obtained from H by replacing F' by G,
we say that K is obtained from G by applying the basic equivalence F' = G (or the

equivalence G = F').



2.5 Definition: Given equivalent formulas F' and G, a derivation of the equivalence
F = G is a list of formulas Fy, Fy, - - -, F; with Iy = F and F; = G such that each formula
F,1 is obtained from the previous formula F} by applying one of the basic equivalences.

2.6 Example: Let F' and G be formulas. Make a derivation for F'A (F —G) =2 FAG.

Solution: Here is one possible derivation.

FA(F—-G) 2FA(-FVG) Implication E20
>~ (FAN-F)V(FAG) Distributivity E9
~(FANG)V (FA-F) Commutativity E4
=2FANG Contradiction E18

2.7 Example: Let F', G and H be formulas. Find a derivation for distributivity of V over
A from the right, that is for the logical equivalence (FAG)V H = (FV H)A (G V H).

Solution: Here is a derivation.

(FANG)VH HV (FAG) Commutativity E4
(HV F)A(HVG) Distributivity E10
(FVH)AN(HVG) Commutativity E4
(

)
)

FVH)N(GV H) Commutativity E4
(

1111 1R

2.8 Example: Derive the logical equivalence F'— (G— H) = (FAG)— H.

Solution:
S (G—H) ~-FV(G—H) Implication E20
—FV (-G V H) Implication E20
(-FV-G)V H Associativity E6
—~(FANG)VH  DeMorgan’s Law E7

~(FAG)—H  Implication E20
2.9 Example: Derive the logical equivalence (FAG)—H = (F—H)V (G— H).

||2 e 1111

Solution:

(FANG)—H ~(FANG)VH Implication E20
(-FV-G)VH DeMorgan’s Law E7
(=FV-G)V (HVH) Idempotence E12
(nFV-G)VH)V H Associativity E6
(-FV(-GVH))V Associativity E6
(-FV(HV-QG))V Commutativity E4
(nFV H)V-G)V H Associativity E6
(=FV H)V(-GV H) Associativity E6
~(F—H)V(-GV H) Implication E20

~(F—-H)V(G—H) Implication E20

e 111 111 1111111

2.10 Example: Make a derivation for the equivalence 3z (F — G) 2 Vz F — Jz G.

Solution: Here is a derivation.
Jr(F—G) Z3Jx(-FVG) Implication E20
2 dz—-F Vdr G Separating Quantifier E30
> —Vx FVdr G Negating Quantifier E27
2Ve FF—drG  Implication E20



2.11 Remark: We now give several examples of proofs which use standard mathematical
language and notation. As an exercise, you should try to justify each step in each proof.
Some steps make use of a definition, and other steps use one or more of the basic equiva-
lences. In Example 2.15, two of the steps make use of the fact that a(F), a(G) € {0,1}.

We make several remarks about the symbols used in these proofs. Many of the symbols
used in our formal symbolic language are not normally used in more standard mathematical
language. The symbols — and <+ are more commonly written as = and <=. The
symbols A and V are more commonly expressed using the words “and” and “or”. The
negation symbol — is usually either expressed in words (using expressions involving the
word “not”) or is indicated by crossing out a binary relation symbol, for example by writing
—~s=t as s # t and by writing - s€t as s ¢ t. Also note that the same symbol <= which
is used in place of the symbol — is also often used to replace the symbol 2.

2.12 Example: Let A and B be sets. Show that A = B if and only if A C B and B C A.
Solution: We have
AzB@Vm(mGA:}xEB)
<V ((r € A=z € B) and (x € B=>z € A))
—Vr(r€e A=z € B)and Vz(r € B=z € A)
+<— A C Band B C A.

2.13 Example: Prove that for all sets A, B and C' we have AN(BUC) = (ANB)U(ANC)
(this is part of Theorem 1.4).

Solution: Let A, B and C be sets. Then for all z we have
re AN(BUC)«<=zxcAandx € (BUC)
<=1z € A and (xEBora:GC’)
@)(meAandxeB) or(xGAandeC)
—zrecANBorxe ANC
<z (ANB)UANCOC).

2.14 Example: Prove that for sets A, B C X we have X \ (AUB) = (X \ 4) N (X \ B)
(this is also part of Theorem 1.4).

Solution: Let A, B and X be sets with A, B C X. Then for all z we have
re€ X\ (AUB)<=zrec Xandz ¢ (AUB)
<zecXand (r¢ Aand z ¢ B)
< (reXandz e X) and (z ¢ Aand z ¢ B)
< (zr€Xandz ¢ A) and (z € X and z ¢ B)
<—zreX\Aandze X\B
—ze(X\A)N((X\B).
2.15 Example: Prove that for all formulas F and G, F 2 G<= (F =G and G F)
(this is part of Theorem 1.20),
Solution: Let F' and G be formulas. Then
(FEG and G | F) <= for all assignments a («(F)=1= a(G)=1)
and for all assignments o (a(G)=1= «(F)=1)
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<= for all assignments a ((a(F)=1=«a(G)=1) and (a(G)=1= a(F)=1))
< for all assignments a (a(F)=1<=a(G)=1

<= for all assignments a ((«(F)=1 and a(G)=1) or (a(F) # 1 and o(G) # 1))
<= for all assignments o ((«(F)=1 and a(G)=1) or (a(F) =0 and o(G) = 0))
<= for all assignments o «(F) = a(G)

— F=G.

2.16 Definition: For any formulas F', G and H, any sets of formulas S and 7T, any terms
s and t, and any variable symbols z and y, the following rules are called the basic validity
rules. We accept these rules axiomatically, without proof.

(Premise) V1. If F € Sthen SEF

(Adding Premises) V2. f SEF and S C T then T = F

(The Chain Rule) V3. f SEF and SU{F} EG then SEG

(Proof by Cases) V4. I SU{F} G and SU{-F} =G then SEG
(

Contradiction) V5. f SU{-F}EG and SU{-F} -G then SEF
V6. fSU{F}EG and SU{F}E ~G then S = —F

(Conjunction) V7. f SEF and SEG then SEFAG
V8. If SU{F,G}E=H then SU{FAG}=H
V9. f SEFAG then SEF
V10. f SEF AG then SEG

(Disjunction) V1l. f SU{-F}EG then SEF VG
Vi2. f SU{-G}=F then SEF VG
V13. f SU{F} FH and SU{G} = H then SU{FVG}=H
V4. f SEF then SEF VG
V15. f SEG then SEFV G
V16. f SEFV G and SE—F then SEG
VI7. f SEF VG and SE—G then SEF

(Implication) VI8 f SU{F} EG then SEF -G
V19. If SU{-G} =—F then SEF -G
V20. f SU{-F}=H and SU{G} = H then SU{F -G} H
Vol. f SE—F then SEF -G
V22. f SEG then SEF -G
V23. f SEF — G and SEF then SEG
V24. If SEF — G and S =G then SE-F

(If and Only If) V25, I SEF—Gand SEG— F then SEF G

V26. f SU{F,G}=H and SU{-F,-G}EH then SU{F+ G}=H
V27. f SEF and SEG then SEF < G

V8. If S=—F and S}=—G then SEF ¢ G

V29. f SEF <G and SEF then SEG

V30. f SEF <+ G and SEG then SEF

V31l. f SEF+ G and S =—F then S -G

V32. If S F < G and S =G then S = —F



(Equality) V33 SEt=t
V34 If SEs=tthen SEt=s
V35 If SEr=sand SEs=tthen SEr=t
V36 If SEs=tand S E[Flus then S [Flat
(Forall) V37 If S = [F]zy where y is not free in SU {Vx F'}, then S =Vx F
V38 If SU{[Flui} EG then SU{VZ F} =G
V39 If S Ve F then S = [Flons

(Exists) V40. If SE[Flymt then SEJx F
V4l. If SU{[Fluy } E G where y is not free in SU{G, 3z F},
then SU{Iz F} EG

(Equivalence) V42. If FF =2 G and S F then SEG
V43. If F 2 G and SU{F} = H then SU{G} E H

Rule V13 is also called Proof by Cases, Rule V19 is called the Contrapositive Rule,
Rule V23 is called Modus Ponens, and rule V36 is called the Substitution Rule.

2.17 Definition: Given a set of formulas S and a formula F' such that S |= F', a derivation
of the valid argument S |= F' is a list of valid arguments Sy = Fy, So = Fy, -+, S | F; with
S; = S and F; = F, such that each valid argument Sj, = F}; is obtained from previous valid
arguments S; = F; with j < k using one of the Basic Validity Rules. The equivalence rules
V42 and V43 are only used in the case that the equivalence F' =2 (G is obtained by applying
one of the 35 basic equivalences. Except for the equivalence rules, the Basic Validity Rules
are not applied to subformulas.

2.18 Note: The basic validity rules correspond to standard methods of proof which are
used routinely in mathematics. Here are the basic validity rules stated less formally (and
less precisely) in standard mathematical language.

V1 (Premise) If we suppose F' then we can conclude F.

V2 (Adding Premises) If we can prove G without F' then we can prove G with F.

V3 (Chain Rule) If we can prove F' and, with F' we can prove G, then we can prove G.
V4 (Proof by Cases) To prove F' by cases, choose a formula G, then consider two cases.
For the first case, suppose that G is true then prove F' and, for the second case, suppose
that G is false then prove F.

V5 (Contradiction 1) To prove that F' is true we can suppose, for a contradiction, that F’
is false, choose a formula G, then prove that G is true and that G is false.
V6 (Contradiction 2) To prove that F' is false we can suppose, for a contradiction, that F
is true, choose a formula GG, then prove that G is true and that G is false.

V7 (Conjunction 1) To prove F' A G, we prove F' and we prove G.

V8 (Conjunction 2) To prove that F' A G implies H we suppose F' and G then prove H.
V9 (Conjunction 3) From F' A G we can conclude F.

V10 (Conjunction 4) From F' A G we can conclude G.

V11 (Disjunction 1) To prove F'V G we can suppose that F' is false then prove G.
V12 (Disjunction 2) To prove F'V G we can suppose that G is false then prove F'.
V13 (Disjunction 3) To prove that F'V G implies H we consider two cases. For the first
case, we suppose F' then prove H and, for the second case, we suppose G then prove H.
V14 (Disjunction 4) From F' we can conclude F' V G.
V15 (Disjunction 5) From G we can conclude F'V G.

( )

( )

~ —

V16 (Disjunction 6) From F'V G and —F we can conclude G.
V17 (Disjunction 7) From F'V G and =G we can conclude F'.



V18 (Implication 1) To prove F' — G we can suppose F' then prove G.
V19 (Implication 2) To prove F'— G we can suppose =G then prove —F.
V20 (Implication 3) To prove that F'— G implies H, we consider two cases. For the first
case, suppose —F then prove H and, for the second case, suppose G then prove H.
V21 (Implication 4) From —F we can conclude F'— G.
V22 (Implication 5) From G we can conclude F' — G.
V23 (Implication 6) From F'— G and F' we can conclude G.
V24 (Implication 7) From F — G and =G we can conclude —F.
(
(

V25 (If and Only If 1) To prove F' <> G, we prove F'— G and we prove G — F

V26 (If and Only If 2) To prove that F' <> G implies H, first we suppose that F' and G are
both true then prove H, and then we suppose that F' and G are both false then prove H.
V27 (If and Only If 3) From F and G we can conclude F <> G.

V28 (If and Only If 4) From —F and =G we can conclude F < G.

V29 (If and Only If 5) From F < G and F we can conclude G.

V30 (If and Only If 6) From F' <+ G and G we can conclude F.

V31 (If and Only If 7) From F <> G and —F we can conclude —G.

V32 (If and Only If 8) From F «+» G and =G we can conclude —F.

V33 (Equality 1) We can always conclude that ¢ = t.

V34 (Equality 2) From s =t we can conclude that t = s.

V35 (Equality 3) From r = s and s =t we can conclude that r = t.

V36 (Substitution) From s = ¢ and [F/,.s we can conclude [F/ .

(

V37 (Forall 1) To prove Vx F', we choose a variable symbol y about which we have not
made any assumptions (in the case that we have not made any assumptions about = we
can take y = x) and we write “let y be arbitrary”, then we prove the statement [FJ,,,,.
V38 (Forall 2) To prove that Vz F' implies G, we choose a term ¢, suppose that [F|;. ¢ is
true, then prove G.

V39 (Forall 3) From VxF' we can conclude [F,+.

V40 (Exists 1) To prove Jz F', we choose a term t then we prove the statement [F], ;.
V41 (Exists 2) To prove that 3x F' implies GG, we choose a variable symbol y about which
we have made no assumptions and which does not occur in G (in the case that we have
not made any assumptions about x and x does not occur in G we can take y = z), we
suppose [F|;, and write “choose y so that [F];, is true”, then we prove G.

V42 (Equivalence 1) If F' is equivalent to G, then to prove F' we can prove G.
V43 (Equivalence 2) If F' is equivalent to G, then we can replace the premise F' by G.

2.19 Note: Recall that the statement Vo€ A F' can be expressed as Vx (:1: €cA—F). To
prove this statement, in the case that we have made no assumptions about x, we write
“let « be arbitrary” [to use V37] then we suppose z € A [to use V18] then we prove F' (in
the case that we have made assumptions about x, we write “let y be arbitrary”, suppose
y € A, then prove [F];.,,). Rather than writing “let = be arbitrary and suppose z € A”
we usually write “let © € A be arbitrary” or simply “let x € A”. Similarly, to prove a
statement of the form “for every function f : A — B we have F” we would begin the proof
by writing “let f : A — B be arbitrary” or simply “let f: A — B”.

2.20 Note: In standard mathematical proofs, the proof rules are often used implicitly,
but in the next few examples we shall state explicitly (in square brackets) which rule is
being used at each step in our proof.



2.21 Example: Let F, G and H be formulas. Prove that {F — (GAH), (FAG)VH} E H.

Solution: We need to prove that for every assignment o, if a(F —(GNH ))

= 1 and

o((FAG)V H) =1 then a(H) = 1. Here is a step-by-step proof in which we indicate
which proof rule is being used at each step.

© XN N

Let a be an arbitrary assignment [to use V37 and V18].
Suppose that F'— (G A H) is true (under «), and that (F AG)V H is true [to use V8].
Suppose, for a contradiction, that H is false [to use V5].
Since (F'A G) V H is true and H is false, it follows that F'A G is true [by V17].

Since F' A G is true, F' is true [by V9.

Since F' is true and F'— (G A H) is true, it follows that G A H is true [by V23].

Since G A H is true, H is true [by V10].

Since H true and H false, we have the desired contradiction. Thus H is true [by V5].
. Thus if «(F -+ (GAH)) =1and a((FAG)V H) =1 then o(H) =1 [by V8].
10. Since « was arbitrary, we have {F — (G AH),(F AG)V H} = H [by V37 and V18].

Now here is the same proof presented in the form of a derivation of valid arguments.

NOo e W=

8.

{F—(GANH),(FNG)VH,-H}E-H V1
{F—(GANH),(FNG)VH,-H}=(FAG)VH V1
{F-(GAH),(FNG)VH,-H}E=(FAG) V17 on lines 2 and 1
ﬁLﬂGAHMFAQVH'ﬁﬂFF V9 on 3
{F—-(GAH),(FNG)VH,-H}EF—(GANH) V1
{F—-(GAH),(FNG)VH,-H}=GANH V23 on 5 and 4
{F-(GAH),(FNG)VH,-H}=H V10 on 6
{F—(GANH),(FNG)VH}EH V5 on 7 and 1

2.22 Example: Prove that {((FV -G)—H), (F+ (GA-H))} EHA-F.

Solution: Here is a derivation of valid arguments.

{(FV-G)—H), wwwGAﬁH
Fv-G)—H

© NS U
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~G)
—G)
)
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~G)
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~G)
~G)
)
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(G

,~H}E-H

—H} E-(FV-G)
—\H}’:(FV—\G)—)H
~H} E-F NG
~H} E-F

—H} -G
-H} G
—|H}':G/\ﬁH
—H}EF <+ (GA-H)
~H}EF

H

T m m mr

Vi1

Vi1

V23 on 1 and 2
V42 with E8 on 3
V9 on 4

V10 on 4

V42 with E2 on 6
V7 on 7 and 1

Vi1

V30 on 9

V5 on 10 and 5
V42 with E2 on 11
V15 on 12

V42 with E7 on 13
V1 (or V2 on 9)
V5 on 10 and 5
V32 on 16

V7 on 11 and 17



2.23 Example: Prove that =Vz 3y (-y = f(z) 2 yRf(x)).

Solution: We need to prove that for every non-empty set U, for every function f : U — U,
and for every binary relation relation R C U?, for all z € U there exists y € U such that
if y # f(z) then (y, f(z)) € R. Here is a step-by-step proof.

Let U be a set, let f: U — U and let R C U? [to use V37 and V18].

Let x € U be arbitrary [to use V37].

Choose y = f(x) [to use V40 where the chosen term is t = f(x)].

Since y = f(x), the formula -~y = f(x) is false. [by V42 with E2]

Since —y = f(z) is false, the statement -y = f(x) — (y, f(x)) € R is true [by V21].
This proves that there exists y € U such that if y # f(x) then (y, f(x)) € R [by V40].

. Since x € U was arbitrary, we have proven that for all x € U there exists y € U such
that if y # f(x) then (y, f(x)) € R [by V37].

8. Since U and f and R were arbitrary, our proof is complete [by V37 and V18].

NSO WD

Here is the same proof presented formally as a derivation of valid arguments.

L Ef(z)=f(z) V33

2. E-=fl2) = f(2) V42 with E2 on 1

3. F (ﬁf(x) = f(z) = f(iU)Rf(a:)) V24 on 2

4. Ey(-y=fl@)—>yRf(z)) V40 with t = f(z) on 3
5. EVady(-y= f(z)—yRf(x)) V37on4

2.24 Exercise: Prove that |:V:L‘(E|y —xRy V Jy yR:L').
2.25 Example: Prove that {Vz g(z,a) = 2} EVz (Vy g(z,y) =y >z = a).

Solution: First we provide a proof using standard mathematical language. Let U be a
nonempty set, let a € U and let g : U2 — U. Suppose that for all x € U we have
g(x,a) = x. We need to prove that for all x € U, if g(x,y) = y for every y € U then z = a.
Let z € U be arbitrary, and note that g(z,a)==z. Suppose that for every y € U we have
g(z,y)=y. Then in particular, taking y = a, we have g(x,a)=a. Thus z=g(z,a)=a, as
required.

We now convert the above proof into a derivation of valid arguments:

L. {Vz g(z,a)=x, Yy g(z,y) =y} = Yy g(z,y)=y V1

2. {Vz g(z,a)=x, Yy g(z,y) =y} E g(z,a)=a V39 on 1

3. {vax g(a:,a)::c, vy g(z,y) =y} E Vo g(z,a)=2 V1

4 {V:z: g(z,a)=z, Yy g(x,y) = y} E g(z,a)=z V39 on 3

5. {Vz g(z,a)=z, Vy g(z,y) =y} E z=g(z,a) V34 on 4

6. {Vzg(z,a)=x, Vy g(z,y) =y} E z=a V35 on 5, 2

7. {Vz g(z,a)=z} = (Vyg(z,y)=y—r=a) V18 on 6
{V& g(z,a)=2} = Va (Vy g(z,y)=y—z=a) V37 on 7

Note that, at the final step, we were able to apply Rule V37 on line 7 because the variable
symbol z is not free in the formula Vz g(z,a)=xz.

2.26 Note: Any statement of the form Vz €() F is true. Indeed the statement Vx €() F
is equivalent (by definition) to the statement Va(x € ) — F'). For every z, the statement
x €0 is false, and so the statement z € () — F is true. A statement of this form is said to
be vacuously true.



2.27 Exercise: Let I be a formula and let the symbol () be a constant symbol. Make a
derivation of valid arguments to show that {Vz ~z€0} EVz(z €0 — F).

2.28 Exercise: Let F be a formula and let () be the empty set. Prove that F F <=0 F.
2.29 Example: Prove that the class of all sets is not a set.

Solution: Here is a proof in standard mathematical language.

Let u be the class of all sets.

Suppose, for a contradiction, that u is a set .

Let w = {x € ulx ¢ x} and note that w is a set by a Separation Axiom.

We claim that w € w. Suppose, for a contradiction, that w ¢ w.

Since w € u and w ¢ w we have w € w by the definition of w.

Since w € w and w ¢ w we have the desired contradiction, so w € w, as claimed.
We claim that w ¢ w. Suppose, for a contradiction, that w € w.

Since w € v and w € w we have w ¢ w, by the definition of w.

9. Since w € w and w ¢ w we have the desired contradiction, so w ¢ w, as claimed.
10. Since w € w and w ¢ w, we have the desired contradiction, so u is not a set, as
claimed.

S I i

Note that the statement “the class u of all sets is a set” can be expressed as JuVz x € u.
Also, note that on line 3 we used the Separation Axiom Vu Jw Vx (m cw+ (re€un—ze :L')
The above proof can be converted into a derivation of the valid argument

{MuTwVz (z e w (z cun—wex))} E-FuVr zcu.

Here is a derivation which is a bit similar to the above proof.

1. {wewe (weuh-wew), weu, wew} Fwew V1
2. {wewe (weuh-wew), weu, wew} Fwew+ (weuA-~wew) V1
3. {wewe (weuh-wew), weu, wew} E(weuA -wew) V29
4. {wewe (weuAhwew), weu, wew} Ewew V12
5. {wewe (weuh-wew), weu} E-wew V6
6. {wewe (weuh-wew), weu} Eweu V1
7. {wewe (weuh-wew), weu} EFweuN wew V10
8. {wewer (weuh-wew), weul Fwew+ (weuA ~wew) V1
9. {wews (weuh-wew), weEu} Fwew V30
10. {wew+ (weuh-wew)} E-weu V6
11. {wew+ (weuh-wew)}EIr—zeu V40
12. {Vz(zews (z€un—z€n))}EIr—acu V38
13. {FuVz(zew+ (z€uh—z€x))} EIrzecu V41
14. {VuIwVz(zew+ (zcun—zex))} EIr—awcu V39
15. {VuIwVz(zcew< (zcun—zex))} EVuIzr~wecu V37
16. {VuIwVz(zcew+ (r€un—zex))} EVu-Vrreu V45, E28
17. {VuFwVz(zcew+ (re€uh—zecx))} E-FuVzreu V45, E29
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2.30 Example: For a,b € Z we write a|b when a is a factor of b, Prove that for a,b, c € Z,
if a|b and b|c then alc.

Solution: Here is a proof, in standard mathematical language, in which we do not bother
to explicitly list all of our assumptions and we do not bother to indicate which proof rules
are being used.

1. Suppose that a|b and that bc.

2. Since a|b we can choose k € Z so that b = ak.
3. Since b|c we can choose [ € Z so that ¢ = bl.
4. Then we have ¢ = bl = (ak)l = a(kl).

5. Thus alc.

Note that alb can be expressed as 3z b = axx and b|c can be expressed as Jz ¢ = bx z
and a|c can be expressed as 3z ¢ = a X x. Also notice that on line 4 of the above proof, we
implicitly made use of the fact that multiplication is associative which can be expressed
as Ve VyVz (x X y) X z = x X (y X z). We now translate the above standard mathematical
proof into a more detailed step-by-step proof which shows that

{Bzb=(axz),Ixc=bxa, VaVyVz (zxy)x2)=(zx (yx2))} FIr c=axz.

We need to prove that for every non-empty set U, for every binary function x, and for
every choice of @ € U and b € U, if there exists x € U such that b = a xx and if there
exists z € U such that ¢ = bxx and if for all z,y,z € U we have (z X y) x z =z X (y X 2),
then there exists x € U such that ¢ = a x . Here is a proof.

1. Let U be a set, let x be a binary function on U, and let a,b € U [to use V37 and V18].
2. Suppose 3z b = axx, suppose Iz ¢ = bxx, and suppose Vx VyVz (rxy) X z = x X (yxz2)
[to use V8 and V18|.

Since Jz b = axz we can choose = so that b = axz [to use V41].

Since Jz ¢ = bx x we can choose y so that ¢ = bxy [to use V41].

Since ¢ = bxy and b = axz it follows that ¢ = (axz) x y [by V36].

Since VxVyVz (zxy) X z = x X (yxz), we have YyVz (axy) x z = a x (yxz) [by V39].
Since Yy Vz (axy) x z = a X (yxz), it follows that Vz (axz) X z = a x (xx z) [by V39].
Since Vz (axx) X z = a x (xx z) it follows that (axx) X y = a X (zxy) [by V39].

9. Since ¢ = (axz) x y and (axz) X y = a x (xXxy), it follows that ¢ = a x (zxy) [by V35].
10. Since ¢ = a x (xxy) it follows that Jz ¢ = axz [by V40].

11. Since U and x and a and b were arbitrary, the proof is complete [by V37, V8 and V18].

Sl BRI A

Here is a similar proof presented formally as a derivation of valid arguments.

1. {b:axx,c:bxy,(axx) y=a X xxy}): b=axux V1
2. {b=axz,c=bxy, (axz)xy=ax(zxy)}E c-bxy V1
3. {b=axz,c=bxy, (axz)xy=ax (zxy)}E c=(axz)xy V36
4. {b=axz,c=bxy, (axz)xy=ax (zxy)}E (axz)xy=ax (xxy) V1
5. {b=axz,c=bxy, (axz)xy=ax (zxy)}E c=ax (xxy) V35
6. {b:axx,c:bxy (axx)xy—ax(m‘Xy}}: Jr c=axx V40
7. {b=axz,c=bxy,Vz(axz)xz=ax (zx2)} E Jzc=axz V38
8. {b=axz,c=bxy,VyVz (axy)xz=ax (yxz)} = Jz c=axz V38
9. {b:axx,c:bxy,Va:Vsz(a:xy)xz:a:x(yxz)}’: drc=axx V38
10. {b=axz,Irc=bxaz,VaVyVz (zxy)xz=xx (yx2)} | Jr c=axz V4l
11. {Jwb=axz,Ivc=bxz,VoVyVz (zxy) xz=xx (yxz)} | Jr c=axz V4l
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2.31 Example: Prove that for a,b € Z, if a|b and b|a then b = +a.

Proof: Here is a proof in standard mathematical language.

Suppose that a|b and bla.

Since a|b we can choose k € Z so that b = ak.

Since bla we can choose | € Z so that a = bl.

Then we have a = bl = (ak)l = a(kl), that isa-1=a - kl.

Since a -1 = a - kl, it follows that either a = 0 or 1 = kl.

In the case that a =0 we have b=a-k=0-k =0 and so b = a.

In the case that 1 = kl, it follows that either k=1 =1or k=1= —1.
When k=1l=1wehaveb=a-k=a-1=a and

9. whenk=Il=—-1wehaveb=a-k=a-(-1) = —a.

10. In all cases, either b = a or b = —a, that is b = +a.

PN O N

It is a bit challenging to convert the above proof into a derivation of valid arguments, not
because the proof itself is particularly difficult, but because the proof makes use of many
algebraic properties of the integers and, because we are so familiar with those algebraic
properties, it is easy to overlook the fact that some of these properties need to be included
as premises in order to obtain a valid argument. Also it is difficult to decide exactly which
properties need to be included as premises and which properties can then be proven from
those premises. Here are some of the properties that were used implicitly in the proof.

On line 4 we used associativity of multiplication to obtain (ak)l = a(kl) and we used
the fact that a = a - 1. On line 5 we used the fact that if au = av then either a = 0 or
u = v. On line 6 we used the fact that 0-k = 0. On line 7 we used the fact that if kl =1
then either k =1 =1 or k = [ = —1 (incidentally, this algebraic property does not hold in
Q or in R). On line 8 we used the fact that a - 1 = a (which was also used on line 5) and
on line 9 we used the fact that a - (—1) = —a.

Another slight complication is that, in a derivation of valid arguments, all of the
statements must be expressed as formulas in a first-order language, say first-order number
theory. On several lines in our proof we use some mathematical notation, with which all
students will no doubt be familiar, but which is not used explicitly in first order number
theory. Namely, we use the negative sign — to write —1 and —a. The statement b = —a
can be expressed by the formula b+ a = 0, and the statement £ = [ = —1 can be expressed
as (k =l ANI+1= 0), but it is more challenging to decide how to express the statement
a-(—1) = —a as a formula; since our proof uses the fact that if k = —1 then a - k = —a,
we might choose to express the statement using the formula (k—i—l =0 — axk+a= 0).

2.32 Remark: In the next chapter, we shall carefully gather together and list all of the
basic algebraic properties of Z, Q and R which are needed in all of the subsequent proofs
in this course. They are also needed in all proofs in all other mathematics courses. These
algebraic properties can either be accepted axiomatically, without proof, or they can all
be painstakingly proven. Our approach will be to accept them axiomatically.

In order to prove all of the basic algebraic properties, it would be necessary to begin
by carefully and precisely defining the sets Z, Q and R (by constructing them explicitly
using the ZFC axioms of set theory), and then also carefully and precisely defining all of
the algebraic operations, such as addition and multiplication, which are used in these sets.
Only after the operations have been defined is it possible to prove that they satisfy their
well-known algebraic properties. The procedure by which one can define the sets Z, Q and
R along with their operations 4+ and X, and also their ordering <, is outlined briefly in
Appendix 1.
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