Chapter 1. Sets and Mathematical Statements

1.1 Remark: A little over 100 years ago, it was found that some mathematical proofs
contained paradoxes, and these paradoxes could be used to prove statements that were
known to be false. One well-known paradox, outside of the realm of mathematics, is the
statement

“This statement is false”.

The above statement is true if and only if it is false. It is one form of a paradox known as
the liar’s paradox. After examining some lengthy and convoluted mathematical proofs
which contained paradoxes, Bertrand Russell came up with the following mathematical
paradox, which is somewhat similar to the liar’s paradox:

Let X be the set of all sets, and let S = {A € X|A ¢ A}.
Note for example that Z ¢ ZsoZ € S, and X € X so X ¢ S.
Then we have S € S if and only if S ¢ S.

This paradox is known as Russell’s paradox. With Russell’s paradox, it was possible to
construct a proof by contradiction, which followed all the accepted rules of mathematical
proof, of any statement whatsoever. Mathematicians realized that they would need to
modify the accepted framework of mathematics in order to ensure that mathematical
paradoxes could no longer arise. They were led to consider the following three questions.

1. Exactly what is an allowable mathematical object?
2. Exactly what is an allowable mathematical statement?
3. Exactly what is an allowable mathematical proof?

Eventually, after a great deal of work by many mathematicians, a consensus was reached
as to the answers to these three questions. Roughly speaking, the answers are as fol-
lows. Essentially every mathematical object is a mathematical set (this includes objects
that we would not normally consider to be sets, such as integers and functions), and a
mathematical set can be constructed using certain specific rules, known as the Zermelo-
Fraenkel Axioms along with the Axiom of Choice which, together, are referred to as
the ZFC axioms. Mathematical statements are normally expressed using a combination
of mathematical symbols and words from a natural language, such as English, but every
mathematical statement can be expressed as a so-called formula in a certain specific for-
mal symbolic language, called the language of first-order set theory, which uses symbols
rather than words. Mathematical proofs are likewise normally expressed using a combi-
nation of symbols and words, but every mathematical proof can be translated into a very
precise symbolic form of proof called a derivation. One kind of derivation consists of a
finite list of ordered pairs (S, F,,) (which we think of as proven theorems), where each S,
is a finite set of formulas (called the premises) and each F), is a single formula (called the
conclusion), such that each pair (S,, F,) can be obtained from previous pairs (S;, F;) with
1 < n, using certain specific proof rules. In this chapter we shall provide more detailed
answers to the the first two of the above three questions, and in the next chapter we shall
consider the third question.



1.2 Definition: Every mathematical object is either a (mathematical) set or a (mathe-
matical) class. Every set or class is a collection of sets. When S is a set or a class and =
is a set, we write x € S to indicate that x is an element of S. When A and B are sets, we
say that A is equal to B, and we write A = B, when A and B have the same elements,
we say that A is a subset of B, and we write A C B (some books write A C B), when
every element of A is also an element of B, and we say that A is a proper subset of B,
and we write A C B, or for emphasis A % B, when A C B but A # B. When F(x) is a

mathematical statement about a set x, we write {z | F(z)} to denote the collection of all
sets x for which the statement F'(z) is true. When F'(z) is a statement about a set x and
A is a set, we write {z € A| F(x)} to denote the collection {z |z€ A and F(z)}.

A (mathematical) class is any collection of sets of the form {z | F(x)} where F(x) is a
mathematical statement about x.

A (mathematical) set is a collection of sets which can be constructed using certain specific
rules, which are known as the ZFC axioms (or the Zermelo-Fraenkel Axioms along
with the Axiom of Choice). The ZFC axioms include (or imply) each of the following.

Equality Axiom: Two sets are equal if and only if they have the same elements.
Empty Set Axiom: There is set called the empty set, denoted by (), with no elements.
Pair Axiom: If A and B are sets then {A, B} = {z|2 = A or 2 = B} is a set.

Union Axiom: If S is a set of sets then (JS = |J A= {z|z€A for some A € S} is a set.
AeS

Power Set Axiom: If A is a set then P(A) = {X’X C A} is a set, which we call the power

set of A.

Axiom of Infinity: If we define the natural numbers to be the sets 0 = (), 1 = {0},
2=1{0,1}, 3={0,1,2} and so on, then N = {0,1,2,3,---} is a set.

Separation Axiom: If A is a set and F'(x) is a statement about z, {:I?EA|F(£I?)} is a set.

Replacement Axiom: If A is a set and F(z,y) is a statement about x and y with the
property that for every set x there exists a unique set y = f(x) for which F(x,y) is true,
then {f(z) |z € A} = {y|Fz€ A F(z,y)} is a set.

Axiom of Choice: Given a nonempty set S of non-empty disjoint sets, there exists a set C'
which contains exacly one element from each of the sets in S.

1.3 Definition: For sets A and B, we use the following notation. We denote the union
of A and B by AU B, the intersection of A and B by AN B, the set A remove B by
A\ B and the product of A and B by A x B, that is

AUB=J{A,B} = {z|r € Aor z € B},
AﬂB:{xeAUB|x€Aanda:EB},
A\B={z € Alz ¢ B}, and

Ax B={(z,y) € P(P(AUB))|z € A and b € B}

where the ordered pair (z,y) is defined to be the set (z,y) = {{z}, {z,y}}. We say that
A and B are disjoint when AN B = (). We also write 42 = A x A.



1.4 Theorem: (Properties of Sets) Let A, B,C C X. Then

(1) (Idempotence) AUA=A, ANA=A,

(2) (Identity) AUD=A, ANP=0, AUX =X, ANX =A,

(3) (Associativity) (AUB)UC =AU (BUC) and (ANB)NC=ANn(BNO),

(4) (Commutativity) AUB =BUA and ANB = BNA,

(5) (Distributivity) AN (BUC) = (ANB)U(ANC) and AU(BNC)=(AUB)N(AUC),
(6) (De Morgan’s Laws) X \ (AUB) = (X\A)N(X\B) and X\ (ANB) = (X\A)U(X\B).

Proof: We shall provide some proofs later once we have listed some methods of proof.

1.5 Example: When A is a set, we have {A, A} = {A} by the Equality Axiom and
so {A} is a set by the Pair Axiom. In particular, since () is a set, so is {#}. Note that
) # {0}, indeed the set () has no elements but {(}} has one element. Since () and {0}
are sets, so is the set {0, {0}} by the Pair Axiom. Using the Pair Axiom and the Union
Axiom we can then construct the set {0, {0}} U {{0,{0}}} = {0, {0}, {0,{0}}}. The
first few natural numbers are given by 0 = 0, 1 = {0} = {0}, 2 = {0,1} = {0,{0}} and
3=1{0,1,2} = {0, {0}, {0,{0}}}. Having constructed the natural number n as a set, the
number n+ 1 is defined to be the set n+1 = nU{n} (which is a set by the Pair and Union
Axioms). We remark that although we only need to use the Pair Axion and the Union
Axiom to construct any given natural number n, we need to use the Axiom of Infinity to
conclude that the collection of all natural numbers is a set.

1.6 Example: Since the natural number 3 = {0,1, 2} is a set, so is its power set

PE)=P({0,1,2}) = {0, {0}, {1}, {2}, {1.2}, {0,2}, {0,1}, {0,1,2} }.
We remark that when a set A has n elements, its power set P(A) has 2" elements. We also

remark that when A is a finite set we do not need to use the Power Set Axiom to construct
the set P(A) since we can construct the set P(A) using the Pair and Union Axioms.

1.7 Remark: It was mentioned earlier that essentially all mathematical objects are sets,
including objects that we do not normally consider to be sets such as numbers and func-
tions. We have seen that the natural numbers 0,1,2,--- are defined to be sets. In the
following two definitions we indicate how functions and relations are defined to be sets.

1.8 Definition: When A and B are sets, a function from A to B is defined to be a set
F C A x B with the property that for every z € A there exists a unique element y € B
such that (z,y) € F. We write F' : A — B to indicate that F' is a function from A to B,
and we write y = F(x) to indicate that (z,y) € F. Thus a function is in fact defined to
be equal to what we would normally consider to be its graph.

1.9 Definition: When A is a set, a binary relation on A is a subset R C A%2. When
x,y € A we write Ry to indicate that (z,y) € R.

1.10 Example: The operation + on N is a function + : N2 — N and for z,y € N we
write x + y to denote +(z,y). The relation < on N is a subset < C N? and for 2,y € N
we write z < y to indicate that (z,y) € <.

1.11 Remark: Using the axioms of set theory, it is possible to construct the set of integers
Z = {0,£1,+2,---}, the sets of rational numbers Q = {% ‘ k,neZn > O} and the set
of real numbers R, along with their usual operations 4, —, X, + and their usual inequality
relations <, <, >, >. This procedure is outlined in the Appendix 1.
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1.12 Definition: Every mathematical statement can be expressed in a formal symbolic
language called the language of first-order set theory, which we shall describe below.
For the moment, we describe a very simple formal symbolic language that captures some
of the features of mathematics. In the language of propositional logic, we use symbols
from the symbol set {ﬂ, ANy V, = <, (, )} along some variable symbols which we
denote by P,@, R,---. The symbols ( and ) are called parentheses or brackets and the
other symbols in the symbol set represent English words as follows:

= A \% — <
not and or implies if and only if

The propositional variables P, @), R, - - - are intended to represent certain unknown mathe-
matical statements which are assumed to be either true or false, but never both. When X
and Y are strings of symbols, we shall write X =Y when X and Y are identical.

A formula, in propositional logic, is a string of symbols which can be obtained using the
following rules:

F1. Every propositional variable symbol is a formula.

F2. If F'is a formula then so is the string —F.

F3. If F and G are formulas then so are the strings (FAG), (FVG), (F — G) and (F < G).

A derivation for a formula F' is a list of formulas Fy, Fs,---, F,, with F' = F,,, for some
m < n (usually F' = F},) such that each formula F}, is obtained by applying one of the
above 3 rules to previous formulas in the list.

We shall often omit the outermost pair of brackets from formulas, for example we might
write the formula (P V (QQ — R)) as PV (Q — R).

1.13 Example: The string F' = —n(P—> —(Q A P)) is a formula. One derivation for F' is
as follows.

P,Q,(QANP),~(QANP), (P—>ﬂ(Q/\P)),F.

1.14 Definition: An assignment of truth-values is a function « : {P,Q, R,---} — {0, 1}.
When a(P) = 1 we say that P is true under the assignment « and when «(P) = 0 we say
that P is false under «, and similarly for the variables Q, R, - - -.

Given an assignment «, we define a(F"), for any formula F', recursively as follows:

Al. a(P), a(Q) and a(R), and so on, are already known.
A2. If G is a formula then a(—G) is defined according to the table

G -G
1 0
0 1

A3. If G and H are formulas then o(G A H), a(G V H), (G — H) and a(G <+ H) are
defined according to the table

G H (GAH) (GVH) (G—H) (G H)
1 1 1 1 1 1
1 0 0 1 0 0
0 1 0 1 1 0
00 0 0 1 1

When a(F) = 1 we say that F' is true under the assignment «, and when a(F) = 0 we
say that F' is false under «.



1.15 Note: When a(G) = 0 we have a(G — H) = 1. This agrees with the way in which
we use the word “implies” in mathematics. For example, for every integer z, the statement
“if 0 =1 then x = 3” is considered to be true.

1.16 Example: Let F = (PA—~(Q— P))V (R« —(Q), and let a be any assignment with
a(P)=1, a(Q) =0 and a(R) = 1. Determine whether F'is true under a.

Solution: We make a derivation Fy Fy --- F), for F', and under each formula F; we put
the truth value a(F;), which we find using the above definition.

P Q@Q R Q—P -(Q—P) PAN-(Q—P) -Q R+~-Q F

1 0 1 1 0 0 1 1 1
The table shows that a(F") = 1.

1.17 Definition: An assignment on the propositional variables Py, ---, P, is a function
a:{P, Py, P} — {0,1} (there are 2" such assignments). A truth-table, on the
variables Py, Py, - - P,, for the formula F', is a table in which

T1. The header row is a derivation Fy Fy --- F,, --- Fj for F', where the formulas F}, use
no propositional variables other than P;,---, P,, with Fj, = P, for 1 < k < n.

T2. There are 2" rows (not counting the header row): for each of the 2™ assignments «
on Py,---, Py, there is a row of the form a(F;) a(Fs) --- a(F)).

T3. The rows are ordered so that first n columns (headed by Pi,---, P,) list the binary
numbers in decreasing order from 11---1 at the top down to 00---0 at the bottom.

1.18 Example: Make a truth-table on P, @ and R for the formula F' = —((PV-Q) — R).

Solution: We make a table, as in example 1.16, but with 23 = 8 rows.
P Q@ R -Q Pv-Q (PV-Q)—R F

1 1 1 O 1 1 0
1 1 0 O 1 0 1
1 0 1 1 1 1 0
1 0 0 1 1 0 1
0 1 1 0 0 1 0
0 1 0 O 0 1 0
0 0 1 1 1 1 0
0 0 0 1 1 0 1

1.19 Definition: Let F' and GG be formulas and let S be a set of formulas.

(1) We say F is a tautology, and write = F', when for all assignments a we have o(F') = 1.
(2) We say that F'is a contradiction when = —F.

(3) We say F'is equivalent to G, and write F'> G, when for all assignments «, o(F)=a(G).
(4) We say the argument “S therefore G” is valid, or we say that S induces G, or that
G is a consequence of S, and we write S =G, when for all assignments «, if a(F) =1
for every F € S then a(G) = 1. In the case that S = {Fy, Fy,---, F,,} we often omit
the set brackets and write SEG as Fi, Fy, -, F,, EG. The formulas in S are called the
premises of the argument and G is called the conclusion.



1.20 Theorem: Let F, G and Fy,---, F, be formulas. Then

(1) EF0FF,

(2) FEG = = (F—=G),

(3) F2G+= (FEGand GEF) < E(F+G), and

(4) {F15F27"

AF,) EG.

Proof: We shall provide some proofs once we have discussed proof methods.
1.21 Example: Let F = (P« ((Q A—R)V S)) V (P — —S). Determine whether = F.

Solution: We make a truth-table for F'.
(QAN-R)VS P ((QA-R)VS)

P Q@ R S -R QAR

1 1.1 1 O
1 1 1 0 O
1 1 0 1 1
1 1 0 0 1
10 1 1 O
1 0 1 0 O
1 0 0 1 1
1 0 0 0 1
0 1 1 1 O
0 1 1 0 O
0 1 0 1 1
0o 1 0 0 1
0 0 1 1 0
0 0 1 0 O
0o 0 o0 1 1
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Since all the entries in the F-column are equal to 1, we have = F.

1.22 Example: Let F = (PVQ)— R and G = (P— R)V (Q — R). Determine whether

F=d@.

Solution: We make a truth-table for /' and G,
R PVvQ F P—R Q—R G

P

SO O = ===

0

The F-column is not the same as the G-column, for example on the

G is true, and so F' 2 G.

Q

O R = OO - =

1

_ O = OO

1

O =

1
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row, F'is false and



1.23 Example: Let FF = (PV-Q)— R, G=P+<(QAR), and H = (Q— R), and let
K = =(—=Q A R). Determine whether {F,G,H} F K.

Solution: In general, we have {Fy,---,F,} =K if and only if in a truth-table for the
formulas Iy, ---, F,, and K, for every row in which Fy,-- -, F,, are all true, we also have K
true. We make a truth-table for F', G, H and K:

P Q R -Q Pv-Q F QAR G H -QAR K
1 1 1 0 1 11 1 1 0 1
1 1 0 0 1 0O 0 0 0 0 1
1 0 1 1 1 1 0 0 1 1 0
1 0 0 1 1 0 0 0 1 0 1
0 1 1 0 0 1 1 0 1 0 1
0 1 0 0 0 1 0 1 0 0 1
0 0 1 1 1 1 0 1 1 1 0
0 0 0 1 1 0o 0 1 1 0 1

On row 7, F' G and H are all true but K is false. This implies that {F,G, H} £ K.
1.24 Example: Determine whether {PV Q,—Q,P — Q} = —-P.

Solution: We have

P Q PVvQ -Q P—Q -P
11 1 0 1 0
1 0 1 1 0 0
0o 1 1 0 1 1
00 0 1 1 1

Notice that there are no rows in which the premises are all true. In this situation, we can
conclude that {P V Q,—Q, P — Q} E—-P (we don’t even need to look at the last column
of the table).

1.25 Example: Let F' and G be formulas. Consider the following table.

F G F&GE@ -G F—=-G

1 1 1 0 0
1 0 0 1 1
0 1 0 0 1
0 0 1 1 1

Notice that on the first row (when F' and G are both true) we have F <> G true and F' — -G
false. This might seem to imply that (F <> G)E (F — —G), but it does not! For example,
if ¥ =P and G = —-P A (@, then we never have ' and G both true, so the combination
of truth-values shown in the first row of the above table never actually occurs. The above
table is not actually a truth-table as defined in 1.17. Rather, it is a table of possible
combinations of truth-values which may or may not actually occur.



1.26 Definition: Let A be a set. Recall that A2 = A x A. A unary function on A is
a function f : A — A. A binary function on A is a function g : A2 —+ A. Many binary
functions g are used with infix notation which means that we write g(x,y) as zgy. For
example, + is a binary function on N and we write +(z,y) as z+y. A unary relation on
Ais a subset P C A, and we write P(z) to indicate that x € P. A binary relation on A
is a subset R C A2. When R is written with prefix notation we write R(z,y) to indicate
that (x,y) € R, and when R is used with infix notation, we write xRy to indicate that
(z,y) € R. For example, < is a binary relation on the set N, which means that < C N2,
and we write < y to indicate that (z,y) € <.

1.27 Definition: We now describe a type of formal symbolic language, called a first-
order language. Every first-order language uses symbols from the common symbol
set

{=, AV, =, < ,=Y,3,(,),,}

together with some variable symbols (such as z, y, z, v, v and w), and possibly some
additional symbols which might include some constant symbols (such as a, b, ¢, 0, 0,
1, e, m), some function symbols (such as f, g, h, N, U, +, —, x), and some relation
symbols (such as P, Q, R, €, C, C, <, <). The variable symbols are intended to represent
elements in a certain set (or class) U, called the universal set (or the universal class),
which is usually understood from the context. The symbol V is read as “for all” or “for
every” and the symbol 3 is read as “for some” or “there exists”.

A term in the first-order language is a string of symbols using only variable, constant and
function symbols, along with parentheses and commas if necessary, which can be obtained
using the following rules.

T1. Every variable symbol is a term and every constant symbol is a term.

T2. If t is a term and f is a unary function symbol then the string f(¢) is a term.

T3. If s and ¢ are terms and g is a binary function symbol then the string g(s,t) (or the
string (sgt) in the case that g is used with infix notation) is a term. We sometimes omit
the brackets from the string (sgt).

Here are some examples of terms (with some brackets omitted):
u, uNu, un(UD), «, z+1, z2x(y+1), f(@), 9(z,y), g(z+1,f(y))
Each term represents an element in the universal set (or class) U.

A formula is a string of symbols which can be obtained using the following rules.

F1. If t is a term and P is a unary relation symbol, then the string P(t) is a formula.
F2. If s and ¢ are terms and R is a binary relation symbol then the string R(s,t) (or the
string sRt in the case that R is used with infix notation) is a formula.

F3. If F is a formula then so is the string = F'.

F4. If F and G are formulas then so are the strings (FAG), (FVG), (F — G) and (F < G).
F5. If F is a formula and x is a variable symbol, the strings Vax F' and dz G are formulas.

Here are some examples of formulas (with some brackets omitted):
uCv,uNv=0, (x=0vVa=1), Vo (z#0—Jy zxy =1)

A formula is a precise way of expressing a mathematical statement about elements in U.



1.28 Definition: In the language of first-order number theory, in addition to symbols
from the common symbol set {—,A,V, =, <>,=,V,3,(,), , } along with variable symbols
such as x,y, z, we allow ourselves to use additional symbols from the additional symbol
set {0,1,+, x, <}. (the symbols 0 and 1 are constant symbols, the symbols 4+ and x are
binary function symbols used with infix notation, and the symbol < is a binary relation
symbol used with infix notation). Unless explicitly stated otherwise, we do not allow
ourselves to use any other symbols (such as 2, —, >).

1.29 Example: Express each of the following statements about integers as formulas in
the language of first-order number theory, taking the universal set to be U = Z.

(a) x is a factor of y.

(b) z = min{z, y}.

(c) x is prime.

(d) = is a power of 2.

Solution: The statement “x is a factor of y” can be expressed as 4z y = = X z.
The statement “z = min{z,y}” can be expressed as (r <y—z=z)A(nx <y—z=y).
The statement “x is prime” can be expressed as

l<zAVzVy(l<yAl<z)—-z=yXz2).

The statement “z is a power of 2”7 is equivalent to the statement “x is positive and every
factor of x which is greater than 1 is even” which can be expressed as

O<zAVy(l<yAIzxz=yxz)—=Izy=2z+2).

1.30 Example: Express each of the following statements about a function f : R — R
as formulas in the language of first-order number theory, taking the universal set to be
U = R and allowing the use of the additional unary function symbol f.
(a) f is nondecreasing.
(b) f is bijective.
(¢) lim f(z) =b.

Tr—a

Solution: The statement “f is nondecreasing” means “for all x,y € R, if x < y then
f(x) < f(y)” which can be expressed as Vz Vy (—y <z — - f(y) < f(z)).

The statement “f is bijective” means “for all y € R there exists a unique z € R such that
y = f(z)” which can be expressed as Vy Jz(y = f(z) AVz(y = f(2) =z = z)).

The statement “|z — a| < §” is equivalent to —0 < z —a and  — a < ¢” which can be
expressed as the formula (a < z 4+ d A x < a+ J). The statement “iigé f(xz) = b” means

“for every € >0 there exists d >0 such that for all z, if 0 < |z —a| < ¢ then |f(z)—b| < €,
which can be expressed as the formula

Ve(0<e — 36 (0<d AVa((mz=a A (a<z+d A z<at+d)) = (b<[f(z)+e A f(z)<bte)))).
In the above formula, the symbols € and ¢ are being used as variable symbols.

1.31 Definition: In the language of first-order set theory, in addition to the symbols
from the common symbol set along with variable symbols, the only additional symbol that
we allow ourselves to use (unless explicitly stated otherwise) is the symbol €, which is a
binary relation symbol used with infix notation. When we use the language of first-order
set theory, unless indicated otherwise we shall take the universal class to be the class of
all sets.

1.32 Remark: Every mathematical statement can, in principle, be expressed in the
language of first-order set theory.



1.33 Example: Let u, v and w be sets. The mathematical statement v C v can be
expressed as the formula Vz(z € u—x € v). The mathematical statement w = {u,v} is
equivalent (by the Equality Axiom) to the statement “for every set z, we have x € w if and
only if z € {u,v}” which can be expressed as the formula Vz(z € w+ (z = u V z = v)).
The mathematical statement w = uwUv can be expressed as Vz (z € w<» (z € uVx € v)).

1.34 Example: Each of the ZFC axioms can be expressed as a formula in the language
of first-order set theory. Here are a few of the axioms expressed as formulas.

Equality Axiom: YuVov (u = v > Va(z € u<rz € v))
Empty Set Axiom: JuVx —x € u

Pair Axiom: VuVvIwVz(z € w+s (z =uVz =v))
Union Axiom: VuJwVz(z € w<» Jv(v € u Az € v))
Power Set Axiom: Vu 3w Vv (v € w > Va(z € v—x € u))

1.35 Example: Express the mathematical statement v = 2 (that is, u is equal to the
natural number 2) as a formula in first-order set theory.

Solution: The following statements are equivalent, and the final statement in the list is
expressed in the form of a formula:

u =2

u={0,{0}}

Vz (x cCusrx € {@,{@}})

Vo (z € usr (. =0V a={0}))

Ve (zeuewr (Vy-yea VVy(ycaeoy=10)))

Ve (zeuer (Vy-wex VVy(y ez Vzz €y)))

1.36 Remark: As the above example illustrates, although every mathematical statement
can, in principle, be expressed as a formula in the language of first-order set theory in
practice even fairly simple mathematical statements (such as the statement u = 2) can
become extremely long and complicated and difficult to read when expressed as formulas.
For this reason, as we build mathematics from the foundations of set theory by introducing
new concepts and proving new theorems, we continually add new symbols to the symbol
set and allow additional notation to be used.

1.37 Example: When the universal set is U and A C U (in other words A is a unary
relation on U), the statement “z € A” can be expressed as the formula A(z). When S(z)
is a mathematical statement about the variable z which can be expressed as the formula F',
the statement “for all z € A, S(x) is true” can be expressed as the formula Vz(A(z) — F),
and the statement “there exists x € A such that S(z)” can be expressed as Jx(A(z) A F).

1.38 Definition: Every occurrence of each variable symbol, which does not immediately
follow a quantifier symbol, in a formula H is either free or bound, as follows. When H
is of the form P(t) or R(s,t), every occurrence of each variable symbol is free. When H is
of one of the forms —=F, (FAG), (FVG), (F—G) or (F <+ G), every occurrence of each
variable symbol in H is free or bound in accordance with whether it was free or bound in
F or in G. When H is of one of the forms Vx F' or dz F', each occurrence of any variable
symbol y other than z is free or bound in H in accordance with whether it was free or
bound in F, every bound occurrence of z in F' remains bound in H (and it is bound in H
by the same quantifier symbol which bound it in F'), and every free occurrence of z in F
becomes bound in H (and it is bound by the initial quantifier symbol).
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1.39 Example: The mathematical statement “z is a factor of y”, which is a statement
about integers x and y, can be expressed as the formula 3z y = x X z in first-order number
theory. In this formula, the variables x and y are free and the variable z is bound by the
quantifier. Note that the statement is a statement about x and y but not about z.

1.40 Definition: An interpretation for a first-order language is given by specifying
a non-empty universal set U, and by specifying exactly which constants, functions and
relations are represented by each of the constant, function and relation symbols.

1.41 Note: Until we have chosen an interpretation, a formula F' in a first-order language is
nothing more than a meaningless string of symbols. Once we have chosen an interpretation,
the formula becomes a meaningful statement about its free variables (that is about the
elements in the universal set which are represented by the variable symbols which occur
freely in F'). The truth or falsehood of F' may still depend on the values in U assigned to
the free variables in F'.

1.42 Example: Let F be the formula Vy x xy = yxx. If we use the interpretation R
(that is is we specify that the universal set is R and that the function symbol x represents
multiplication) then the the formula F' becomes the meaningful statement “the real number
x commutes with every real number y” (which is true, no matter what number is assigned
to the variable z). If we use the interpretation R3 (in which the universal set is R? and
the function symbol x represents cross product) then the formula becomes the meaningful
statement “the vector z € R3 has the property that zxy = yxx for every vector y € R3”
(which is true if and only if z is the zero vector).

1.43 Definition: Given an interpretation U, an assignment (of values to the variable
symbols) in U is a function

« : {variable symbols} — U .

For a formula F, we write a(F) = 1 when F' is true under the assignment « in the
interpretation U, and we write o(F') = 0 when F' is false under the assignment « in U.

1.44 Definition: Let F' and G be formulas and let S be a set of formulas.

(1) We say that F'is a tautology, and we write |=F, when for all interpretations U and
for all assignments « in U we have a(F') = 1.

(2) We say that F'is a contradiction when E—F.

(3) We say that F' and G are equivalent, and we write F' = (G, when for all interpretations
U and all assignments « in U we have a(F) = a(G).

(4) We say that the argument “S therefore G” is valid, or we say that S induces G, or
that G is a consequence of S, and we write S =G, when for all interpretations U and all
assignments « in U, if a(H) =1 for every formula H € S then «(F) = 1.

1.45 Example: For any term ¢, we have = t=t. When x and y are variables and f is a
unary function symbol, we have = Jy y = f(z). When a and b are constant symbols, we
have £ —a=>5. For any terms s and ¢, we have s=t = t=s. Although it is true in the
interpretation Z that the formula x < y has the same meaning as the formula -y < z, we
have z <y 2 =y < . When z is a variable symbol, a is a constant symbol, ¢ is a term
and R is a binary relation symbol, we have {V:c :cRa} FtRa.

1.46 Note: Unlike the situation in propositional logic, in first order logic there is no
routine algorithmic procedure that one can apply to determine whether a given formula is
a tautology, or whether two given formulas are equivalent, or whether a given argument is
valid. Sometimes we can solve such problems by constructing a mathematical proof.
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