
Appendix 1: The Construction of the Real Numbers

Fist-Order Set Theory

1.1 Definition: In the language of first-order set theory we allow ourselves to use only
symbols from the following symbol set{

¬,∧,∨,→,↔,=,∈,∀,∃, (, )
}

along with some variable symbols such as x, y, z, u, v, w, · · · or x1, x2, x3, · · ·. The symbols
in the symbol set are read as follows: ¬ is read as “not”, ∧ is read as “and”, ∨ is read as
“or”, → is read as “implies”, ↔ is read as “if and only if”, ∈ is read as “is an element
of”, ∀” is read as “for all”, ∃ is read as “there exists”, and the symbols ( and ) are called
parentheses.

1.2 Definition: A formula (in the formal symbolic language of first-order set theory)
is a non-empty finite string of symbols, from the above list, which can be obtained using
finitely many applications of the following three rules.

1. If x and y are variable symbols, then each of the following strings is a formula.

x = y , x ∈ y
2. If F and G are formulas then each of the following strings is a formula.

¬F , (F ∧G) , (F ∨G) , (F → G) , (F ↔ G)

3. If x is a variable symbol and F is a formula then each of the following is a formula.

∀xF , ∃xF

1.3 Definition: Let x be a variable symbol and let F be a formula. For each occurrence
of the symbol x, which does not immediately follow a quantifier, in the formula F , we
define whether the occurrence of x is free or bound inductively as follows.

1. If F is a formula of one of the forms y = z or y ∈ z, where y and z are variable symbols
(possibly equal to x), then every occurrence of x in F is free, and no occurrence is bound.

2. If F is a formula of one of the forms ¬G, (G ∧ H), (G ∨ H), (G → H) or (G ↔ H),
where G and H are formulas, then each occurrence of the symbol x is either an occurrence
in the formula G or an occurrence in the formula H, and each free (respectively, bound)
occurrence of x in G remains free (respectivly, bound) in F , and similarly for each free (or
bound) occurrence of x in H.

3. If F is a formula of one of the forms ∀y G or ∃y G, where G is a formula and y is
a variable symbol (possibly equal to x), then if y is different than x then each free (or
bound) occurrence of x in G remains free (or bound) in the formula F , and if y is equal to
x then every free occurrence of x in G becomes bound in the formula F , and every bound
occurrence of x in G remains bound in the formula F .
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1.4 Definition: When a quantifier symbol occurs in a given formula F , and is followed
by the variable symbol x and then by the formula G, any free occurrence of x in G will
become bound in the given formula F (by an application of part 3 of the above definition),
and we shall say that that occurrence of x is bound by (that occurrence of) the quantifier
symbol, or that (that occurrence of) the quantifier symbol binds that occurrence of x.

1.5 Definition: A free variable in a formula F is any variable symbol that has at least
one free occurence in F . A formula F with no free variables is called a statement. When
the free variables in F all lie in the set {x1, x2, · · · , xn}, we shall write F as F (x1, · · · , xn)
and we shall say that F is a statement about the variables x1, x2, · · · , xn.

1.6 Example: In the following formula, determine which occurrences of the variable
symbols are free and which are bound, and for each bound occurrence, indicate which
quantifier binds it.

∀x ∃y
(
∀z(x ∈ y → ∃y y = z) ∧ ∀x(∃z z = u ∨ z ∈ x)

)
Solution: We indicate the free and bound occurrences and their binding quantifiers by
placing integral labels under the relevant symbols: the free variables are given the label 0,
each quantifier is given its own non-zero label, and each bound variable is given the same
label as its binding quantifier:

∀x∃y
(
∀z(x ∈ y → ∃y y = z) ∧ ∀x(∃z z = u ∨ z ∈ x)

)
1 2 3 1 2 4 4 3 5 6 6 0 0 5

We remark that the free variables in this formula are z and u, so we say that it is a
statement about z and u.

1.7 Example: Express the statement x =
{
y, {z}

}
as a formal symbolic formula.

Solution: We can express the given statement in each of the following ways.

x =
{
y, {z}

}
∀u
(
u ∈ x↔ u ∈

{
y, {z}

})
∀u
(
u ∈ x↔

(
u = y ∨ u = {z}

))
∀u
(
u ∈ x↔

(
u = y ∨ ∀v(v ∈ u↔ v = z)

))
The last expression is a formula.

1.8 Definition: Given a formula F and variable symbols x and y, we define [F ]x 7→y

as follows. When F is obtained using rule 1, the formula [F ]x 7→y is obtained from F
by replacing all occurrences of the symbol x by the symbol y. To deal with rule 2, we
define

[
¬F
]
x 7→y

:= ¬[F ]x 7→y and
[
(F ∗G)

]
x 7→y

:=
(
[F ]x 7→y ∗ [G]x 7→y

)
for ∗ ∈ {∧,∨,→,↔}.

To deal with rule 3, we define
[
∀xF

]
x 7→y

:= ∀xF , and
[
∀y F

]
x7→y

:= ∀u
[
[F ]y 7→u

]
x 7→y

where u is the first variable which is not equal to x or y and which does not occur in F ,
and for a variable symbol z with z 6= x and z 6= y we define

[
∀z F

]
x 7→y

:= ∀z[F ]x 7→y.
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The ZFC Axioms of Set Theory

1.9 Remark: Every mathematical set can be constructed using specific rules, which are
known as the ZFC axioms of set theory, or the Zermelo-Fraenkel axioms of set theory,
with the axiom of choice. We begin by listing the ZFC axioms, stating them informally.

Extension Axiom: Two sets are equal if and only if they have the same elements.

Empty Set Axiom: There exists a set ∅ with no elements.

Separation Axiom: If u is a set and F (x) is a statement about x,
{
x ∈ u

∣∣F (x)
}

is a set.

Pair Axiom: If u and v are sets then {u, v} is a set.

Union Axiom: If u is a set then
⋃
u =

⋃
v∈u

v is a set.

Power Set Axiom: If u is a set then P(u) =
{
v
∣∣v ⊆ u} is a set.

Axiom of Infinity: If we define the natural numbers to be the sets 0 = ∅, 1 = {0}, 2 = {0, 1},
3 = {0, 1, 2} and so on, then N = {0, 1, 2, 3, · · ·} is a set.

Replacement Axiom: If u is a set and F (x, y) is a statement about x and y with the
property that ∀x∃!y F (x, y) then

{
y
∣∣∃x ∈ u F (x, y)

}
is a set.

Axiom of Choice: Given a set u of non-empty pairwise disjoint sets, there exists a set
which contains exactly one element from each of the sets in u.

We now proceed to state each of the ZFC axioms formally (as a formula in first-order
set theory) and give some indication as to how these axioms can be used as a rigorous
framework for essentially all of mathematics.

1.10 Definition: The Extension Axiom is the formula

∀u∀v
(
u = v ↔ ∀x(x ∈ u↔ x ∈ v)

)
.

1.11 Definition: The Empty Set Axiom is the formula

∃u∀x ¬x ∈ u .

1.12 Theorem: The empty set is unique.

Proof: Suppose that u and v are both empty. Let x be arbitrary. Since u is empty, we
have ¬x ∈ u and hence x ∈ u → x ∈ v. Similarly, since v is empty, we have ¬x ∈ v and
hence x∈v → x∈u. Since x∈u→ x∈v and x∈v → x∈u, we have x∈u↔ x∈v. Since x
was arbitrary, we have ∀x (x∈u↔ x∈v). By the Axiom of Extension, u = v.

1.13 Definition: We denote the unique empty set by ∅.

1.14 Remark: In a formal and rigorous treatment of the foundations of mathematics, we
would need to decide at this point how to interpret the use of the symbol ∅. One approach
is to add the symbol ∅ to our list of symbols, modify our definition of a formula to allow
the use of the new symbol ∅, and add the axiom ∀x ¬x ∈ ∅ to our list of axioms. Another
option is to interpret the use of the symbol as a shorthand notation for an expression which
can be expressed formally using the existing symbols, so that for example the expression
u = ∅ would be shorthand for the formula ∀x ¬x ∈ u.
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1.15 Definition: Given sets u and v, we say that u is a subset of v, and we write u ⊆ v,
when every element of u also lies in v, that is when ∀x (x ∈ u→ x ∈ v).

1.16 Definition: For any formula F with free variable x, the following formula is an
axiom.

∀u∃v ∀x
(
x ∈ v ↔ (x∈u ∧ F )

)
More generally, for any formula Fwith free variables x, u1, u2, · · · , un, the following formula
is an axiom.

∀u∀u1 · · · ∀un∃v ∀x
(
x ∈ v ↔

(
x∈u ∧ F

))
Any axiom of this form is called an Axiom of Separation.

1.17 Notation: Given sets u, u1, · · · , un and given a formula F with free variables
x, u1, · · · , un, by the appropriate Axiom of Separation, there exists a set v with the prop-
erty that ∀x

(
x ∈ v ↔

(
x∈u ∧ F

)
, and by the Extension Axiom, this set v is unique, and

we denote it by {
x ∈ u

∣∣F} .
1.18 Note: It is important to realize that a Separation Axiom only allows us to construct
a subset of a given set u, so for example we cannot use a Separation Axiom to show that
the collection S = {x

∣∣¬x∈x}, which is used to formulate Russel’s paradox, is a set.

1.19 Definition: The Pair Axiom is the formula

∀u∀v ∃w ∀x
(
x ∈ w ↔ (x = u ∨ x = v)

)
.

1.20 Notation: Given sets u and v, by the Pair Axiom there exists a set w with the
property that ∀x

(
x ∈ w ↔ (x = u ∨ x = v)

)
, and by the Extension Axiom, this set w is

unique, and we denote it by
{u, v}

1.21 Example: With this axiom, we can construct some non-empty sets. For example,
taking u = v = ∅ gives the set {∅, ∅} = {∅} (note that {∅} 6= ∅ by the Extension Axiom,
since ∅ ∈ {∅} but ∅ /∈ ∅). Then taking u = ∅ and v = {∅} gives the set

{
∅, {∅}

}
.

1.22 Definition: The Union Axiom is the formula

∀u∃w ∀x
(
x ∈ w ↔ ∃v (v ∈ u ∧ x ∈ v)

)
.

1.23 Definition: Given a set u, by the Union Axiom there exists a set w with the property
that ∀x

(
x ∈ w ↔ ∃v (v ∈ u ∧ x ∈ v)

)
, and by the Extension Axiom this set w is unique.

We call the set w the union of the elements in u, and we denote it by⋃
u =

⋃
v∈u

v .

Given two sets u and v, we define the union of u and v to be the set

u ∪ v =
⋃
{u, v} .

Given three sets u, v and w, note that {z} = {z, z} is a set and so {x, y, z} = {x, y} ∪ {z}
is also a set. More generally, if u1, u2, · · · , un are sets then {u1, u2, · · · , un} is a set and we
define the union of the sets u1, · · · , un to be

u1 ∪ u2 ∪ · · · ∪ un =
n⋃

k=1

uk =
⋃
{u1, u2, · · · , un} .
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1.24 Definition: Given a non-empty set u, we define the intersection of the elements
in u to be the set ⋂

u =
{
x ∈

⋃
u
∣∣∣∀v(v ∈ u→ x ∈ v)

}
Given two sets u and v, we define the intersection of u and v to be the set

u ∩ v =
⋂
{u, v} ,

and more generally, given sets u1, u2, · · · , un, we define the intersection of u1, u2, · · · , un
to be the set

u1 ∩ u2 ∩ · · · ∩ un =

n⋂
k=1

uk =
⋂{

u1, u2, · · · , un
}
.

1.25 Definition: The Power Set Axiom is the formula

∀u∃w ∀v (v ∈ w ↔ v ⊆ u) .

1.26 Definition: Given a set u, the set w with the property that ∀v(v ∈ w ↔ v ⊆ u)
(which exists by the Power Set Axiom and is unique by the Extension Axiom) is called the
power set of u and is denoted by P(u), so we have

P(u) =
{
v
∣∣v ⊆ u} .

1.27 Example: Find the power set of the set
{
∅, {∅}

}
.

Solution: We have
P
({
∅, {∅}

})
=
{
∅, {∅}, {{∅}},

{
∅, {∅}

}}
.

1.28 Definition: Given two sets x and y, we define the ordered pair (x, y) to be the set

(x, y) =
{
{x}, {x, y}

}
.

Given two sets u and v, note that if x ∈ u and y ∈ v then we have {x} ∈ P(u ∪ v) and
{x, y} ∈ P(u ∪ v) and so (x, y) =

{
{x}, {x, y}

}
∈ P

(
P(u ∪ v)

)
. We define the product

u× v to be the set
u× v =

{
(x, y)

∣∣x ∈ u ∧ y ∈ v} ,
that is

u× v =
{
z ∈ P

(
P(u ∪ v)

)∣∣∃x∃y((x ∈ u ∧ y ∈ v) ∧ z = (x, y)
)}
.

1.29 Exercise: Find
⋃(
{∅} ×

{
{∅}, {∅, {∅}}

})
.

1.30 Definition: We define

0 = ∅ , 1 = {0} = 0 ∪ {0} , 2 = {0, 1} = 1 ∪ {1} , 3 = {0, 1, 2} = 2 ∪ {2} ,
and so on. For a set x, we define the successor of x to be the set

x+ 1 = x ∪ {x} .
A set u is called inductive when it has the property that(

0 ∈ u ∧ ∀x (x ∈ u→ x+ 1 ∈ u)
)
.

1.31 Definition: The Axiom of Infinity is the formula

∃u
(
0 ∈ u ∧ ∀x (x ∈ u→ x+ 1 ∈ u)

)
,

so the Axiom of Infinity states that there exists an inductive set.
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1.32 Theorem: There exists a unique set w of the form

w =
{
x
∣∣x ∈ v for every inductive set v

}
.

Moreover, this set w is an inductive set.

Proof: By the axiom of infinity, there exists an inductive set, say u. Let w be the set

w =
{
x ∈ u

∣∣x ∈ v for every inductive set v
}

=
{
x ∈ u

∣∣∀v ((0 ∈ v ∧ ∀y (y ∈ v → y + 1 ∈ v)
)
→ x ∈ v

)}
.

We claim that this set w does not depend on the choice of u. To prove this, let u1 and u2
be two inductive sets and let

w1 =
{
x ∈ u1

∣∣x ∈ v for every inductive set v
}

w2 =
{
x ∈ u2

∣∣x ∈ v for every inductive set v
}
.

Then for any set x we have

x ∈ w1 ⇐⇒ x ∈ u1 and x ∈ v for every inductive set v

⇐⇒ x ∈ v for every inductive set v (since u1 is inductive)

⇐⇒ x ∈ u2 and x ∈ v for every inductive set v (since u2 is inductive)

⇐⇒ x ∈ w2 .

Thus w1 = w2, showing that w is unique. We leave it as an exercise to show that w is
inductive.

1.33 Definition: The unique set w in the above theorem is called the set of natural
numbers, and we denote it by N. We write

N =
{
x
∣∣x ∈ v for every inductive set v

}
= {0, 1, 2, 3 · · ·} .

For x, y ∈ N, we write x < y when x ∈ y and we write x ≤ y when x < y or x = y.

1.34 Notation: For a formula F , we write ∀x∈u F as a shorthand notation for the formula
∀x (x∈u→ F ). Similarly, we write ∃x∈u F as a shorthand notation for ∃x (x∈u ∧ F ).

1.35 Theorem: (Principle of Induction) Let F (x) be a formula with free variable x.
Suppose that

(1) F (0), and
(2) ∀x∈N

(
F (x)→ F (x+ 1)

)
.

Then ∀x∈N F (x).

Proof: Let u =
{
x ∈ N

∣∣F (x)
}

. By (1) we have 0 ∈ u. Let x ∈ u. Then x ∈ N and F (x).
Since x ∈ N we have x + 1 ∈ N (since N is inductive). Since x ∈ N and F (x) we have
F (x+ 1) by (2). Since x+ 1 ∈ N and F (x+ 1), we have x+ 1 ∈ u (by the definition of u).
We have shown that 0 ∈ u and that ∀x (x ∈ u → x+ 1 ∈ u), so u is inductive. Since u is
inductive, we have N ⊆ u (by the definition of N). Thus x ∈ N =⇒ x ∈ u =⇒ F (x).

1.36 Remark: In the above theorem, the expression F (0) is short for ∀x
(
x = 0→ F (x)

)
which in turn is short for ∀x

(
∀y ¬ y ∈ x → F (x)

)
. Similarly, F (x + 1) is short for the

formula ∀y
(
y = x+1→ F (y)

)
, where F (y) =

[
F (x)

]
x 7→y

.
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1.37 Definition: Given a formula F (x, y) with free variables x and y, the following
formula is an axiom:

∀u
(
∀x∃!y F (x, y)→ ∃w ∀y

(
y ∈ w ↔ ∃x∈u F (x, y)

))
,

where ∃!yF (x, y) is short for ∃y
(
F (x, y)∧∀z

(
F (x, z)→ z = y

))
with F (x, z) short for the

formula ∀y
(
y = z → F (x, y)

)
. More generally, given a formula F (x, y, u1, · · · , un) with

free variables x, y, u1, · · · , un, the following formula is an axiom:

∀u∀u1 · · · ∀un
(
∀x ∃!y F (x, y, u1, · · · , un)→ ∃w ∀y

(
y ∈ w ↔ ∃x∈u F (x, y, u1, · · · , un)

))
.

An axiom of this form is called a Replacement Axiom.

1.38 Notation: Given sets u, u1, · · · , un and given a formula F (x, y, u1, · · · , un) with free
variables x, y, u1, · · · , un with the property that ∀x∃!y F (x, y, u1, · · · , un), for each set x
we let y = f(x) denote the unique set for which F (x, y, u1, · · · , un) holds, and then we
denote the unique set w, whose existence is stipulated by the above Replacement Axiom,
by {

f(x)
∣∣x ∈ u} .

1.39 Example: If u is a set then the collection{
P(x)

∣∣x ∈ u}
is also a set, by the Replacement Axiom taking F (x, y) to be the formula y = P(x).

1.40 Definition: The Axiom of Choice is the formula given by

∀u
((
¬φ ∈ u ∧ ∀x∈u ∀y∈u (¬x = y → x ∩ y = ∅)

)
→ ∃w ∀v∈u ∃!x∈v x ∈ w

)
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Relations, Equivalence Relations, Functions and Recursion

1.41 Remark: We have now stated each of the ZFC axioms formally. Up until now, we
have used lower-case letters to denote all sets (and all elements of sets, which are also sets).
From now on, we shall often use upper-case letters to denote sets, as is more customary.

1.42 Definition: A binary relation R on a set X is a subset R ⊆ X × X. More
generally, a binary relation is any set R whose elements are ordered pais. For a binary
relation R, we usually write xRy instead of (x, y) ∈ R.

1.43 Definition: Let R and S be binary relations. The domain of R is

Domain(R) =
{
x
∣∣∃y xRy}

and the range of R is

Range(R) =
{
y
∣∣∃x xRy} .

For any set A, the image of A under R is

R(A) =
{
y | ∃x∈A xRy

}
and the inverse image of A under R is

R−1(A) =
{
x
∣∣ ∃y∈A xRy

}
.

The inverse of R is

R−1 =
{

(y, x)
∣∣(x, y) ∈ R

}
and the composite S composed with R is

S ◦R =
{

(x, z)
∣∣∃y xRy ∧ ySz} .

1.44 Theorem: Let A be a set and let R and S be binary relations. Then

(1) Domain(R), Range(R), R(A) and R−1(A) are sets, and
(2) R−1 and S ◦R are binary relations.

Proof: The proof is left as an exercise.

1.45 Definition: An equivalence relation on a set X is a binary relation R on X such
that

(1) R is reflexive, that is ∀x∈X xRx,
(2) R is symmetric, that is ∀x, y∈X (xRy → yRx), and
(3) R is transitive, that is ∀x, y, z∈X

(
(xRy ∧ yRz)→ xRz

)
.

1.46 Definition: Let R be an equivalence relation on the set X. For a ∈ X, the equiv-
alence class of a modulo R is the set

[a]R =
{
x ∈ X

∣∣xRa} .
1.47 Definition: A partition of a set X is a set S of non-empty pairwise disjoint sets
whose union is X, that is a set S such that

(1) for all A ∈ S we have A 6= ∅,
(2) for all A,B ∈ S, if A 6= B then A ∩B = ∅, and

(2)
⋃
S = X.
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1.48 Theorem: Given a set X, we have the following correspondence between equivalence
relations on X and partitions of X.

(1) Given an equivalence relation R on X, the set of all equivalence classes

SR =
{

[a]R
∣∣ a ∈ X}

is a partition of X.
(2) Given a partition S of X, the relation RS on X defined by

RS =
{

(x, y) ∈ X ×X
∣∣∃A ∈ S (x ∈ A ∧ y ∈ A)

}
is an equivalence relation on X.
(3) Given an equivalence relation R on X we have RSR

= R, and given a partition S of X
we have SRS

= S.

Proof: The proof is left as an exercise.

1.49 Notation: Given an equivalence relation R on X, the set of all equivalence classes,
which we denoted by SR in the above theorem, is usually denoted by X/R, so

X/R =
{

[a]R
∣∣ a ∈ X} .

1.50 Definition: Let R be an equivalence relation. A set of representatives for R is a
subset of X which contains exactly one element from each equivalence class in X/R.

1.51 Remark: The Axiom of Choice is equivalent to the statement that every equivalence
relation has a set of representatives.

1.52 Definition: Given sets X and Y , a function from X to Y is a binary relation
f ⊆ X × Y with the property that

∀x∈X ∃! y∈Y (x, y) ∈ f .
More generally, a function is a binary relation with the property that

∀x∈Domain(f) ∃! y (x, y) ∈ f .
For a function f , we usually write y = f(x) instead of xfy. It is customary to use the
notation f : X → Y when X = Domain(f) and Y is any set with Range(f) ⊆ Y .

1.53 Definition: Let f : X → Y . The function f is called one-to-one (or injective)
when

∀y∈Y ∃ at most one x∈X y = f(x)

and f is called onto (or surjective) when

∀y∈Y ∃ at least one x∈X y = f(x) .

1.54 Definition: Let f : X → Y . Let IX and IY denote the identity functions on X
and Y respectively (that is IX(x) = x for all x ∈ X and IY (y) = y for all y ∈ Y ). A left
inverse of f is a function g : Y → X such that g ◦ f = IX . A right inverse of f is a
function h : Y → X such that f ◦ h = IY . Note that if f has a left inverse g and a right
inverse h, then we have g = g ◦ IY = g ◦ f ◦ h = IX ◦ h = h. In this case we say that g is
the (unique two-sided) inverse of f .

1.55 Theorem: Let f : X → Y . Then

(1) f is one-to-one if and only if f has a left inverse.
(2) f is onto if and only if f has a right inverse.
(3) f is one-to-one and onto if and only if f has a (two-sided) inverse.
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Proof: The proof is left as an exercise. We remark that the Axiom of Choice is needed.

1.56 Definition: A function f : X → Y is called invertible (or bijective) when it is
one-to-one and onto, or equivalently, when it has a (unique two-sided) inverse.

1.57 Remark: The Axiom of Choice is equivalent to the statement that for every set S,
there exists a function f : S →

⋃
S with the property that ∀X ∈S

(
X 6= ∅ → f(X)∈X

)
.

Such a function f is called a choice function for the set S.

1.58 Theorem: (The Recursion Theorem)

(1) Let A be a set, let a ∈ A, and let g : A×N→ A. Then there exists a unique function
f : N→ A such that

f(0) = a and f(n+ 1) = g
(
f(n), n

)
for all n ∈ N .

(2) Let A and B be sets, let g : A→ B, and let h : A×B ×N→ B. Then there exists a
unique function f : A×N→ B such that for all a ∈ A we have

f(a, 0) = g(a) and f(a, n+ 1) = h
(
a, f(a, n), n

)
for all n ∈ N .

Proof: To prove part (1), note first that for each n ∈ N we can construct a (unique)
function fn : {0, 1, · · · , n} → A such that f(0) = a and fn(k + 1) = g

(
fn(k), k

)
for all k

with 0 ≤ k < n (that the functions fn exist and are unique can be proven by induction).
Notice that since {0, 1, · · · , n} = n+1, we have fn : (n+1)→ A, so fn ⊆ (n+1)×A ⊆ N×A,
and so all of the functions fn are subsets of N × A. We can combine all these functions
into a single function f : N→ A as follows. First we let

F =
{
f ⊆ N×A

∣∣∣ ∃n∈N
(
f : (n+1)→ A , f(0) = a , ∀k∈(n+1) f(k+1) = g

(
f(k), k

))}
,

and then we let
f =

⋃
F .

We leave it as an exercise to prove that indeed f is a function which satisfies the conditions
of the theorem.

We can prove part (2) in a similar manner. First we let

F =
{
f ⊆ A×N×B

∣∣∣∃n∈N
(
f : A× (n+ 1)→ B and

∀a∈A
(
f(a, 0) = g(a) ∧ ∀k∈(n+ 1) f(a, k + 1) = h

(
a, f(a, k), k

))}
,

then we let f =
⋃
F .
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The Construction of the Integers, Rational, Real and Complex Numbers

1.59 Definition: By part (2) of the Recursion Theorem, there is a unique function
s : N×N→ N such that for all a, b ∈ N we have

s(a, 0) = a , s(a, b+ 1) = s(a, b) + 1 .

We call s(a, b) the sum of a and b in N, and we write it as

a+ b = s(a, b) .

Also, there is a unique function p : N×N→ N such that for all a, b ∈ N we have

p(a, 0) = 0 , p(a, b+ 1) = p(a, b) + a .

We call p(a, b) the product of a and b in N, and we write it as

a · b = p(a, b) .

1.60 Remark: It can be shown (using induction) that the sum and product satisfy all
the usual properties in N.

1.61 Definition: We define the set of integers to be the set

Z =
(
N×N

)/
R

where R is the equivalence relation given by

(a, b)R(c, d)⇐⇒ a+ d = b+ c .

For a, b, c, d ∈ N, we define

[(a, b)] ≤ [(c, d)]⇐⇒ b+ c ≤ a+ d

[(a, b)] + [(c, d)] = [(a+ c, b+ d)]

[(a, b)] · [(c, d)] = [(ac+ bd, ad+ bc)] .

For n ∈ N, we write n = [(n, 0)] and −n = [(0, n)], so that every element of Z can be
written as ±n for some n ∈ N, and we can identify N with a subset of Z.

1.62 Remark: It can be shown that the ordering and the sum and product defined above
are well-defined and satisfy the usual properties in Z.

1.63 Definition: We define the set of rational numbers to be the set

Q =
(
Z× Z+

)/
R

where Z+ = {x ∈ Z
∣∣x > 0} and R is the equivalence relation given by

(a, b)R(c, d)⇐⇒ ad = bc .

For a, b, c, d ∈ Z with b, d > 0, we define

[(a, b)] ≤ [(c, d)]⇐⇒ a · d ≤ b · c
[(a, b)] + [(c, d)] = [(a · d+ b · c, b · d)]

[(a, b)] · [(c, d)] = [(a · c, b · d)] .

For a ∈ Z and b ∈ Z+, it is customary to write a
b = [(a, b)]. Also for a ∈ Z we write

a = [(a, 1)], and we identify Z with a subset of Q.
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1.64 Remark: It can be shown that the above ordering, sum and product are well-defined
and satisfy the usual rules in Q.

1.65 Definition: We define the set of real numbers to be the set

R =
{
u ⊆ Q

∣∣u 6= ∅ , u 6= Q , ∀a∈u ∀x∈Q (x ≤ a→ x ∈ u) , ∀a∈u ∃ b∈u a < b
}
.

For u, v ∈ R, we define

u ≤ v ⇐⇒ u ⊆ v
u+ v =

{
a+ b

∣∣ a ∈ u , b ∈ v} .
We define 0 ∈ R to be the set 0 = {x ∈ Q |x < 0 in Q}. Given u ∈ R we define −u to be
the interior of the complement of {−a | a ∈ u}, that is

−u =
{
b ∈ Q

∣∣∃ r∈Q with r>0 such that − (b+ r) /∈ u
}

and we define

|u| =

{
u if 0 ≤ u,
−u if u ≤ 0.

For 0 ≤ u, v ∈ R we define

u · v =
{
a · b ∈ Q

∣∣ 0 ≤ a ∈ u , 0 ≤ b ∈ v
}
∪
{
c ∈ Q

∣∣c < 0
}
,

and for any u, v ∈ R we define u · v = |u| · |v|. For a ∈ C we write a =
{
x ∈ Q

∣∣x < a
}
∈ R

and we identify Q with a subset of R.

1.66 Remark: It can be shown that the above ordering, sum and product are well-defined
and satisfy the usual rules in R.

1.67 Definition: We define the set of complex numbers to be the set

C = R×R .

We define addition and multiplication in C by

(a, b) + (c, d) = (a+ c, b+ d)

(a, b) · (c, d) = (ac− bd, ad+ bc) .

We write i = (0, 1). For x ∈ R we write x = (x, 0), and we identify R with a subset of C.

1.68 Remark: It can be shown that the above sum and product are well-defined and
satisfy the usual rules in C.
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