

MATH 138 Solutions to the Final Exam, Fall 2024

[10] **1:** (a) Find $\int_0^4 \frac{e^{\sqrt{x}}}{\sqrt{x}} dx$.

Solution: Let $u = \sqrt{x}$ so that $u^2 = x$ and $2u du = dx$. Then

$$\int_{x=0}^4 \frac{e^{\sqrt{x}}}{\sqrt{x}} dx = \int_{u=0}^2 \frac{e^u}{u} \cdot 2u du = \int_{u=0}^2 2e^u du = [2e^u]_{u=0}^2 = 2e^2 - 2.$$

(b) Find $\int_0^2 \frac{x^2}{\sqrt{4-x^2}} dx$.

Solution: Let $2 \sin \theta = x$ so that $2 \cos \theta = \sqrt{4-x^2}$ and $2 \cos \theta d\theta = dx$. Then

$$\int_{x=0}^2 \frac{x^2 dx}{\sqrt{4-x^2}} = \int_{\theta=0}^{\pi/2} \frac{(2 \sin \theta)^2}{2 \cos \theta} \cdot 2 \cos \theta d\theta = \int_{\theta=0}^{\pi/2} 4 \sin^2 \theta d\theta = \int_{\theta=0}^{\pi/2} 2 - 2 \cos 2\theta d\theta = [2\theta - \sin 2\theta]_{\theta=0}^{\pi/2} = \pi.$$

(c) Find $\int_1^\infty \frac{3x-2}{x^3+2x^2} dx$.

Solution: To get $\frac{3x-2}{x^3+2x^2} = \frac{A}{x} + \frac{B}{x^2} + \frac{C}{x+2}$, we need $Ax(x+2) + B(x+2) + Cx^2 = 3x - 2$. Equate coefficients to get $A + C = 0$, $2A + B = 3$ and $2B = -2$, so we need $B = -1$, $A = 2$ and $C = -2$. Thus

$$\int_{x=1}^\infty \frac{3x-2}{x^3+2x^2} dx = \int_{x=1}^\infty \frac{2}{x} - \frac{1}{x^2} - \frac{2}{x+2} dx = \left[2 \ln \frac{x}{x+2} + \frac{1}{x} \right]_{x=1}^\infty = 0 - (2 \ln \frac{1}{3} + 1) = 2 \ln 3 - 1.$$

[10] **2:** (a) Find the area of the region given by $0 \leq x \leq \pi$, $0 \leq y \leq \sin^5 x$.

Solution: Letting $u = \cos x$ so $du = -\sin x dx$, and using symmetry, the area is

$$\begin{aligned} A &= \int_{x=0}^{\pi} \sin^5 x dx = \int_{x=0}^{\pi} (1 - \cos^2 x)^2 \sin x dx = \int_{u=1}^{-1} -(1 - u^2)^2 du = 2 \int_{u=0}^1 (1 - u^2)^2 du \\ &= 2 \int_{u=0}^1 1 - 2u^2 + u^4 du = 2 \left[u - \frac{2}{3}u^3 + \frac{1}{5}u^5 \right]_{u=0}^1 = 2 \left(1 - \frac{2}{3} + \frac{1}{5} \right) = \frac{16}{15}. \end{aligned}$$

(b) Let R be the region given by $0 \leq x \leq \frac{\pi}{2}$, $0 \leq y \leq \cos x$. Find the volume of the solid obtained by revolving R about the y -axis.

Solution: Using cylindrical shells, and integrating by parts using $u = 2\pi x$, $du = 2\pi dx$, $v = \sin x$ and $dv = \cos x dx$, the volume is

$$V = \int_{x=0}^{\pi/2} 2\pi x \cos x dx = \left[2\pi x \sin x - \int 2\pi \sin x dx \right]_{x=0}^{\pi/2} = \left[2\pi x \sin x + 2\pi \cos x \right]_{x=0}^{\pi/2} = \pi^2 - 2\pi.$$

(c) Let C be the curve given by $y = x^2$ with $0 \leq x \leq \sqrt{6}$. Find the area of the surface obtained by revolving C about the y -axis.

Solution: For $y = x^2$ we have $dL = \sqrt{1 + (y')^2} dx = \sqrt{1 + (2x)^2} dx = \sqrt{1 + 4x^2} dx$. Letting $u = 1 + 4x$ so that $du = 8x dx$, the surface area is

$$A = \int_{x=0}^{\sqrt{6}} 2\pi x dL = \int_{x=0}^{\sqrt{6}} 2\pi x \sqrt{1 + 4x^2} dx = \int_{u=1}^{25} \frac{\pi}{4} u^{1/2} du = \left[\frac{\pi}{6} u^{3/2} \right]_{u=1}^{25} = \frac{\pi}{6} (125 - 1) = \frac{62\pi}{3}.$$

[10] 3: (a) Solve the initial value problem given by $y' = 3\sqrt{xy}$ with $y(1) = 4$.

Solution: The DE is separable as we can write it as $y^{-1/2} dy = 3x^{1/2} dx$. Integrate both sides to get $2y^{1/2} = 2x^{3/2} + c$. To get $y(1) = 4$ we need $4 = 2 + c$ so that $c = 2$, so the solution is given by $2y^{1/2} = 2x^{3/2} + 2$, that is $y = (x^{3/2} + 1)^2$.

(b) Solve the initial value problem given by $y' = x + y + 1$ with $y(0) = 1$.

Solution: The DE is linear as we can write it as $y' - y = x + 1$. An integrating factor is $\lambda = e^{\int -1 dx} = e^{-x}$, and the solution is given by $y = e^x \int (x+1)e^{-x} dx$. Integrate by parts using $u = x+1$, $du = dx$, $v = -e^{-x}$ and $dv = e^{-x} dx$ to get

$$y = e^x \int (x+1)e^{-x} dx = e^x \left(- (x+1)e^{-x} + \int e^{-x} dx \right) = e^x \left(- (x+1)e^{-x} - e^{-x} + c \right) = ce^x - (x+2).$$

To get $y(0) = 1$ we need $1 = c - 2$ so that $c = 3$, so the solution is $y = 3e^x - (x+2)$.

(c) A tank initially contains 2 L of pure water. Brine (salty water), with a salt concentration of 3 gm/L, enters the tank at a rate of $r(t) = \frac{1}{t+1}$ L/min, where t is the time in minutes. The brine in the tank is kept well mixed, and drains from the tank at the same rate $r(t)$. Determine when the concentration of brine in the tank is 2 gm/L.

Solution: Let $S(t)$ be the amount of salt, in litres, at time t , in minutes. Taking $r_i = r_o = \frac{1}{t+1}$ and $c_i = 3$ and $c_o = \frac{S(t)}{2}$, the amount of salt satisfies the DE $S'(t) = r_{in}c_{in} - r_{out}c_{out} = \frac{3}{t+1} - \frac{S(t)}{2(t+1)}$. This DE is linear as we can write it as $S' + \frac{1}{2(t+1)}S = \frac{3}{t+1}$. An integrating factor is $\lambda = e^{\int \frac{1}{2(t+1)} dt} = e^{\frac{1}{2} \ln(t+1)} = (t+1)^{1/2}$ and the solution is $S(t) = (t+1)^{-1/2} \int 3(t+1)^{-1/2} dt = (t+1)^{-1/2} (6(t+1)^{1/2} + c)$. To get $S(0) = 0$ we need $6 + c = 0$ so that $c = -6$, so the solution is $S(t) = (t+1)^{-1/2} (6(t+1)^{1/2} - 6) = 6 - \frac{6}{\sqrt{t+1}}$. The concentration 2 gm/L when the amount of salt is 4 gm, and we have

$$S(t) = 4 \iff 6 - \frac{6}{\sqrt{t+1}} = 4 \iff \frac{6}{\sqrt{t+1}} = 2 \iff \sqrt{t+1} = 3 \iff t = 8.$$

[10] 4: (a) Determine, with proof, whether $\sum_{n=2}^{\infty} \frac{1}{(\ln n)^2}$ converges.

Solution: We claim that $\sqrt{x} > \ln x$ for all $x > 0$. Let $f(x) = \sqrt{x} - \ln x$. Then $f'(x) = \frac{1}{2\sqrt{x}} - \frac{1}{x} = \frac{\sqrt{x}-2}{2x}$. Since $f'(4) = 0$ and $f'(x) < 0$ for $x \in (0, 4)$ and $f'(x) > 0$ for $x \in (4, \infty)$, it follows that the minimum value of f is $f(4) = 2 - 2 \ln 2$. Since $0 < \ln 2 < 1$ we have $0 < 2 \ln 2 < 2$, and hence $f(x) \geq f(4) = 2 - 2 \ln 2 > 0$ for all $x > 0$. This proves that $\sqrt{x} > \ln x$ for all $x > 0$. Thus for all $n > 1$ we have $0 < \ln n < \sqrt{n}$, hence $0 < (\ln n)^2 < n$, hence $\frac{1}{(\ln n)^2} > \frac{1}{n}$. Since $\sum \frac{1}{n}$ diverges, it follows that $\sum \frac{1}{(\ln n)^2}$ diverges too, by the Comparison Test.

(b) Prove that if $\sum_{n \geq 1} |a_n|$ converges then $\sum_{n \geq 1} a_n$ converges.

Solution: Suppose that $\sum |a_n|$ converges. Note that for all n we have $-|a_n| \leq a_n \leq |a_n|$ and hence $0 \leq a_n + |a_n| \leq 2|a_n|$. If $\sum |a_n|$ converges then $\sum 2|a_n|$ converges by linearity, and hence $\sum (a_n + |a_n|)$ converges too, by comparison. Since $\sum |a_n|$ and $\sum (a_n + |a_n|)$ both converge, it follows that $\sum a_n$ converges too, by linearity (because $a_n = (a_n + |a_n|) - |a_n|$).

(c) Let $a_n > 0$ for all $n \in \mathbb{Z}^+$ and suppose that $\lim_{n \rightarrow \infty} \frac{a_{n+1}}{a_n} = r$ with $0 \leq r < 1$. Prove that $\sum_{n \geq 1} a_n$ converges.

Solution: Choose $s \in \mathbb{R}$ with $r < s < 1$. Since $\lim_{n \rightarrow \infty} \frac{a_{n+1}}{a_n} = r$, by taking $\epsilon = s - r$ we can choose $N \in \mathbb{Z}^+$ so that $n \geq N \implies \left| \frac{a_{n+1}}{a_n} - r \right| \leq s - r$. Then when $n \geq N$ we have $\frac{a_{n+1}}{a_n} \leq r + (s - r) = s$ so that $a_{n+1} \leq s a_n$. In particular, we have $a_{N+1} \leq s a_N$, and $a_{N+2} \leq s a_{N+1} = s^2 a_N$ and $a_{N+3} \leq s a_{N+2} \leq s^3 a_N$ and so on, so that in general $a_{N+k} \leq s^k a_N$ for all $k \geq 0$. Since $\sum s^k a_N$ converges (it is geometric with ratio $s < 1$) and $a_{N+k} \leq s^k a_N$ for all $k \geq 0$, it follows that $\sum a_{N+k}$ converges by the Comparison Test. Thus $\sum a_n$ also converges (since the first finitely many terms do not affect convergence).

[10] 5: (a) Find the Taylor polynomial of degree 3 centred at 0 for $f(x) = e^x \sqrt{1+2x}$.

Solution: For all x with $|2x| < 1$ we have

$$\begin{aligned} e^x(1+2x)^{1/2} &= \left(1+x+\frac{1}{2!}x^2+\frac{1}{3!}x^3+\cdots\right)\left(1+\frac{1}{2}(2x)+\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}(2x)^2+\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{3!}(2x)^3+\cdots\right) \\ &= \left(1+x+\frac{1}{2}x^2+\frac{1}{6}x^3+\cdots\right)\left(1+x-\frac{1}{2}x^2+\frac{1}{2}x^3+\cdots\right) \\ &= 1+2x-x^2+\frac{2}{3}x^3+\cdots \end{aligned}$$

and so the 3rd Taylor polynomial is $T_3(x) = 1+2x-x^2+\frac{2}{3}x^3$.

(b) Approximate the value of $\ln \frac{3}{4}$ so that the absolute error is $E \leq \frac{1}{100}$.

Solution: We give two solutions. For the first solution, note that for all $|x| < 1$ we have

$$\begin{aligned} \frac{1}{1+x} &= 1-x+x^2-x^3+\cdots \\ \ln(1+x) &= x-\frac{1}{2}x^2+\frac{1}{3}x^3-\frac{1}{4}x^4+\cdots \end{aligned}$$

and hence, by taking $x = \frac{1}{3}$, we have

$$\ln \frac{3}{4} = -\ln \frac{4}{3} = -\ln \left(1+\frac{1}{3}\right) = -\frac{1}{3} + \frac{1}{2 \cdot 3^2} - \frac{1}{3 \cdot 3^3} + \frac{1}{4 \cdot 3^4} + \cdots \cong -\frac{1}{3} + \frac{1}{2 \cdot 3^2} = -\frac{5}{18}$$

with absolute error $E \leq \frac{1}{3 \cdot 3^3} = \frac{1}{243}$ by the Alternating Series Test.

For the second solution, note that for all $|x| < 1$ we have

$$\begin{aligned} \frac{1}{1-x} &= 1+x+x^2+x^3+\cdots \\ -\ln(1-x) &= x+\frac{1}{2}x^2+\frac{1}{3}x^3+\frac{1}{4}x^4+\cdots \end{aligned}$$

and hence, by taking $x = \frac{1}{4}$, we have

$$\ln \frac{3}{4} = \ln \left(1-\frac{1}{4}\right) = -\left(\frac{1}{4} + \frac{1}{2 \cdot 4^2} + \frac{1}{3 \cdot 4^3} + \cdots\right) \cong -\left(\frac{1}{4} + \frac{1}{2 \cdot 4^2}\right) = -\frac{9}{32}$$

with absolute error

$$E = \frac{1}{3 \cdot 4^3} + \frac{1}{4 \cdot 4^4} + \frac{1}{5 \cdot 4^5} + \cdots \leq \frac{1}{3 \cdot 4^3} + \frac{1}{3 \cdot 4^4} + \frac{1}{3 \cdot 4^5} + \cdots = \frac{\frac{1}{3 \cdot 4^3}}{1 - \frac{1}{4}} = \frac{1}{3 \cdot 4^3} \cdot \frac{4}{3} = \frac{1}{144}$$

by the Comparison Test and the formula for the sum of a geometric series.

(c) Evaluate $\sum_{n=1}^{\infty} \frac{n^2 2^n}{n!}$.

Solution: For all $x \in \mathbb{R}$ we have $e^x = \sum_{n=0}^{\infty} \frac{1}{n!} x^n$. Differentiate to get $e^x = \sum_{n=1}^{\infty} \frac{n}{n!} x^{n-1}$. Multiply by x to get $x e^x = \sum_{n=1}^{\infty} \frac{n}{n!} x^n$. Differentiate again to get $(x+1) e^x = \sum_{n=1}^{\infty} \frac{n^2}{n!} x^{n-1}$. Multiply by x again to get $x(x+1) e^x = \sum_{n=1}^{\infty} \frac{n^2 2^n}{n!} x^n$. In particular, taking $x = 2$ gives $\sum_{n=1}^{\infty} \frac{n^2 2^n}{n!} = 2 \cdot (2+1) e^2 = 6 e^2$.