

MATH 137 Calculus 1, Solutions to the Midterm Test, Fall 2012

[3] **1:** (a) Find the exact value of $\cos\left(-\frac{8\pi}{3}\right)$.

Solution: $\cos\left(-\frac{8\pi}{3}\right) = -\cos\left(-\frac{8\pi}{3} + 3\pi\right) = -\cos\frac{\pi}{3} = -\frac{1}{2}$.

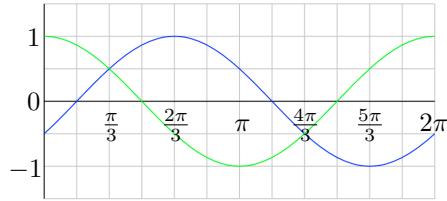
[3] (b) Use the formula $\sin(2\theta) = 2\sin\theta\cos\theta$ to find the exact value of $\sin\left(2\tan^{-1}\frac{1}{3}\right)$.

Solution: Consider the right-angled triangle with vertices at $a = (0, 0)$, $b = (3, 0)$ and $c = (3, 1)$ (draw a picture of this triangle). Let θ be the angle at a . Since side ab has length 3 and side bc has length 1, we see that $\theta = \tan^{-1}\frac{1}{3}$. Since side ac has length $\sqrt{10}$ we see that $\sin\theta = \frac{1}{\sqrt{10}}$ and $\cos\theta = \frac{3}{\sqrt{10}}$. Thus

$$\sin\left(2\tan^{-1}\frac{1}{3}\right) = \sin(2\theta) = 2\sin\theta\cos\theta = 2 \cdot \frac{1}{\sqrt{10}} \cdot \frac{3}{\sqrt{10}} = \frac{6}{10} = \frac{3}{5}.$$

[4] (c) Find all values of $x \in [0, 2\pi]$ such that $\sin\left(x - \frac{\pi}{6}\right) = \cos x$.

Solution: We provide two solutions. The first solution is graphical. We plot the graphs $y = \sin\left(x - \frac{\pi}{6}\right)$ and $y = \cos x$ on the same grid (the graph of $y = \sin\left(x - \frac{\pi}{6}\right)$ is shown in blue, and it is obtained from the graph of $y = \sin x$ by translating $\frac{\pi}{6}$ units to the right).



From the graph, we see that $\sin\left(x - \frac{\pi}{6}\right) = \cos x$ when $x = \frac{\pi}{3}, \frac{4\pi}{3}$. The second solution is algebraic. For $x \in [0, 2\pi]$ we have

$$\begin{aligned} \sin\left(x - \frac{\pi}{6}\right) = \cos x &\iff \sin x \cos\left(-\frac{\pi}{6}\right) + \cos x \sin\left(-\frac{\pi}{6}\right) = \cos x \\ &\iff \frac{\sqrt{3}}{2} \sin x - \frac{1}{2} \cos x = \cos x \iff \sqrt{3} \sin x = 3 \cos x \\ &\iff \tan x = \sqrt{3} \iff x = \frac{\pi}{3}, \frac{4\pi}{3}. \end{aligned}$$

2: Let $f(x) = \frac{2e^x + 1}{e^x - 1}$.

[2] (a) Find the domain of f .

Solution: The domain of f is

$$\text{Domain}(f) = \{x \in \mathbf{R} \mid e^x \neq 1\} = \{x \in \mathbf{R} \mid x \neq 0\} = (-\infty, 0) \cup (0, \infty).$$

[4] (b) Find a formula for the inverse function f^{-1} .

Solution: To find a formula for f^{-1} , we solve $y = f(x)$ for x in terms of y . We have

$$\begin{aligned} y = f(x) &\iff y = \frac{2e^x + 1}{e^x - 1} \iff e^x y - y = 2e^x + 1 \iff e^x(y - 2) = y + 1 \\ &\iff e^x = \frac{y + 1}{y - 2} \iff x = \ln\left(\frac{y + 1}{y - 2}\right). \end{aligned}$$

We see that $f^{-1}(y) = \ln\left(\frac{y+1}{y-2}\right)$.

[4] (c) Find the range of f (which is equal to the domain of f^{-1}).

Solution: The range of f is

$$\text{Range}(f) = \text{Domain}(f^{-1}) = \left\{y \in \mathbf{R} \mid \frac{y+1}{y-2} > 0\right\}.$$

When $y < -1$, we have $y + 1 < 0$ and $y - 2 < 0$ so $\frac{y+1}{y-2} > 0$. When $y = -1$, we have $\frac{y+1}{y-2} = 0$. When $-1 < y < 2$, we have $y + 1 > 0$ and $y - 2 < 0$ so $\frac{y+1}{y-2} < 0$. When $y = 2$, $\frac{y+1}{y-2}$ is undefined. When $y > 2$, we have $y + 1 > 0$ and $y - 2 > 0$ so $\frac{y+1}{y-2} > 0$. Thus $\frac{y+1}{y-2} > 0$ when $y < -1$ or $y > 2$ and we have

$$\text{Range}(f) = \{y \in \mathbf{R} \mid y < -1 \text{ or } y > 2\} = (-\infty, -1) \cup (2, \infty).$$

3: Evaluate each of the following limits, if they exist or are infinite.

[3] (a) $\lim_{x \rightarrow 1} \frac{\sqrt{3x+1} - 2}{x-1}$.

Solution: We have

$$\begin{aligned} \lim_{x \rightarrow 1} \frac{\sqrt{3x+1} - 2}{x-1} &= \lim_{x \rightarrow 1} \frac{\sqrt{3x+1} - 2}{x-1} \cdot \frac{\sqrt{3x+1} + 2}{\sqrt{3x+1} + 2} = \lim_{x \rightarrow 1} \frac{(3x+1) - 4}{(x-1)(\sqrt{3x+1} + 2)} \\ &= \lim_{x \rightarrow 1} \frac{3(x-1)}{(x-1)(\sqrt{3x+1} + 2)} = \lim_{x \rightarrow 1} \frac{3}{\sqrt{3x+1} + 2} = \frac{3}{\sqrt{4} + 2} = \frac{3}{4}. \end{aligned}$$

[3] (b) $\lim_{x \rightarrow 2^-} \frac{|x^2 - 3x + 2|}{x-2}$.

Solution: For $1 < x < 2$ we have $x-2 < 0$ and $x-1 > 0$ so $|x-2| = -(x-2)$ and $|x-1| = (x-1)$ and so

$$\begin{aligned} \lim_{x \rightarrow 2^-} \frac{|x^2 - 3x + 2|}{x-2} &= \lim_{x \rightarrow 2^-} \frac{|(x-2)(x-1)|}{x-2} = \lim_{x \rightarrow 2^-} \frac{|x-2||x-1|}{x-2} \\ &= \lim_{x \rightarrow 2^-} \frac{-(x-2)(x-1)}{x-2} = \lim_{x \rightarrow 2^-} -(x-1) = -1. \end{aligned}$$

[4] (c) $\lim_{x \rightarrow 0^-} \sin^{-1} \left(\frac{1}{2 + e^{1/x}} \right)$.

Solution: As $x \rightarrow 0^-$ we have $\frac{1}{x} \rightarrow -\infty$ so $e^{1/x} \rightarrow 0$ and so

$$\lim_{x \rightarrow 0^-} \sin^{-1} \left(\frac{1}{2 + e^{1/x}} \right) = \sin^{-1} \left(\frac{1}{2+0} \right) = \sin^{-1} \frac{1}{2} = \frac{\pi}{6}.$$

[5] **4:** (a) Use the definition of the limit to show that $\lim_{x \rightarrow 2} (x^2 - x - 3) = -1$.

Solution: We must show that

$$\forall \epsilon > 0 \ \exists \delta > 0 \ \forall x \in \mathbf{R} \left(0 < |x - 2| < \delta \implies |(x^2 - x - 3) + 1| < \epsilon \right).$$

Note that

$$|(x^2 - x - 3) + 1| = |x^2 - x - 2| = |(x+1)(x-2)| = |x+1||x-2|$$

and that

$$0 < |x - 2| < 1 \implies 1 < x < 3 \implies 2 < x + 1 < 4 \implies |x + 1| < 4.$$

Let $\epsilon > 0$. Choose $\delta = \min(1, \frac{\epsilon}{4})$. Let $x \in \mathbf{R}$. Then

$$\begin{aligned} 0 < |x - 2| < \delta &\implies \left(0 < |x - 2| < 1 \text{ and } 0 < |x - 2| < \frac{\epsilon}{4} \right) \\ &\implies \left(|x + 1| < 4 \text{ and } |x - 2| < \frac{\epsilon}{4} \right) \\ &\implies |(x^2 - x - 3) + 1| = |x + 1||x - 2| < 4 \cdot \frac{\epsilon}{4} = \epsilon. \end{aligned}$$

[5] (b) Suppose that $\lim_{x \rightarrow a} f(x) = L$ and $\lim_{x \rightarrow a} g(x) = M$. Prove that $\lim_{x \rightarrow a} (f(x) + g(x)) = L + M$.

Solution: This was one of the three required proofs. We must show that

$$\forall \epsilon > 0 \ \exists \delta > 0 \ \forall x \in \text{Domain}(f+g) \left(0 < |x - a| < \delta \implies |(f+g)(x) - (L+M)| < \epsilon \right).$$

Note that $|(f+g)(x) - (L+M)| = |(f(x) - L) + (g(x) - M)| \leq |f(x) - L| + |g(x) - M|$ by the Triangle Inequality. Let $\epsilon > 0$. Since $\lim_{x \rightarrow a} f(x) = L$, we can choose $\delta_1 > 0$ so that for all $x \in \text{Domain}(f)$ we have

$$0 < |x - a| < \delta_1 \implies |f(x) - L| < \frac{\epsilon}{2}.$$

Since $\lim_{x \rightarrow a} g(x) = M$, we can choose $\delta_2 > 0$ so that for all $x \in \text{Domain}(g)$ we have

$$0 < |x - a| < \delta_2 \implies |g(x) - M| < \frac{\epsilon}{2}.$$

Let $\delta = \min(\delta_1, \delta_2)$. Let $x \in \text{Domain}(f+g)$, so we have $x \in \text{Domain}(f)$ and $x \in \text{Domain}(g)$. Then

$$\begin{aligned} 0 < |x - a| < \delta &\implies \left(0 < |x - a| < \delta_1 \text{ and } 0 < |x - a| < \delta_2 \right) \\ &\implies \left(|f(x) - L| < \frac{\epsilon}{2} \text{ and } |g(x) - M| < \frac{\epsilon}{2} \right) \\ &\implies |(f+g)(x) - (L+M)| \leq |f(x) - L| + |g(x) - M| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon. \end{aligned}$$

5: Let $f(x) = \frac{1}{\sqrt{x}}$ for $x > 0$.

[5] (a) Use the definition of the derivative to find $f'(x)$.

Solution: We have

$$\begin{aligned} f'(x) &= \lim_{u \rightarrow x} \frac{f(u) - f(x)}{u - x} = \lim_{u \rightarrow x} \frac{\frac{1}{\sqrt{u}} - \frac{1}{\sqrt{x}}}{u - x} = \lim_{u \rightarrow x} \frac{\sqrt{x} - \sqrt{u}}{\sqrt{u}\sqrt{x}(u - x)} \\ &= \lim_{u \rightarrow x} \frac{\sqrt{x} - \sqrt{u}}{\sqrt{u}\sqrt{x}(u - x)} \cdot \frac{\sqrt{x} + \sqrt{u}}{\sqrt{x} + \sqrt{u}} = \lim_{u \rightarrow x} \frac{x - u}{\sqrt{u}\sqrt{x}(u - x)(\sqrt{x} + \sqrt{u})} \\ &= \lim_{u \rightarrow x} \frac{-1}{\sqrt{u}\sqrt{x}(\sqrt{x} + \sqrt{u})} = \frac{-1}{\sqrt{x}\sqrt{x}(\sqrt{x} + \sqrt{x})} = \frac{-1}{2x^{3/2}}. \end{aligned}$$

Alternatively, we have

$$\begin{aligned} f'(x) &= \lim_{h \rightarrow 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \rightarrow 0} \frac{\frac{1}{\sqrt{x+h}} - \frac{1}{\sqrt{x}}}{h} = \lim_{h \rightarrow 0} \frac{\sqrt{x} - \sqrt{x+h}}{\sqrt{x+h}\sqrt{x}h} \\ &= \lim_{h \rightarrow 0} \frac{\sqrt{x} - \sqrt{x+h}}{\sqrt{x+h}\sqrt{x}h} \cdot \frac{\sqrt{x} + \sqrt{x+h}}{\sqrt{x} + \sqrt{x+h}} = \lim_{h \rightarrow 0} \frac{x - (x+h)}{\sqrt{x+h}\sqrt{x}h(\sqrt{x} + \sqrt{x+h})} \\ &= \lim_{h \rightarrow 0} \frac{-h}{\sqrt{x+h}\sqrt{x}h(\sqrt{x} + \sqrt{x+h})} = \lim_{h \rightarrow 0} \frac{-1}{\sqrt{x+h}\sqrt{x}(\sqrt{x} + \sqrt{x+h})} \\ &= \frac{-1}{\sqrt{x}\sqrt{x}(\sqrt{x} + \sqrt{x})} = \frac{-1}{2x^{3/2}}. \end{aligned}$$

[5] (b) Find the equation of the tangent line to the curve $y = f(x)$ at the point where the tangent line has slope -4 .

Solution: The slope of the tangent at the point $(a, f(a))$ is equal to $f'(a) = \frac{-1}{2a^{3/2}}$, and we have

$$f'(a) = -4 \iff \frac{-1}{2a^{3/2}} = -4 \iff a^{3/2} = \frac{1}{8} \iff a = \left(\frac{1}{8}\right)^{2/3} = \frac{1}{4}.$$

Since $f\left(\frac{1}{4}\right) = 2$ and $f'\left(\frac{1}{4}\right) = -4$, the equation of the tangent line with slope -4 is $y = 2 - 4(x - \frac{1}{4})$, or equivalently $y = -4x + 3$.