

Chapter 10. Factorization in Rings

10.1 Definition: Let R be a commutative ring. Let $a, b \in R$. We say that a **divides** b (or a is a **divisor** or **factor** of b , or b is a **multiple** of a), and we write $a|b$, when $b = ar$ for some $r \in R$. We say that a and b are **associates**, and we write $a \sim b$, when $a|b$ and $b|a$.

10.2 Theorem: Let R be a commutative ring. Let $a, b \in R$. Then

- (1) $a \sim b$ if and only if a and b have the same multiples and divisors,
- (2) $a \sim 0$ if and only if $a = 0$,
- (3) $a \sim 1$ if and only if a is a unit.
- (4) if R is an integral domain then $a \sim b$ if and only if $b = au$ for some unit $u \in R$.

Proof: The proof is left as an exercise.

10.3 Definition: Let R be a commutative ring. Let $a \in R$ be a non-zero non-unit. We say that a is **reducible** when $a = bc$ for some non-units $b, c \in R$, and otherwise we say that a is **irreducible**. Note that if a is irreducible then the divisors of a are the units and the associates of a . We say that a is **prime** when for all $b, c \in R$, if $a|bc$ then either $a|b$ or $a|c$.

10.4 Theorem: Let R be a commutative ring. Let $a, b \in R$ with $a \sim b$. Then

- (1) a is reducible if and only if b is reducible,
- (2) a is irreducible if and only if b is irreducible,
- (3) a is prime if and only if b is prime.

Proof: The proof is left as an exercise.

10.5 Theorem: Let R be an integral domain. Then every prime element in R is also irreducible.

Proof: The proof is left as an exercise.

10.6 Exercise: Find all primes and irreducible elements in \mathbf{Z}_{12} .

10.7 Exercise: Use the method of the Sieve of Eratosthenes to find several irreducible elements in $\mathbf{Z}[\sqrt{3}i]$ and also some irreducible elements which are not prime.

10.8 Definition: A **Euclidean domain** (or ED) is an integral domain R together with a function $N : R \rightarrow \mathbf{N}$, called a **Euclidean norm**, such that

- N1. for all $a \in R$ we have $N(a) = 0 \iff a = 0$,
- N2. for all $a \in R$ we have $N(a) = 1 \iff a$ is a unit,
- N3. for all nonzero nonunits $a, b, c \in R$, if $a = bc$ then $N(b) < N(a)$ and $N(c) < N(a)$, and
- N4. for all $a, b \in R$ with $b \neq 0$ there exist $q, r \in R$ such that $a = qb + r$ and $N(r) < N(b)$.

10.9 Definition: A **unique factorization domain** (or UFD) is an integral domain R with the property that for every nonzero non-unit $a \in R$ we have

- (1) $a = p_1 p_2 \cdots p_\ell$ for some $\ell \in \mathbf{Z}^+$ and some irreducible elements $p_i \in R$, and
- (2) if $a = p_1 p_2 \cdots p_\ell = q_1 q_2 \cdots q_m$ where $\ell, m \in \mathbf{Z}^+$ and each p_i and q_j is irreducible, then $m = \ell$ and for some bijection $\sigma : \{1, 2, \dots, \ell\} \rightarrow \{1, 2, \dots, \ell\}$ we have $a_i \sim b_{\sigma(i)}$ for all i .

10.10 Theorem: Every Euclidean domain is a unique factorization domain

Proof: The proof is almost identical to the proof of unique factorization in \mathbf{Z} .

10.11 Example: \mathbf{Z} is a Euclidean domain using the Euclidean norm $N : \mathbf{Z} \rightarrow \mathbf{N}$ given by $N(a) = |a|$.

10.12 Example: Every field is a Euclidean domain, using the function $N : R \rightarrow \mathbf{N}$ given by $N(0) = 0$ and $N(a) = 1$ for all $a \neq 0$.

10.13 Example: If F is a field then $F[x]$ is a Euclidean domain with Euclidean norm $N(f) = \deg(f) + 1$ (where we follow the convention that $\deg(0) = -1$ so that $N(0) = 0$). The fact that N satisfies Property N4 follows from the Division Algorithm proven below.

10.14 Exercise: Show that for each $d \in \{-2, -1, 2, 3\}$ the ring $\mathbf{Z}[\sqrt{d}]$ is a Euclidean domain with Euclidean norm given by $N(a + b\sqrt{d}) = |a^2 - db^2|$.

10.15 Exercise: Show that the rings $\mathbf{Z}[\sqrt{3}i]$ and $\mathbf{Z}[\sqrt{5}]$ are not unique factorization domains.

10.16 Note: Here are a few remarks about polynomials. Recall that $R[x]$ denotes the ring of polynomials with coefficients in the ring R , and R^R denotes the ring of all functions $f : R \rightarrow R$.

(1) A polynomial $f \in R[x]$ determines a function $f \in R^R$. Given $f(x) = \sum_{i=0}^n a_i x^i \in R[x]$ we obtain the function $f : R \rightarrow R$ given by $f(x) = \sum_{i=0}^n a_i x^i$.

(2) Although we do not usually distinguish notationally between the polynomial $f \in R[x]$ and its corresponding function $f \in R^R$, they are not always identical. If the ring R is not commutative then multiplication of polynomials does not agree with multiplication of functions. For $f, g \in R[x]$ given by $f(x) = a + bx$ and $g(x) = c + dx$, in the ring $R[x]$ we have $(fg)(x) = (a + bx)(c + dx) = (ac) + (ad + bc)x + (bd)x^2$, but in the ring R^R we have $(fg)(x) = (a + bx)(c + dx) = ac + adx + bxc + bxdx$.

(3) Equality of polynomials does not agree with equality of functions. For $f, g \in R[x]$ given by $f(x) = \sum_{i=0}^n a_i x^i$ and $g(x) = \sum_{i=0}^m b_i x^i$ we have $f = g \in R[x]$ if and only if $a_i = b_i$ for all i (and if say $n < m$ then $b_i = a_i = 0$ for $i > n$), but $f = g \in R^R$ if and only if $f(x) = g(x)$ for all $x \in R$. These two notions of equality do not always agree. For example if R is finite then the ring $R[x]$ is infinite but the ring R^R is finite. Indeed if $|R| = n$ then $R[x]$ is countably infinite but $|R^R| = n^n$. For a more specific example, if $f(x) = x^p - x$ then we have $f \neq 0 \in \mathbf{Z}_p[x]$ (because its coefficients are not equal to zero) but $f = 0 \in \mathbf{Z}_p^{\mathbf{Z}_p}$ because, by Fermat's Little Theorem, we have $f(x) = 0$ for all $x \in \mathbf{Z}_p$.

(4) Recall that for $f(x) = \sum_{i=0}^n a_i x^i$ with each $a_i \in R$ and $a_n \neq 0$, the element $a_n \in R$ is called the leading coefficient of f , and the positive integer n is called the degree of $f(x)$, and we write $\deg(f) = n$. For convenience, we also define $\deg(0) = -1$. When R is an integral domain, it is easy to see that for $0 \neq f, g \in R[x]$ we have $\deg(fg) = \deg(f) + \deg(g)$. When R is not an integral domain, however, we only have $\deg(fg) \leq \deg(f) + \deg(g)$ because the product of the two leading coefficients can be equal to zero.

(5) When R is an integral domain, because we have $\deg(fg) = \deg(f) + \deg(g)$ for all $0 \neq f, g \in R[x]$, it is easy to see that the units in $R[x]$ are the constant polynomials $f(x) = c$ where c is a unit in R . In particular, when F is a field, the units in $F[x]$ are the elements $f \in F[x]$ with $\deg(f) = 0$.

10.17 Example: In the ring $\mathbf{Z}_4[x]$ we have $(1+2x)^2 = 1+4x+4x^2 = 1$, so $f(x) = (1+2x)$ is a unit in $\mathbf{Z}_4[x]$.

10.18 Theorem: (Division Algorithm) Let R be a ring. Let $f, g \in R[x]$ and suppose that the leading coefficient of g is a unit in R . Then there exist unique polynomials $q, r \in R$ such that $f = qg + r$ and $\deg(r) < \deg(g)$.

Proof: First we prove existence. If $\deg(f) < \deg(g)$ then we can take $q = 0$ and $r = f$. Suppose that $\deg(f) \geq \deg(g)$, Say $f(x) = \sum_{i=0}^n a_i x^i$ with $a_i \in R$ and $a_n \neq 0$ and $g(x) = \sum_{i=0}^m b_i x^i$

with $b_i \in R$ and b_m is a unit. Note that the polynomial $a_n b_m^{-1} x^{n-m} g(x)$ has degree n and leading coefficient a_n . It follows that the polynomial $f(x) - a_n b_m^{-1} x^{n-m} g(x)$ has degree smaller than n (because the leading coefficients cancel). We can suppose, inductively, that there exist polynomials $p, r \in R[x]$ such that $f(x) - a_n b_m^{-1} x^{n-m} g(x) = p(x)g(x) + r(x)$ and $\deg(r) < \deg(g)$. Then we have $f = qg + r$ by taking $q(x) = a_n b_m^{-1} x^{n-m} - p(x)$.

Next we prove uniqueness. Suppose that $f = qg + r = pg + s$ where $q, p, r, s \in R[x]$ with $\deg(r) < \deg(g)$ and $\deg(s) < \deg(g)$. Then we have $(q - p)g = s - r$ and so $\deg((q - p)g) = \deg(s - r)$. Since the leading coefficient of g is a unit (hence not a zero divisor), it follows that $\deg((q - p)g) = \deg(q - p) + \deg(g)$. If we had $q - p \neq 0$ then we would have $\deg((q - p)g) \geq \deg(g)$ but $\deg(s - r) < \deg(g)$, giving a contradiction. Thus we must have $q - p = 0$. Since $q - p = 0$ we have $s - r = (q - p)g = 0$. Since $q - p = 0$ and $s - r = 0$ we have $q = p$ and $r = s$, proving uniqueness.

10.19 Corollary: (The Remainder Theorem) Let R be a ring, let $f \in R[x]$, and let $a \in R$. When we divide $f(x)$ by $(x - a)$ to obtain the quotient $q(x)$ and remainder $r(x)$, the remainder is the constant polynomial $r(x) = f(a)$.

Proof: Use the division algorithm to obtain $q, r \in R[x]$ such that $f = q(x)(x - a) + r(x)$ and $\deg(r) < \deg(x - a)$. Since $\deg(x - a) = 1$ we have $\deg(r) \in \{-1, 0\}$, and so r is a constant polynomial, say $r(x) = c$ with $c \in R$. Then we have $f(x) = q(x)(x - a) + c$. Put in $x = a$ to get $f(a) = q(a)(a - a) + c = q(a) \cdot 0 + c = c$.

10.20 Corollary: (The Factor Theorem) Let R be a commutative ring, let $f \in R[x]$ and let $a \in R$. Then $f(a) = 0$ if and only if $(x - a) | f(x)$.

Proof: Suppose that $f(a) = 0$. Choose $q, r \in R[x]$ such that $f(x) = q(x)(x - a) + r(x)$ and $\deg(r) < \deg(x - a)$. Then $r(x)$ is the constant polynomial $r(x) = f(a) = 0$ and so we have $f(x) = q(x)(x - a)$. Since $f(x) = (x - a)q(x)$ we have $(x - a) | f(x)$. Conversely, suppose that $(x - a) | f(a)$ and choose $p \in R[x]$ so that $f(x) = (x - a)p(x)$. Then $f(a) = (a - a)p(a) = 0 \cdot p(a) = 0$.

10.21 Definition: Let R be a commutative ring, let $f \in R[x]$, and let $a \in R$. We say that a is a **root** of f when $f(a) = 0$. When $f \neq 0$, we define the **multiplicity** of a as a root of f to be the largest $m = m(f, a) \in \mathbf{N}$ such that $(x - a)^m | f(x)$ (where we use the convention that $(x - a)^0 = 1$). Note that a is a root of f if and only if $m(f, a) \geq 1$.

10.22 Example: Let $f(x) = x^3 - 3x - 2 \in \mathbf{Q}[x]$. Since $f(x) = (x + 1)^2(x - 2) \in \mathbf{Q}[x]$, we have $m(f, 2) = 1$ and $m(f, -1) = 2$.

10.23 Exercise: Let p be an odd prime and let $f(x) = x^p - a \in \mathbf{Z}_p[x]$. Find $m(f, a)$.

10.24 Theorem: (The Roots Theorem) Let R be an integral domain, let $0 \neq f \in R[x]$ and let $n = \deg(f)$. Then

- (1) f has at most n distinct roots in R , and
- (2) if a_1, a_2, \dots, a_ℓ are all of the distinct roots of f in R and $m_i = m(f, a_i)$ for $1 \leq i \leq \ell$, then $(x - a_1)^{m_1}(x - a_2)^{m_2} \cdots (x - a_\ell)^{m_\ell} \mid f(x)$ and so $\sum_{i=1}^{\ell} m(f, a_i) \leq n$.

Proof: We prove Part (1) and leave the proof of Part (2) as an exercise. If $\deg(f) = 0$, then $f(x) = c$ for some $0 \in c \in R$, and so $f(x)$ has no roots. Let f be a polynomial with $\deg(f) = n \geq 1$ and suppose, inductively, that every polynomial $g \in R[x]$ with $\deg(g) = n - 1$ has at most $n - 1$ distinct roots. Suppose that a is a root of f in R . By the Factor Theorem, $(x - a) \mid f(x)$ so we can choose a polynomial $g \in R[x]$ so that $f(x) = (x - a)g(x)$. Note that $\deg(g) = n - 1$ so, by the induction hypothesis, g has at most $n - 1$ distinct roots. Let $b \in R$ be any root of f with $b \neq a$. Since $f(x) = (x - a)g(x)$ and $f(b) = 0$ we have $0 = f(b) = (b - a)g(b)$. Since $(b - a)g(b) = 0$ and $(b - a) \neq 0$ and R has no zero divisors, it follows that $g(b) = 0$. Thus b must be one of the roots of g . Since every root b of f with $b \neq a$ is equal to one of the roots of g , and since g has at most $n - 1$ distinct roots, it follows that f has at most n distinct roots, as required.

10.25 Note: Here are a few remarks about irreducible polynomials.

(1) When F is a field, we know that $F[x]$ is a unique factorization domain. For $f \in F[x]$ we know that $f = 0$ if and only if $\deg(f) = -1$, and f is a unit if and only if $\deg(f) = 0$, and for $0 \neq f, g \in F[x]$ we know that $\deg(fg) = \deg(f) + \deg(g)$. It follows that for $f \in F[x]$, if $\deg(f) = 1$ then f is irreducible. It also follows that for $f \in F[x]$, if $\deg(f) = 2$ or 3 then f is reducible in $F[x]$ if and only if f has a root in F .

(2) When p is a fairly small prime number and n is a fairly small positive integer, it is easy to list all reducible and irreducible polynomials $f \in \mathbf{Z}_p[x]$ with $\deg(f) \leq n$. Note that it suffices to list monic polynomials (since for $f \in \mathbf{Z}_p[x]$ and $0 \neq c \in \mathbf{Z}_p[x]$ we have $f \sim cf$). We start by listing all monic polynomials of degree 1, that is all polynomials of the form $f(x) = x + a$ with $a \in \mathbf{Z}_p$, and noting that they are all irreducible. Having constructed all reducible and irreducible monic polynomials of all degrees less than n , we can construct all of the reducible monic polynomials of degree n by forming products of the reducible monic polynomials of smaller degree in all possible ways, and then all the remaining monic polynomials of degree n must be irreducible.

(3) For $f \in \mathbf{C}[x]$, we know that f is irreducible if and only if $\deg(f) = 1$. For $f \in \mathbf{R}[x]$, we know that f is irreducible polynomial if and only if either $\deg(f) = 1$ or $f(x) = ax^2 + bx + c$ for some $a, b, c \in \mathbf{R}$ with $a \neq 0$ and $b^2 - 4ac < 0$. For $R = \mathbf{Z}$ or \mathbf{Q} , it is a more challenging problem to determine which polynomials are irreducible in $R[x]$. The next few theorems are related to this problem.

10.26 Exercise: List all monic reducible and irreducible polynomials in $\mathbf{Z}_2[x]$ of degree less than 4, then determine the number of irreducible polynomials in $\mathbf{Z}_2[x]$ of degree 4.

10.27 Definition: Let $f \in \mathbf{Z}[x]$. The **content** of f , denoted by $c(f)$, is the greatest common divisor of the coefficients of f . We say that f is **primitive** when $c(f) = 1$.

10.28 Note: Let $a_0, a_1, \dots, a_n \in \mathbf{Z}$, let $r \in \mathbf{Z}$ and let $d = \gcd(a_0, a_1, \dots, a_n)$. Then $\gcd(ra_0, ra_1, \dots, ra_n) = |r|\gcd(a_0, a_1, \dots, a_n)$ and $\gcd\left(\frac{a_0}{d}, \frac{a_1}{d}, \dots, \frac{a_n}{d}\right) = 1$. It follows that for $f(x) = \sum_{i=0}^n a_i x^i$ we have $c(rf) = |r|c(f)$ and that if we let $g(x) = \frac{1}{c(f)}f(x)$ then we have $g(x) \in \mathbf{Z}[x]$ and $c(g) = 1$.

10.29 Theorem: (Gauss' Lemma)

- (1) For all $f, g \in \mathbf{Z}[x]$ we have $c(fg) = c(f)c(g)$.
- (2) Let $0 \neq f \in \mathbf{Z}[x]$ and let $g(x) = \frac{1}{c(f)}f(x) \in \mathbf{Z}[x]$. Then f is irreducible in $\mathbf{Q}[x]$ if and only if g is irreducible in $\mathbf{Z}[x]$.

Proof: Let $f, g \in \mathbf{Z}[x]$. If $f = 0$ or $g = 0$ then we have $c(fg) = 0 = c(f)c(g)$. Suppose that $f \neq 0$ and $g \neq 0$. Let $h(x) = \frac{1}{c(f)}f(x)$ and $k(x) = \frac{1}{c(g)}g(x)$. Then we have $h, k \in \mathbf{Z}[x]$ with $c(h) = c(k) = 1$ and $fg = c(f)c(g)hk$ so that $c(fg) = c(f)c(g)c(hk)$. Thus to prove Part (1) it suffices to show that $c(hk) = 1$. Let $h(x) = \sum_{i=0}^n a_i x^i$ and $k(x) = \sum_{i=0}^m b_i x^i$ with $a_n \neq 0$ and $b_m \neq 0$. Suppose, for a contradiction, that $c(hk) \neq 1$. Let p be a prime factor of $c(hk)$. Then p divides all of the coefficients of $(hk)(x) = (a_0 b_0) + (a_1 b_0 + a_0 b_1)x + \dots + (a_n b_m)x^{n+m}$. Since $c(h) = 1$, p does not divide all the coefficients of $h(x)$ so we can choose an index $r \geq 0$ so that $p|a_i$ for all $i < r$ and $p \nmid a_r$. Since $c(k) = 1$ we can choose an index $s \geq 0$ so that $p|b_i$ for all $i < s$ and $p \nmid b_s$. Since p divides every coefficient of $(hk)(x)$, it follows that in particular p divides the coefficient

$$c_{r+s} = a_0 b_{r+s} + a_1 b_{r+s-1} + \dots + a_r b_s + \dots + a_{r+s-1} b_1 + a_{r+s}.$$

Since $p|c_{r+s}$ and $p|a_i$ for all $i < r$ and $p|b_i$ for all $i < s$ it follows that $p|a_r b_s$. Since p is prime and $p|a_r b_s$ it follows that $p|a_r$ or $p|b_s$. But r and s were chosen so that $p \nmid a_r$ and $p \nmid b_s$ so we have obtained the desired contradiction. This proves Part (1).

To prove Part (2), let $0 \neq f(x) \in \mathbf{Z}[x]$ and let $g(x) = \frac{1}{c(f)}f(x)$, and note that $c(g) = 1$. Suppose that g is reducible in $\mathbf{Z}[x]$, say $g(x) = h(x)k(x)$ where $h(x)$ and $k(x)$ are non-units in $\mathbf{Z}[x]$. Since $c(h)c(k) = c(hk) = c(g) = 1$ it follows that $c(h) = c(k) = 1$. Note that $h(x)$ cannot be a constant polynomial since if we had $h(x) = r$ with $r \in \mathbf{Z}$, then we would have $|r| = c(h) = 1$ so that $h(x) = \pm 1$, but then h would be a unit. Similarly $k(x)$ cannot be a constant polynomial. Since $h(x)$ and $k(x)$ are nonconstant polynomials in $\mathbf{Z}[x]$, they are also nonconstant polynomials in $\mathbf{Q}[x]$. Since $f(x) = c(f)g(x) = c(f)h(x)k(x)$ and since $c(f)h(x)$ and $k(x)$ are both nonconstant polynomials (hence nonunits) in $\mathbf{Q}[x]$, it follows that $f(x)$ is reducible in $\mathbf{Q}[x]$.

Conversely, suppose that $f(x)$ is reducible in $\mathbf{Q}[x]$, say $f(x) = h(x)k(x)$ where h and k are nonzero, nonunits in $\mathbf{Q}[x]$. Since h and k are nonzero nonunits in $\mathbf{Q}[x]$, they are nonconstant polynomials. Let a be the least common multiple of the denominators of the coefficients of $h(x)$ and let b be the least common multiple of the coefficients of $k(x)$, and note that $ah(x) \in \mathbf{Z}[x]$ and $bk(x) \in \mathbf{Z}[x]$. Let $p(x) = \frac{1}{c(ah)}ah(x)$ and let $q(x) = \frac{1}{c(bk)}bk(x)$ and note that $p(x) \in \mathbf{Z}[x]$ and $q(x) \in \mathbf{Z}[x]$ with $c(p) = c(q) = 1$ and that $\deg(p) = \deg(h)$ and $\deg(q) = \deg(k)$. Since $f(x) = ah(x)bk(x) = c(ah)c(bk)p(x)q(x)$ we have $c(f) = c(ah)c(bk)c(pq) = c(ah)c(bk)$ and so $g(x) = \frac{1}{c(f)}f(x) = \frac{1}{c(ah)c(bk)}ah(x)bk(x) = p(x)q(x)$. Since $g(x) = p(x)q(x)$ where $p(x)$ and $q(x)$ are nonconstant polynomials in $\mathbf{Z}[x]$, we see that $g(x)$ is reducible in $\mathbf{Z}[x]$.

10.30 Corollary: Let $0 \neq f(x) \in \mathbf{Z}[x]$. Then $f(x)$ is reducible in $\mathbf{Q}[x]$ if and only if $f(x)$ can be factored as a product of two nonconstant polynomials in $\mathbf{Z}[x]$.

Proof: If $f(x)$ can be factored as $f(x) = g(x)h(x)$, where $g(x)$ and $h(x)$ are nonconstant polynomials in $\mathbf{Z}[x]$, then because $g(x)$ and $h(x)$ are also nonconstant polynomials in $\mathbf{Q}[x]$ (hence nonunits in $\mathbf{Q}[x]$), it follows immediately that f is reducible in $\mathbf{Q}[x]$. Suppose, conversely, that $f(x)$ is reducible in $\mathbf{Q}[x]$. Let $p(x) = \frac{1}{c(f)}f(x)$ and note that $p(x) \in \mathbf{Z}[x]$ with $c(p) = 1$. By Gauss' Lemma, $p(x)$ is reducible in $\mathbf{Z}[x]$. Choose nonunits $k, h \in \mathbf{Z}[x]$ such that $p = kh \in \mathbf{Z}[x]$. Since $c(k)c(h) = c(kh) = c(p) = 1$ we have $c(k) = c(h) = 1$. Since k and h are nonunits with $c(k) = c(h) = 1$, it follows that k and h are nonconstant polynomials (indeed, if $k(x)$ was constant with $k(x) = r$ then we would have $|r| = c(k) = 1$ so that $k(x) = r = \pm 1$, but then $k(x)$ would be a unit). Let $g(x) = c(f)k(x)$ and note that since $k(x)$ is nonconstant, so is $g(x)$. Then we have $f(x) = g(x)h(x)$, which is a product of two nonconstant polynomials in $\mathbf{Z}[x]$.

10.31 Example: Let $f(x) = 6x + 30 \in \mathbf{Z}[x]$. Note that $c(f) = 6$. Since $\deg(f) = 1$, it follows that f is irreducible in $\mathbf{Q}[x]$. But since $c(f) = 6$, it follows that f is reducible in $\mathbf{Z}[x]$, indeed in $\mathbf{Z}[x]$ we have $f(x) = 2 \cdot 3 \cdot (x + 5)$.

10.32 Theorem: (Rational Roots) Let $f(x) = \sum_{i=0}^n c_i x^i$ where $n \in \mathbf{Z}^+$, each $c_i \in \mathbf{Z}$ and $c_n \neq 0$. Let $r, s \in \mathbf{Z}$ with $s \neq 0$ and $\gcd(r, s) = 1$. Then if $f\left(\frac{r}{s}\right) = 0$ then $r|c_0$ and $s|c_n$.

Proof: Suppose that $f\left(\frac{r}{s}\right) = 0$, that is $c_0 + c_1 \frac{r}{s} + c_2 \frac{r^2}{s^2} + \cdots + c_n \frac{r^n}{s^n} = 0$. Multiply by s^n to get

$$0 = c_0 s^n + c_1 s^{n-1} r^1 + \cdots + c_{n-1} s^1 r^{n-1} + c_n r^n.$$

Thus we have

$$\begin{aligned} c_0 s^n &= -r(c_1 s^{n-1} + \cdots + c_{n-1} s^1 r^{n-2} + c_n r^{n-1}) \text{ and} \\ c_n r^n &= -s(c_0 s^{n-1} + c_1 s^{n-2} r^1 + \cdots + c_{n-1} r^{n-1}) \end{aligned}$$

and it follows that $r|c_0 s^n$ and that $s|c_n r^n$. Since $\gcd(r, s) = 1$ we also have $\gcd(r, s^n) = 1$, and since $r|c_0 s^n$ it follows that $r|c_0$. Since $\gcd(s, r) = 1$ we also have $\gcd(s, r^n) = 1$, and since $s|c_n r^n$ it follows that $s|c_n$.

10.33 Exercise: Show that $\sqrt{1 + \sqrt{2}} \notin \mathbf{Q}$.

10.34 Theorem: (Modular Reduction) Let $f(x) = \sum_{i=0}^n c_i x^i$ with $n \in \mathbf{Z}^+$, $c_i \in \mathbf{Z}$ and $c_n \neq 0$.

Let p be a prime number with $p \nmid c_n$. Let $\bar{f}(x) = \sum_{i=0}^n \bar{c}_i x^i \in \mathbf{Z}_p[x]$ where $\bar{c}_i = [c_i] \in \mathbf{Z}_p$.

If \bar{f} is irreducible in $\mathbf{Z}_p[x]$ then f is irreducible in $\mathbf{Q}[x]$.

Proof: Suppose that $f(x)$ is reducible in $\mathbf{Q}[x]$. By the corollary to Gauss' Lemma, we can choose two nonconstant polynomials $g, h \in \mathbf{Z}[x]$ such that $f = gh \in \mathbf{Z}[x]$.

Write $g(x) = \sum_{i=0}^k a_i x^i \in \mathbf{Z}[x]$ and $h(x) = \sum_{i=0}^{\ell} b_i x^i \in \mathbf{Z}[x]$ with $a_k \neq 0, b_\ell \neq 0$ and $k, \ell \geq 1$.

Let $\bar{g} = \sum_{i=0}^k \bar{a}_i x^i \in \mathbf{Z}_p[x]$ and $\bar{h}(x) = \sum_{i=0}^{\ell} \bar{b}_i x^i \in \mathbf{Z}_p[x]$, and note that $\bar{f} = \bar{g} \bar{h} \in \mathbf{Z}_p[x]$.

Since $c_n = a_k b_\ell$ and $p \nmid c_n$ it follows that $p \nmid a_k$ and $p \nmid b_\ell$ in \mathbf{Z} so $\bar{a}_k \neq 0$ and $\bar{b}_\ell \neq 0$ in \mathbf{Z}_p .

Thus $\deg(\bar{g}) = \deg(g) = k$ and $\deg(\bar{h}) = \deg(h) = \ell$ so that \bar{g} and \bar{h} are nonconstant polynomials in $\mathbf{Z}_p[x]$, and so the polynomial $\bar{f} = \bar{g} \bar{h}$ is reducible in $\mathbf{Z}_p[x]$.

10.35 Exercise: Prove that $f(x) = x^5 + 2x + 4$ is irreducible in $\mathbf{Q}[x]$ by working in $\mathbf{Z}_3[x]$.

10.36 Theorem: (Eisenstein's Criterion) Let $f(x) = \sum_{i=0}^n c_i x^i$ with $n \in \mathbf{Z}^+$, $c_i \in \mathbf{Z}$ and $c_n \neq 0$. Let p be a prime number such that $p|c_i$ for $0 \leq i < n$ and $p \nmid c_n$ and $p^2 \nmid c_0$. Then f is irreducible in $\mathbf{Q}[x]$.

Proof: Suppose, for a contradiction, that $f(x)$ is reducible in $\mathbf{Q}[x]$. By the corollary to Gauss' Lemma, we can choose two nonconstant polynomials $g, h \in \mathbf{Z}[x]$ such that $f = gh \in \mathbf{Z}[x]$. Write $g(x) = \sum_{i=0}^k a_i x^i \in \mathbf{Z}[x]$ and $h(x) = \sum_{i=0}^{\ell} b_i x^i \in \mathbf{Z}[x]$ with $k, \ell \geq 1$ and $a_k \neq 0, b_\ell \neq 0$. Since $c_0 = a_0 b_0$ and $p|c_0$ but $p^2 \nmid c_0$, it follows that p divides exactly one of the two numbers a_0 and b_0 . Suppose that p divides a_0 but not b_0 (the case that p divides b_0 but not a_0 is similar). Since $p|c_1$, that is $p|(a_0 b_1 + a_1 b_0)$, and $p|a_0$ it follows that $p|a_1 b_0$, and since $p \nmid b_0$ it follows that $p|a_1$. Since $p|c_2$, that is $p|(a_0 b_2 + a_1 b_1 + a_2 b_0)$ and $p|a_0$ and $p|a_1$, it follows that $p|a_2 b_0$, and since $p \nmid b_0$ it then follows that $p|a_2$. Repeating this argument we find, inductively, that $p|a_i$ for all $i \geq 0$, and in particular we have $p|a_k$. Since $c_n = a_k b_\ell$ and $p|a_k$ it follows that $p|c_n$, giving the desired contradiction.

10.37 Example: Note that $f(x) = 5x^5 + 3x^4 - 18x^3 + 12x + 6$ is irreducible in $\mathbf{Q}[x]$ by Eisenstein's Criterion using $p = 3$.

10.38 Exercise: Let p be a prime number. Show that $f(x) = 1 + x + x^2 + \cdots + x^{p-1}$ is irreducible in $\mathbf{Q}[x]$,