

Name (print): _____

Signature: _____

ID Number: _____

Section (circle): 1 2 3 4 5 6 7 8 9 10 11

MATH 137, Calculus 1 for Honours Mathematics

Faculty of Mathematics, University of Waterloo

Midterm Test, Fall Term 2012

Date: Monday, October 22

Time: 7:00 pm-9:00 pm

Section	Time	Instructor
1	8:30-9:20	F. Zorzitto
2	9:30-10:20	M. Eden
3	10:30-11:20	J. Lawrence
4	11:30-12:20	M. Eden
5	2:30-3:20	S. New
6	9:30-10:20	D. Park
7	8:30-9:20	C. Hewitt
8	11:30-12:20	E. Vrscay
9	9:30-10:20	F. Vinette
10	8:30-9:20	D. Park
11	11:30-12:20	C. Hewitt

</div

[3] **1:** (a) Find the exact value of $\cos\left(-\frac{8\pi}{3}\right)$.

[3] (b) Use the formula $\sin(2\theta) = 2\sin\theta\cos\theta$ to find the exact value of $\sin\left(2\tan^{-1}\frac{1}{3}\right)$.

[4] (c) Find all values of $x \in [0, 2\pi]$ such that $\sin\left(x - \frac{\pi}{6}\right) = \cos x$.

2: Let $f(x) = \frac{2e^x + 1}{e^x - 1}$.

[2] (a) Find the domain of f .

[4] (b) Find a formula for the inverse function f^{-1} .

[4] (c) Find the range of f (which is equal to the domain of f^{-1}).

3: Evaluate each of the following limits, if they exist or are infinite.

$$[3] \quad (a) \lim_{x \rightarrow 1} \frac{\sqrt{3x+1} - 2}{x-1}.$$

$$[3] \quad (b) \lim_{x \rightarrow 2^-} \frac{|x^2 - 3x + 2|}{x-2}.$$

$$[4] \quad (c) \lim_{x \rightarrow 0^-} \sin^{-1} \left(\frac{1}{2 + e^{1/x}} \right).$$

[5] **4:** (a) Use the definition of the limit to show that $\lim_{x \rightarrow 2} (x^2 - x - 3) = -1$.

[5] (b) Suppose that $\lim_{x \rightarrow a} f(x) = L$ and $\lim_{x \rightarrow a} g(x) = M$. Prove that $\lim_{x \rightarrow a} (f(x) + g(x)) = L + M$.

5: Let $f(x) = \frac{1}{\sqrt{x}}$ for $x > 0$.

[5] (a) Use the definition of the derivative to find $f'(x)$.

[5] (b) Find the equation of the tangent line to the curve $y = f(x)$ at the point where the tangent line has slope -4 .

This page is for rough work. It will not be marked.