
MATH 138 Solutions to the Final Exam, Fall 2024

[10] 1: (a) Find

∫ 4

0

e
√
x

√
x
dx.

Solution: Let u =
√
x so that u2 = x and 2u du = dx. Then∫ 4

x=0

e
√
x

√
x
dx =

∫ 2

i=0

eu

u
· 2u du =

∫ 2

u=0

2eu du =
[
2eu
]2
u=0

= 2e2 − 2.

(b) Find

∫ 2

0

x2√
4− x2

dx.

Solution: Let 2 sin θ = x so that 2 cos θ =
√

4− x2 and 2 cos θ dθ = dx. Then∫ 2

x=0

x2 dx√
4− x2

=

∫ π/2

θ=0

(2 sin θ)2

2 cos θ
· 2 cos θ dθ =

∫ π/2

θ=0

4 sin2 θ dθ =

∫ π/2

θ=0

2− 2 cos 2θ dθ =
[
2θ − sin 2θ

]π/2
θ=0

= π .

(c) Find

∫ ∞
1

3x− 2

x3 + 2x2
dx.

Solution: To get 3x−2
x3+2x2 = A

x + B
x2 + C

x+2 , we need Ax(x+ 2) +B(x+ 2) +Cx2 = 3x− 2. Equate coefficients
to get A+ C = 0, 2A+B = 3 and 2B = −2, so we need B = −1, A = 2 and C = −2. Thus∫ ∞

x=1

3x− 2

x3 + 2x2
dx =

∫ ∞
x=1

2
x −

1
x2 − 2

x+2 dx =
[
2 ln x

x+2 + 1
x

]∞
x=1

= 0−
(
2 ln 1

3 + 1
)

= 2 ln 3− 1 .

[10] 2: (a) Find the area of the region given by 0 ≤ x ≤ π, 0 ≤ y ≤ sin5 x.

Solution: Letting u = cosx so du = − sinx dx, and using symmetry, the area is

A =

∫ π

x=0

sin5 x dx =

∫ π

x=0

(1− cos2 x)2 sinx dx =

∫ −1
u=1

−(1− u2)2 du = 2

∫ 1

u=0

(1− u2)2 du

= 2

∫ 1

u=0

1− 2u2 + u4 du = 2
[
u− 2

3u
3 + 1

5u
5
]1
u=0

= 2
(
1− 2

3 + 1
5

)
= 16

15 .

(b) Let R be the region given by 0 ≤ x ≤ π
2 , 0 ≤ y ≤ cosx. Find the volume of the solid obtained by

revolving R about the y-axis.

Solution: Using cylindrical shells, and integrating by parts using u = 2πx, du = 2π dx, v = sinx and
dv = cosx dx, the volume is

V =

∫ π/2

x=0

2πx cosx dx =

[
2πx sinx−

∫
2π sinx dx

]π/2
x=0

=
[
2πx sinx+ 2π sinx

]π/2
x=0

= π2 − 2π.

(c) Let C be the curve given by y = x2 with 0 ≤ x ≤
√

6. Find the area of the surface obtained by revolving
C about the y-axis.

Solution: For y = x2 we have dL =
√

1 + (y′)2 dx =
√

1 + (2x)2 dx =
√

1 + 4x2 dx. Letting u = 1 + 4x so
that du = 8x dx, the surface area is

A =

∫ √6

x=0

2πx dL =

∫ √6

x=0

2πx
√

1 + 4x2 dx =

∫ 25

u=1

π
4 u

1/2 du =
[
π
6 u

3/2
]25
u=1

= π
6 (125− 1) = 62π

3 .



[10] 3: (a) Solve the initial value problem given by y′ = 3
√
xy with y(1) = 4.

Solution: The DE is separable as we can write it as y−1/2 dy = 3x1/2 dx. Integrate both sides to get
2y1/2 = 2x3/2+c. To get y(1) = 4 we need 4 = 2+c so that c = 2, so the solution is given by 2y1/2 = 2x3/2+2,
that is y = (x3/2 + 1)2.

(b) Solve the initial value problem given by y′ = x+ y + 1 with y(0) = 1.

Solution: The DE is linear as we can write it as y′ − y = x+ 1. An integrating factor is λ = e

∫
−1 dx

= e−x,
and the solution is given by y = ex

∫
(x+ 1)e−x dx. Integrate by parts using u = x+ 1, du = dx, v = −e−x

and dv = e−x dx to get

y = ex
∫

(x+ 1)e−x dx = ex
(
− (x+ 1)e−x +

∫
e−x dx

)
= ex

(
− (x+ 1)e−x − e−x + c

)
= cex − (x+ 2).

To get y(0) = 1 we need 1 = c− 2 so that c = 3, so the solution is y = 3 ex − (x+ 2).

(c) A tank initially contains 2 L of pure water. Brine (salty water), with a salt concentration of 3 gm/L,
enters the tank at a rate of r(t) = 1

t+1 L/min, where t is the time in minutes. The brine in the tank is kept
well mixed, and drains from the tank at the same rate r(t). Determine when the concentration of brine in
the tank is 2 gm/L.

Solution: Let S(t) be the amount of salt, in litres, at time t, in minutes. Taking ri = ro = 1
t+1 and ci = 3

and co = S(t)
2 , the amount of salt satisfies the DE S′(t) = rincin− routcout = 3

t+1 −
S(t)

2(t+1) . This DE is linear

as we can write it as S′+ 1
2(t+1)S = 3

t+1 . An integrating factor is λ = e

∫
1

2(t+1)
dt

= e
1
2 ln(t+1)

= (t+1)1/2 and

the solution is S(t) = (t + 1)−1/2
∫

3(t + 1)−1/2 dt = (t + 1)−1/2
(
6(t + 1)1/2 + c

)
. To get S(0) = 0 we need

6+ c = 0 so that c = −6, so the solution is S(t) = (t+1)−1/2
(
6(t+1)1/2−6

)
= 6− 6√

t+1
. The concentration

2 gm/L when the amount of salt is 4 gm, and we have

S(t) = 4 ⇐⇒ 6− 6√
t+1

= 4 ⇐⇒ 6√
t+1

= 2 ⇐⇒
√
t+ 1 = 3 ⇐⇒ t = 8.

[10] 4: (a) Determine, with proof, whether
∞∑
n=2

1

(lnn)2
converges.

Solution: We claim that
√
x > lnx for all x > 0. Let f(x) =

√
x − lnx. Then f ′(x) = 1

2
√
x
− 1

x =
√
x−2
2x .

Since f ′(4) = 0 and f ′(x) < 0 for x ∈ (0, 4) and f ′(x) > 0 for x ∈ (4,∞), it follows that the minimum value
of f is f(4) = 2 − 2 ln 2. Since 0 < ln 2 < 1 we have 0 < 2 ln 2 < 2, and hence f(x) ≥ f(4) = 2 − 2 ln 2 > 0
for all x > 0. This proves that

√
x > lnx for all x > 0. Thus for all n > 1 we have 0 < lnn <

√
n,

hence 0 < (lnn)2 < n, hence 1
(lnn)2 >

1
n . Since

∑
1
n diverges, it follows that

∑
1

(lnn)2 diverges too, by the

Comparison Test.

(b) Prove that if
∑
n≥1
|an| converges then

∑
n≥1

an converges.

Solution: Suppose that
∑
|an| converges. Note that for all n we have −|an| ≤ an ≤ |an| and hence

0 ≤ an + |an| ≤ 2|an|. If
∑
|an| converges then

∑
2|an| converges by linearity, and hence

∑
(an+ |an|)

converges too, by comparison. Since
∑
|an| and

∑
(an+|an|) both converge, it follows that

∑
an converges

too, by linearity (because an = (an+|an|)− |an|).

(c) Let an > 0 for all n ∈ Z+ and suppose that lim
n→∞

an+1

an
= r with 0 ≤ r < 1. Prove that

∑
n≥1

an converges.

Solution: Choose s ∈ R with r < s < 1. Since lim
n→∞

an+1

an
= r, by taking ε = s− r we can choose N ∈ Z+ so

that n ≥ N =⇒
∣∣an+1

an
− r
∣∣ ≤ s− r. Then when n ≥ N we have an+1

an
≤ r + (s− r) = s so that an+1 ≤ s an.

In particular, we have aN+1 ≤ s aN , and aN2
≤ s aN+1 = s2aN and aN+2 ≤ s aN+2 ≤ s3aN and so on, so

that in general aN+k ≤ sk aN for all k ≥ 0. Since
∑
skaN converges (it is geometric with ratio s < 1) and

aN+k ≤ skaN for all k ≥ 0, it follows that
∑
aN+k converges by the Comparison Test. Thus

∑
an also

converges (since the first finitely many terms do not affect convergence).



[10] 5: (a) Find the Taylor polynomial of degree 3 centred at 0 for f(x) = ex
√

1 + 2x.

Solution: For all x with |2x| < 1 we have

ex(1 + 2x)1/2 =
(
1 + x+ 1

2!x
2 + 1

3!x
3 + · · ·

)(
1 + 1

2 (2x) +
( 1
2 )(−

1
2 )

2! (2x)2 +
( 1
2 )(−

1
2 )(−

3
2 )

3! (2x)3 + · · ·
)

=
(
1 + x+ 1

2x
2 + 1

6x
3 + · · ·

)(
1 + x− 1

2x
2 + 1

2x
3 + · · ·

)
= 1 + 2x− x2 + 2

3x
3 + · · ·

and so the 3rd Taylor polynomial is T3(x) = 1 + 2x+ x2 + 2
3x

3.

(b) Approximate the value of ln 3
4 so that the absolute error is E ≤ 1

100 .

Solution: We give two solutions. For the first solution, note that for all |x| < 1 we have

1

1 + x
= 1− x+ x2 − x3 + · · ·

ln(1 + x) = x− 1
2x

2 + 1
3x

3 − 1
4x

4 + · · ·

and hence, by taking x = 1
3 , we have

ln 3
4 = − ln 4

3 = − ln
(
1 + 1

3

)
= − 1

3 + 1
2·32 −

1
3·33 −

1
4·34 + · · · ∼= − 1

3 + 1
2·32 = − 5

18

with absolute error E ≤ 1
3·33 = 1

243 by the Alternating Series Test.

For the second solution, note that for all |x| < 1 we have

1

1− x
= 1 + x+ x2 + x3 + · · ·

− ln(1− x) = x+ 1
2x

2 + 1
3x

3 + 1
4x

4 + · · ·

and hence, by taking x = 1
4 , we have

ln 3
4 = ln

(
1− 1

4

)
= −

(
1
4 + 1

2·42 + 1
3·43 + · · ·

) ∼= −( 14 + 1
2·42
)

= − 9
32

with absolute error

E = 1
3·43 + 1

4·44 + 1
5·45 + · · · ≤ 1

3·43 + 1
3·44 + 1

3·45 + · · · =
1

3·43

1− 1
4

= 1
3·43 ·

4
3 = 1

144

by the Comparison Test and the formula for the sum of a geometric series.

(c) Evaluate
∞∑
n=1

n2 2n

n!
.

Solution: For all x ∈ R we have ex =
∑∞
n=0

1
n!x

n. Differente to get ex =
∑∞
n=1

n
n!x

n−1. Multiply by x to

get x ex =
∑∞
n=1

n
n!x

n. Differentiate again to get (x + 1) ex =
∑∞
n=1

n2

n! x
n−1. Multiply by x again to get

x(x+ 1) ex =
∑∞
n=1

n2

n! x
n. In particular, taking x = 2 gives

∑∞
n=1

n22n

n! = 2 · (2 + 1) e2 = 6 e2.


