
Appendix 1. Informal Discussion of Length, Area and Volume

In this appendix, we give an informal introduction to length area and volume. The defini-
tions and proofs in this appendix are not rigorous, but the methods introduced do allow us
to calculate many areas and volumes which were known to the ancient Greeks 2,000 years
ago (long before the introduction of differential calculus). In Chapter 1, we give a rigorous
definition of the Riemann integral which can be used to rigorously define and calculate
lengths areas and volumes.

Length

1.1 Definition: The length of the line segment on the real line R from x1 to x2 is equal
to l = |x2−x1| =

√
(x2 − x1)2. The length of the line segment in the Euclidean plane R2

from the point (x1, y1) to the point (x2, y2) is equal to l =
√

(x2 − x1)2 + (y2 − y1)2. The
length of the line segment in Euclidean space R3 from the point (x1, y1, z1) to the point
(x2, y2, z2) is equal to l =

√
(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2.

1.2 Note: Given a (reasonably well-behaved) curve in R2 or R3, we can approximate its
length by choosing many points along the curve and finding the sum of the lengths of the
line segments between these points. We can find the exact length of the curve by finding
the limit of these approximate lengths as the size of the small line segments tends to zero.

1.3 Example: Approximate the length of the parabola y = x2 from the point (0, 0) to
the point (1, 1) by choosing 6 points along the curve and finding the sum of the lengths of
the 5 line segments between these 6 points.

Solution: We choose the 6 points (xk, yk) =
(
k
5 ,

k2

25

)
with k = 0, 1, 2, 3, 4, 5. Note that

(x0, y0) = (0, 0) and (x5, y5) = (1, 1). For k = 1, 2, 3, 4, 5, the length of the kth line
segment

(
that is the segment from (xk−1, yk−1) to (xk, yk)

)
is equal to

lk =
√

(xk − xk−1)2 + (yk − yk−1)2

=

√(
k
5 −

k−1
5

)2
+
(
k2

25 −
(k−1)2

25

)2

=

√(
1
5

)2
+
(

2k−1
25

)2
= 1

25

√
4k2 − 4k + 26 .

The total length is equal to

l ∼= l1 + l2 + l3 + l4 + l5

= 1
25

(√
26 +

√
34 +

√
50 +

√
74 +

√
106
)

∼= 1.476 .

We remark that it can be shown, using the methods described in Chapter 4, that the exact
length of the parabola y = x2 from (0, 0) to (1, 1) is equal to

l =
√

5
2 + 1

4 ln(2 +
√

5) ∼= 1.479 .
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1.4 Definition: The angle (in radians) between two rays emanating from a point is
defined to be the length of the portion of the unit circle, centered at the point from which
the rays emanate, which lies between the two rays. The number π is defined to be the
angle between two rays pointing in opposite directions. Equivalently, π is defined to be
one half of the circumference of a unit circle.

θ
1

1.5 Theorem: The circumference of a circle of radius r is equal to l = 2πr. More
generally, the length of an arc of a circle of radius r, subtending an angle θ at the centre,
is equal to l = rθ.

Proof: This follows from the above definition by scaling the unit circle by a factor of r.

1.6 Example: Approximate the value of π by choosing 7 points along the semicircle
y =
√

1− x2 and finding the sum of the 6 line segments between these points.

Solution: We choose the 7 points (xk, yk) =
(
cos kπ6 , sin

kπ
6

)
with k = 1, 2, · · · , 6. To be

explicit, we choose

(x0, y0) = (1, 0) , (x1, y1) =
(√

3
2 ,

1
2

)
, (x2, y2) =

(
1
2 ,
√

3
2

)
, (x3, y3) = (0, 1)

(x4, y4) =
(
− 1

2 ,
√

3
2

)
, (x5, y5) =

(
−
√

3
2 ,

1
2

)
, (x6, y6) = (−1, 0) .

These 7 points are equally spaced around the semicircle. Each of the 6 line segments
between the 7 points subtends an angle of π

6 at the origin. The length of each segment is

lk = l1 =
√

(x1 − x0)2 + (y1 − y0)2 =

√(
1
2

)2
+
(√

3
2 − 1

)2
=
√

2−
√

3

(the length lk can also be found using the Law of Cosines). The total length of the
semicircle is equal to

π ∼= 6l1 = 6

√
2−
√

3 ∼= 3.106 .

(x3, y3)
(x4, y4) (x2, y2)

(x5, y5) (x1, y1)

l1

π/6
(x6, y6) (x0, y0)

(0, 0)
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1.7 Example: Find a sequence of algebraic numbers which become arbitrarily close to π.

Solution: By its definition, π is the length of the semicircle y =
√

1− x2. For a positive
integer n, let θn = π

2n . Choose 1+2n points along the semicircle which cut it into 2n equal
arcs, each of length θn (and each subtending the angle θn at the origin), and let (xn, yn)
be the point nearest to (1, 0) (in other words let xn = cos θn and yn = sin θn). The arc
along the semicircle from (1, 0) to (xn, yn) has length θn, and this is approximated by the
length of the line segment from (1,0) to (xn, yn), which has length

ln =
√

(xn − 1)2 + yn2 =
√
xn2 − 2xn + 1 + yn2 =

√
2− 2xn

since xn
2 + yn

2 = 1. For large n we have π ∼= 2nln = 2n
√

2− 2xn.

(x1, y1)

(x2, y2)

(x3, y3)

l3

(1, 0)
(0, 0)

Note that θ1 = π
2 and (x1, y1) = (0, 1). Using the half-angle cosine formula, we have

xn+1 = cos θn+1 = cos 1
2 θn =

√
1 + cos θn

2
=

√
1 + xn

2
= 1

2

√
2 + xn .

Alternatively (for those who do not know the half-angle formula), we can find the value of
xn+1 in terms of xn as follows. The midpoint of (1, 0) and (xn, yn) is the point 1

2 (xn+1, yn).
Since the point (xn+1, yn+1) bisects the arc from (1, 0) to (xn, yn), it lies along the ray from
(0, 0) through the midpoint 1

2 (xn + 1, yn), and so the right-angled triangle with vertices
at (0, 0), 1

2 (xn + 1, yn), (1, 0) is congruent to the triangle with vertices at (0, 0), (xn+1, 0)
and (xn+1, yn+1). Thus the distance from (0, 0) to (xn+1, 0) must be equal to the distance
from (0, 0) to 1

2 (xn + 1, yn), and so we have

xn+1 = 1
2

√
(xn + 1)2 + yn2 = 1

2

√
xn2 + 2xn + 1 + yn2 = 1

2

√
2 + 2xn ,

since xn
2 + yn

2 = 1. Since x1 = 0 and xn+1 = 1
2

√
2 + 2xn, the first few terms in the

sequence {xn}n≥1 are

0 , 1
2

√
2 , 1

2

√
2 +
√

2 , 1
2

√
2 +

√
2 +
√

2.

Since ln =
√

2− 2xn, the first few terms in the sequence
{
ln
}
n≥1

are

√
2 ,

√
2−
√

2 ,

√
2−

√
2 +
√

2 ,

√
2−

√
2 +

√
2 +
√

2.

The sequence
{

2nln
}
n≥1

is increasing and tends towards π. The first few terms are

2
√

2 , 4

√
2−
√

2 , 8

√
2−

√
2 +
√

2 , 16

√
2−

√
2 +

√
2 +
√

2.
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Areas of Planar Regions

1.8 Definition: The area of a rectangle of base b and height h is equal to A = bh.

h

b

1.9 Theorem: The area of a triangle of base b and height h (measured in the direction
perpendicular to the base) is equal to A = 1

2bh.

Proof: A rectangle of base b and height h can be cut into two right-angled triangles of base
b and height h, so the area of such a right-angled triangle is equal to A = 1

2bh.

h

b
Now consider a triangle of base b and height h which is not right-angled. If the altitude lies
inside the triangle then the triangle is cut by the altitude into two right-angled triangles
both of height h. Let x be the base of one of the two triangles. Then the base of the other
is b − x. The area of the original triangle is the sum of the areas of the two right-angled
triangles: A = 1

2xh+ 1
2 (b− x)h = 1

2bh. On the other hand, if the altitude lies outside the
triangle then its area is the difference of the areas of two right-angled triangles of height
h. Let x be the base of the smaller one. Then the larger has base b + x, and the area of
the original triangle is A = 1

2 (b+ x)h− 1
2xh = 1

2bh.

h h

x b− x x b
b b+ x

Alternatively, we can see that any triangle of base b and height h has the same area as a
right-angled triangle of base b and height h as follows. The given triangle can be covered
by thin horizontal rectangles. Without changing the total area, these rectangles can be
slid horizontally until they cover a right-angled triangle with the same base and height as
the given triangle.

h −→ h

b b

1.10 Note: Since we can find the area of a triangle, we can find the area of any polygonal
region in the plane by cutting the polygonal region into triangles.
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1.11 Note: Given any (reasonably well-behaved) region in the plane, we can approximate
its area by covering it by small rectangles (and/or small triangles) and adding the areas of
these rectangles (and/or triangles). We can find the exact area by taking a limit of these
approximate areas as the size of the rectangles (and/or triangles) tends to zero.

1.12 Example: Find the exact area of the region given by 0 ≤ x ≤ 1, 0 ≤ y ≤ x2 (the
region which lies above the x-axis and below the parabola y = x2 with 0 ≤ x ≤ 1).

Solution: Choose n + 1 points (xk, yk) =
(
k
n ,

k2

n2

)
for k = 0, 1, 2, · · · , n. Cover the given

region by the n rectangles, where the kth rectangle has vertices at (xk−1, 0), (xk, 0), (xk, yk)
and (xk−1, yk). The base of the kth recangle is bk = xk − xk−1 = k

n −
k−1
n = 1

n and the

height of the kth rectangle is hk = yk = k2

n2 , so the area of the kth rectangle is

Ak = bkhk = 1
n ·

k2

n2 = k2

n3 .

The total area of the given region is

A ∼= A1 +A2 +A3 + · · ·+An

= 1
n3 (12 + 22 + 32 + · · ·+ n2) .

We use the formula 12 + 22 + 32 + · · · + n2 = n(n+1)(2n+1)
6 = 2n3+3n2+n

6 (if you do not
know this formula, you can try to prove it using induction) to get

A ∼=
2n3 + 3n2 + n

6n3
= 1

3 + 1
2n + 1

6n3 .

As n increases, our approximation becomes more and more accurate. The exact area is

A = lim
n→∞

(
1
3 + 1

2n + 1
6n3

)
= 1

3 .

1.13 Theorem: The area of a circle of radius r is equal to A = πr2. More generally, the
area of a wedge in a circle of radius r making an angle θ at the center has area A = 1

2r
2θ.

Proof: A wedge in a circle of radius r, which subtends the angle θ at the center, can be cut
into thin wedges which can be reassembled to form (or at least almost form - especially if
half the first triangle is removed and reattached to the last triangle) a rectangle of base
b = 1

2 rθ and height h = r, so the area is A = bh = 1
2 rθ · r = 1

2 r
2θ.

1
2 rθ

rθ

−→ r

r
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1.14 Theorem: The area of an ellipse with semi-major axis a and semi-minor axis b is
equal to A = πab.

Proof: Cover a unit circle by thin horizontal rectangles with total area π (or arbitrarily
close to π). Scale horizontally by a factor of a to obtain rectangles, with a total area
of πa, which cover an ellipse with semi-major axis a and semi-minor axis 1. Then scale
vertically by a factor b to obtain rectangles, with total area πab which cover an ellipse with
semi-major axis a and semi-minor axis b.

b
1 1

1 a a

Areas of Surfaces and Volumes of Solids in Space

1.15 Definition: The volume of a rectangular box of length l, width w and height h is
equal to V = lwh.

h

w l

1.16 Note: Given any (reasonably well-behaved) solid in space, we can approximate its
volume by covering it with small rectangular boxes and adding their volumes. We can find
the exact volume by taking a limit of the approximate volumes as the size of the boxes
tends to zero.

1.17 Theorem: The area of the lateral surface of a right cylinder of height h with a base
(of any shape) of perimeter l is equal to A = lh.

Proof: The lateral surface of the cylinder can be cut along a vertical line then flattened
out into a rectangle with base l and height h.

h h h

−→ −→

l l l
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1.18 Theorem: The volume of a cylinder (possibly leaning) with a base (of any shape)
of area A and height h (measured in the direction perpendicular to the plane of the base)
is equal to V = Ah.

Proof: First consider the case of a right cylinder. The base of the cylinder can be covered
by many small rectangles whose total area is equal to (or is arbitrarily close to) A. Say
there are n rectangles and the area of the kth rectangle is Ak so that A1+A2+· · ·+An = A.
Then the right cylinder is covered by n rectangular boxes, all of height h, and the volume
of the kth box is equal to Vk = Ak h. The total volume V of the cylinder is equal to (or at
least almost equal to) the sum of the volumes of these boxes, so

V = V1 + V2 + · · ·+ Vn = (A1 +A2 + · · ·+An)h = Ah.

Now consider an arbitrary (possibly leaning) cylinder with base area A and height h. Slice
the cylinder into thin horizontal slices then (without changing the volume of any of the
slices) slide them horizontally to form a right cylinder with the same base and height as
the original (possibly leaning) cylinder.

h −→ h

1.19 Theorem: The area of the lateral surface a right-circular cone of base radius r and of
slant-length s (from the vertex along the lateral side to the base) is equal to A = πrs. More
generally, the area of a truncated right-circular cone of average radius r and slant-length
s is equal to A = 2πrs.

Proof: The lateral surface of right circular cone of base-radius r and slant-length s can
be cut into thin triangles which can (almost) be reassembled to form a rectangle of base
b = πr and height h = s, so the area is A = bh = πrs. Similarly, a truncated right-circular
cone of average radius r and slant-length s can be cut into thin trapezoids which can
(almost) be reassembled to form a rectangle of base 2πr and height s.

2πrmin

s −→ s

2πrmax 2πr = π (rmin+rmax)
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1.20 Theorem: The volume of a cone (possibly leaning) with a flat base (of any shape)
of area A and height h (measured perpendicular to the plane of the base) is V = 1

3Ah.

Proof: A unit cube can be cut into 6 square-based pyramids, each with a unit square base,
which all have their vertex at the center of the cube. Thus the volume of a square-based
pyramid with a unit square base and height 1

2 is equal to V = 1
6 . By scaling by a factor

of a in the x-direction, a factor of b in the y-direction, and a factor of 2h in the vertical
z-direction, we see that the volume of a right pyramid of height h, with a rectangular base
of side lengths a and b, is equal to V = 1

3abh.

1

1
½

h

a

b

Given any pyramid (possibly leaning) of height h with a rectangular base of side lengths
a and b, we can slice the given pyramid into thin horizontal slices, then without changing
the total volume we can slide these slices horizontally to obtain a right rectangular-based
pyramid with the same height and base. Thus the formula V = 1

3abh also holds for a
leaning pyramid of height h with a rectangular base of side lengths a and b.

h
h

Finally, given a cone of height h with a base of any shape of area A, we can cover the base
by thin rectangles of total area A, then we can use these rectangles as the bases of thin
leaning rectangular-based pyramids which cover the given pyramid. If there are n thin
rectangles and the kth thin rectangle has area Ak so that A1 + A2 + · · · + An = A, then
the kth thin pyramid has volume Vk = 1

3Akh, and the total volume is

V = V1 + V2 + · · ·+ Vn = 1
3 (A1 +A2 + · · ·+An)h = 1

3Ah .

h

Ak

Vk
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1.21 Definition: A slice of thickness h on the surface of a sphere is the portion of
the surface of the sphere which lies between two parallel planes which are separated by a
distance h units.

1.22 Theorem: The area of the entire surface of a sphere of radius r is equal to A = 4πr2.
More generally, the area of a slice of thickness h of the surface of a sphere of radius r is
equal to A = 2πrh.

Proof: Given a slice of thickness h of the surface of a sphere of radius r, cut this slice into
many thin slices. Each thin slice of the surface of the sphere may be approximated by a
thin truncated right-circular cone. Consider one thin slice of thickness ∆x with x, y, ∆y
and ∆l as shown below (the portion of the sphere shaded in green is approximated by a
truncated right-circular cone of average radius y and slant length ∆l)).

∆x
∆y

∆l

r y

x

Note that the right-angled triangle with sides x, y and r is similar to the right-angled
triangle with sides ∆y, ∆x and ∆l =

√
∆x2 + ∆y2, so we have ∆y

∆x = x
y . The area of this

thin slice is

∆A = 2πy∆l = 2πy
√

∆x2 + ∆y2 = 2πy

√
1 +

(
∆y
∆x

)2
∆x

= 2πy
√

1 +
(
x
y

)2
∆x = 2π

√
y2 + x2 ∆x = 2πr∆x .

If the original slice of thickness h is cut into n thin slices, and the kth thin slice has thickness
hk with h1 + h2 + · · ·+ hn = h, then the area of the kth thin slice is Ak = 2πr hk, so the
total area of the slice of thickness h is

A = A1 +A2 + · · ·+An = 2π (h1 + h2 + · · ·+ hn) = 2πrh .

We obtain the area of the entire surface of the sphere by taking h = 2r.

1.23 Definition: A great circle on a sphere is the intersection of the sphere with a
plane through the origin. The edges of a spherical triangle are arcs of great circles. The
spherical distance between two points on a sphere is measured along an arc of a great
circle. If p is a point on a sphere of radius r, then the spherical circle of radius s centered
at p is the set of points on the sphere whose spherical distance from p is equal to s. The
region on the surface of a sphere which lies inside a spherical circle is called a spherical
disc or a spherical cap.
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1.24 Theorem: Let C be a spherical circle of radius s on a sphere of radius r. Then the
circumference of C is equal to l = 2πr sin s

r and the area of the spherical cap inside C is
equal to A = 2πr2

(
1− cos sr

)
.

Proof: From the picture below, we see that the spherical circle C of radius s is equal to a
flat circle in R3 of radius r sin θ where s = rθ so that θ = s

r , and so the circumference of
the spherical circle is

l = 2πr sin θ = 2πr sin s
r .

From the same picture, we see that the spherical cap inside C is equal to a slice of
thickness h = r − r cos θ on the sphere of radius r, so its area is

A = 2πr(r − r cos θ) = 2πr2
(
1− cos sr

)
.

s=rr

rcos

rs
in

1.25 Theorem: The area of a spherical triangle on a sphere of radius r, whose interior
angles are α, β and γ, is equal to A = r2(α+ β + γ − π).

Proof: Consider a wedge of angle α on the sphere, as shown below. This wedge covers a
proportion of α

π of the total surface area of the sphere, so its area is

Aα = α
π · 4πr

2 = 4r2α .

Consider three such wedges, of angles α, β and γ, as shown. These wedges cover the entire
surface of the sphere once, and they cover the given spherical triangle an additional two
times, and they cover another congruent spherical triangle (on the opposite hemisphere)
an additional two times, so writing A for the area of the spherical triangle, we have

4πr2 + 4A = Aα +Aβ +Aγ = 4r2(α+ β + γ)

4A = 4r2(α+ β + γ)− 4πr2

A = r2(α+ β + γ − π) .
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1.26 Theorem: The volume of a sphere of radius r is equal to V = 4
3πr

3. More generally,
the volume of a spherical cone whose base is a region of area A on the surface of the sphere
and whose vertex is at the center of the sphere, is equal to V = 1

3Ar.

Proof: Given a spherical cone whose base is a region of area A on the surface of a sphere
of radius r and whose vertex is at the center, we can cover the spherical region by many
small flat (or at least almost flat) polygons, and use these flat polygons as the bases of
many thin flat-based cones, all of height r, which cover the spherical cone. If there are n
polygons, and the kth polygon has area Ak so that A1 +A2 + · · ·+An = A, then the kth

thin cone has volume Vk = 1
3 Akr so the total volume is

V = V1 + V2 + · · ·+ Vk = 1
3 (A1 +A2 + · · ·+An) r = 1

3Ar .

To obtain the volume of the entire sphere, note that the sphere is equal to the spherical
cone whose base is the entire surface of the sphere, so we take A = 4πr2 and we obtain
V = 1

3Ar = 4
3πr

3.

Ak

Vk

1.27 Theorem: The volume of an ellipsoid with semi-axes of lengths a, b and c is equal
to V = 4

3πabc.

Proof: This formula is obtained by scaling the unit sphere, which has volume 4
3π, by a

factor of a in the x-direction, b in the y-direction, and c in the z-direction.

a
c

b

11


