
MATH 137 Calculus 1, Solutions to the Midterm Test, Fall 2012

[3] 1: (a) Find the exact value of cos
(
− 8π

3

)
.

Solution: cos
(
− 8π

3

)
= − cos

(
− 8π

3 + 3π
)

= − cos π3 = − 1
2 .

[3] (b) Use the formula sin(2θ) = 2 sin θ cos θ to find the exact value of sin
(
2 tan−1 1

3

)
.

Solution: Consider the right-angled triangle with vertices at a = (0, 0), b = (3, 0) and c = (3, 1) (draw a
picture of this triangle). Let θ be the angle at a. Since side ab has length 3 and side bc has length 1, we see
that θ = tan−1 1

3 . Since side ac has length
√

10 we see that sin θ = 1√
10

and cos θ = 3√
10

. Thus

sin
(
2 tan−1 1

3

)
= sin(2θ) = 2 sin θ cos θ = 2 · 1√

10
· 3√

10
= 6

10 = 3
5 .

[4] (c) Find all values of x ∈
[
0, 2π

]
such that sin

(
x− π

6

)
= cosx.

Solution: We provide two solutions. The first solution is graphical. We plot the graphs y = sin
(
x− π

6

)
and

y = cosx on the same grid (the graph of y = sin
(
x− π

6

)
is shown in blue, and it is obtained from the graph

of y = sinx by translating π
6 units to the right).

1

0
π
3

2π
3 π 4π

3
5π
3 2π

−1

From the graph, we see that sin
(
x − π

6

)
= cosx when x = π

3 ,
4π
3 . The second solution is algebraic. For

x ∈
[
0, 2π

]
we have

sin
(
x− π

6

)
= cosx ⇐⇒ sinx cos

(
− π

6

)
+ cosx sin

(
− π

6

)
= cosx

⇐⇒
√

3
2 sinx− 1

2 cosx = cosx ⇐⇒
√

3 sinx = 3 cosx

⇐⇒ tanx =
√

3 ⇐⇒ x = π
3 ,

4π
3 .
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2: Let f(x) =
2ex + 1
ex − 1

.

[2] (a) Find the domain of f .

Solution: The domain of f is

Domain(f) =
{
x ∈ R

∣∣ex 6= 1
}

=
{
x ∈ R

∣∣x 6= 0
}

= (−∞, 0) ∪ (0,∞) .

[4] (b) Find a formula for the inverse function f−1.

Solution: To find a formula for f−1, we solve y = f(x) for x in terms of y. We have

y = f(x) ⇐⇒ y =
2ex + 1
ex − 1

⇐⇒ exy − y = 2ex + 1 ⇐⇒ ex(y − 2) = y + 1

⇐⇒ ex =
y + 1
y − 2

⇐⇒ x = ln
(
y + 1
y − 2

)
.

We see that f−1(y) = ln
(
y+1
y−2

)
.

[4] (c) Find the range of f
(
which is equal to the domain of f−1

)
.

Solution: The range of f is

Range(f) = Domain
(
f−1

)
=
{
y ∈ R

∣∣∣ y+1
y−2 > 0

}
.

When y < −1, we have y + 1 < 0 and y − 2 < 0 so y+1
y−2 > 0. When y = −1, we have y+1

y−2 = 0. When
−1 < y < 2, we have y + 1 > 0 and y − 2 < 0 so y+1

y−2 < 0. When y = 2, y+1
y−2 is undefined. When y > 2, we

have y + 1 > 0 and y − 2 > 0 so y+1
y−2 > 0. Thus y+1

y−2 > 0 when y < −1 or y > 2 and we have

Range(f) =
{
y ∈ R

∣∣y < −1 or y > 2
}

= (−∞,−1) ∪ (2,∞) .
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3: Evaluate each of the following limits, if they exist or are infinite.

[3] (a) lim
x→1

√
3x+ 1− 2
x− 1

.

Solution: We have

lim
x→1

√
3x+ 1− 2
x− 1

= lim
x→1

√
3x+ 1− 2
x− 1

·
√

3x+ 1 + 2√
3x+ 1 + 2

= lim
x→1

(3x+ 1)− 4
(x− 1)

(√
3x+ 1 + 2

)
= lim
x→1

3(x− 1)
(x− 1)

(√
3x+ 1 + 2

) = lim
x→1

3√
3x+ 1 + 2

=
3√

4 + 2
=

3
4
.

[3] (b) lim
x→2−

|x2 − 3x+ 2|
x− 2

.

Solution: For 1 < x < 2 we have x− 2 < 0 and x− 1 > 0 so |x− 2| = −(x− 2) and |x− 1| = (x− 1) and so

lim
x→2−

∣∣x2 − 3x+ 2
∣∣

x− 2
= lim
x→2−

∣∣(x− 2)(x− 1)
∣∣

x− 2
= lim
x→2−

|x− 2| |x− 1|
x− 2

= lim
x→2−

−(x− 2)(x− 1)
x− 2

= lim
x→2−

−(x− 1) = −1 .

[4] (c) lim
x→0−

sin−1

(
1

2 + e1/x

)
.

Solution: As x→ 0− we have 1
x → −∞ so e1/x → 0 and so

lim
x→0−

sin−1

(
1

2 + e1/x

)
= sin−1

( 1
2 + 0

)
= sin−1 1

2 = π
6 .
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[5] 4: (a) Use the definition of the limit to show that lim
x→2

(
x2 − x− 3

)
= −1.

Solution: We must show that

∀ε > 0 ∃δ > 0 ∀x ∈ R
(

0 < |x− 2| < δ =⇒
∣∣(x2 − x− 3) + 1

∣∣ < ε
)
.

Note that ∣∣(x2 − x− 3) + 1
∣∣ =

∣∣x2 − x− 2
∣∣ =

∣∣(x+ 1)(x− 2)
∣∣ = |x+ 1| |x− 2|

and that
0 < |x− 2| < 1 =⇒ 1 < x < 3 =⇒ 2 < x+ 1 < 4 =⇒ |x+ 1| < 4 .

Let ε > 0. Choose δ = min
(
1, ε4
)
.Let x ∈ R.Then

0 < |x− 2| < δ =⇒
(

0 < |x− 2| < 1 and 0 < |x− 2| < ε
4

)
=⇒

(
|x+ 1| < 4 and |x− 2| < ε

4

)
=⇒

∣∣(x2 − x− 3) + 1
∣∣ = |x+ 1| |x− 2| < 4 · ε4 = ε .

[5] (b) Suppose that lim
x→a

f(x) = L and lim
x→a

g(x) = M . Prove that lim
x→a

(
f(x) + g(x)

)
= L+M .

Solution: This was one of the three required proofs. We must show that

∀ ε>0 ∃ δ>0 ∀x∈Domain(f + g)
(

0 < |x− a| < δ =⇒
∣∣(f + g)(x)− (L+M)

∣∣ < ε
)
.

Note that
∣∣(f + g)(x) − (L + M)

∣∣ =
∣∣(f(x) − L) + (g(x) −M)

∣∣ ≤ ∣∣f(x) − L
∣∣ +

∣∣g(x) −M
∣∣ by the Triangle

Inequality. Let ε > 0. Since lim
x→a

F (x) = L, we can choose δ1 > 0 so that for all x ∈ Domain(f) we have

0 < |x− a| < δ1 =⇒ |f(x)− L| < ε
2 .

Since lim
x→a

g(x) = M , we can choose δ2 > 0 so that for all x ∈ Domain(g) we have

0 < |x− a| < δ2 =⇒ |g(x)−M | < ε
2 .

Let δ = min(δ1, δ2). Let x ∈ Domain(f + g), so we have x ∈ Domain(f) and x ∈ Domain(g). Then

0 < |x− a| < δ =⇒
(

0 < |x− a| < δ1 and 0 < |x− a| < δ2

)
=⇒

(
|f(x)− L| < ε

2 and |g(x)−M | < ε
2

)
=⇒

∣∣(f + g)(x)− (L+M)
∣∣ ≤ ∣∣f(x)− L

∣∣+
∣∣g(x)−M

∣∣ < ε
2 + ε

2 = ε .
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5: Let f(x) =
1√
x

for x > 0.

[5] (a) Use the definition of the derivative to find f ′(x).

Solution: We have

f ′(x) = lim
u→x

f(u)− f(x)
u− x

= lim
u→x

1√
u
− 1√

x

u− x
= lim
u→x

√
x−
√
u√

u
√
x (u− x)

= lim
u→x

√
x−
√
u√

u
√
x (u− x)

·
√
x+
√
u√

x+
√
u

= lim
u→x

x− u
√
u
√
x (u− x)

(√
x+
√
u
)

= lim
u→x

−1
√
u
√
x
(√
x+
√
u
) =

−1
√
x
√
x
(√
x+
√
x
) =

−1
2x3/2

.

Alternatively, we have

f ′(x) = lim
h→0

f(x+ h)− f(x)
h

= lim
h→0

1√
x+h
− 1√

x

h
= lim
h→0

√
x−
√
x+ h√

x+ h
√
x h

= lim
h→0

√
x−
√
x+ h√

x+ h
√
x h
·
√
x+
√
x+ h

√
x+
√
x+ h

= lim
h→0

x− (x+ h)√
x+ h

√
x h

(√
x+
√
x+ h

)
= lim
h→0

−h√
x+ h

√
x h

(√
x+
√
x+ h

) = lim
h→0

−1√
x+ h

√
x
(√
x+
√
x+ h

)
=

−1
√
x
√
x
(√
x+
√
x
) =

−1
2x3/2

.

[5] (b) Find the equation of the tangent line to the curve y = f(x) at the point where the tangent line has slope
−4.

Solution: The slope of the tangent at the point
(
a, f(a)

)
is equal to f ′(a) = −1

2 a3/2 , and we have

f ′(a) = −4 ⇐⇒ −1
2 a3/2

= −4 ⇐⇒ a3/2 = 1
8 ⇐⇒ a =

(
1
8

)2/3 = 1
4 .

Since f
(

1
4

)
= 2 and f ′

(
1
4

)
= −4, the equation of the tangent line with slope −4 is y = 2 − 4

(
x − 1

4

)
, or

equivalently y = −4x+ 3.
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