MATH 137 Calculus 1, Solutions to the Final Exam, Fall 2012
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2 1: (a) Find lim ——.
2] (a) Find lim =

Solution 1: We have
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Solution 2: Since 22 —1 — 0 and /z — 1 — 0 as # — 1, we can apply I'Hopital’s Rule to get
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[3] (b) Let f(x) = (z — 1)%. Use the definition of the derivative to show that f’(4) = 6.
Solution 1: We have
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(5] (c) Let f(z) = 6 . Use the definition of the limit to show that lim2 f(z) =3.
x T—

Solution 1: Note that

23] = 55| = |22 = 2

and note that
[t —2<l=1l<z<3=|2|>1.
Let € > 0. Chooseézmin{l,%}. Then for all x
0<|lz—2/<d= (Jz—2|<land|z—2| < %)
= (]| > 1 and [z — 2| < §)

— |6 _g| = 3lz=2] - 3(/3) _
’:c 3|7 |z| < 1 =€

Solution 2: Let ¢ > 0. Choose § = =25 . Note that § < 2, so we have
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[5] 2: (a) Approximate the value of V5 by finding the approximations x5 and x5 when Newton’s Method is applied
to the function f(z) = 2% — 5 starting with z; = 1.

Solution: We have f’(z) = 2z and so Newton’s Method gives
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[5] (b) Let y = g(x) be defined implicitly by the equation y3 + 2%y = z + 3y? with g(2) = 1. Use implicit
differentiation to find ¢’(2), then use the linearization of g(z) at « = 2 to approximate the value of g(3).

Solution: We differentiate implicitly to get
3y2y + 2zy 4+ 2%y =1+ 6yy .

Putting in z = 2 and y = 1 gives 3y’ + 4 4+ 4y’ = 1 + 6y/, that is y' = —3, so we have ¢’(2) = —3. The
linearization of g(x) at = 2 is

lz) =9(2)+4(2)(x-2)=1-3(z—2)

and we make the approximation



3: Let f(z) =1n <x24+ 1).

[5] (a) Determine where each of f(z), f/(z) and f”(z) is positive, negative, and zero.

Solution: We have

f(z) =In(2®> + 1) — In4

, 2x

Fe) =

vy e @+ —x-22?  2(=2’+1)  —2(x-1)(z+1)
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Note that f(z) <0 <= In(22+1) <In4 <= 22+1<4 < 22 <3 < |7| < /3. We indicate where
f(z), f'(xz) and f"(x) are positive, negative and zero in the following table.

x -V3 -1 0 1 V3
fzy + 0 - - - - - - — 0 +
fley - - —-— 0 + 4+ + 0 — — -—
f'@) - 0 + 4+ 4+ + + + + 0 -
[5] (b) Sketch the curve y = f(x) showing all x and y-intercepts, all local maxima and minima, and all points of

inflection. (Note that In2 2 0.7).

Solution: We make a table of values and sketch the curve.

T f(x)
— —00 o0 2In2
—\/3 0 intercept n2
-1 —In2 inflection
0 —2In2 minimum
-3 0 3
1 —In2 inflection /
V3 0 intercept 921
— 00 00




[5] 4: (a) Let L be a line with negative slope which passes through the point (2,1). Find the minimum possible
area for the triangle bounded by L and the z and y-axes.

Solution: Let u be the z-intercept and let v be the y-intercept of the line L. Using similar triangles, we see

that & = ﬁ and so we have v = —*5. The area of the triangle is

Differentiate, with respect to u, to get

2u(u — 2) — u? u? — 4u u(u — 4)

A/ = l . = —
2 (u —2)2 2(u—2)2 2(u-—2)%"
We see that A'(u) < 0 for u € (2,4) and A’ > 0 for u € (4,00) and so the minimum value of A occurs when
u:4andthenA:#2_2):%:4,

[5] (b) Let a = (0,0), b = (3,0) and ¢ = (2,y). Let 6 be the angle at ¢ in the triangle abc. The point ¢ moves
downwards with ' = —1. Find 6’ when y = 1.

Solution 1: Let o be the angle at a and let # be the angle at b in triangle abc. Note that tana = £, tan 3 = ¥
and a+ G+ 60 = m. Thus

f=m—a—fF=n—tan ' 4 —tan"'y

g2y Y =—( 2 )y’.

142 14y? 4+y?  1+y?

Putiny=1andy =—1toget ¢ =—(2+3)(-1)=3.
Solution 2: By the Law of Cosines we have

9=(“4+y) + (1 +v%) —2V4+ 421 +y2cosh

2¢/(y2 +4)(y2 + 1) cos 0 = 2y* — 4
2
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cos= 9 2
Vyt+5y? +4
Differentiate to get
3
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gy STz
y*t 4 5y% +4 '
— —_y2 - inh=+vl —cos?f = /1—L—_3

Notethatwheny—1wehavec059—\/m—mandsosmt?— 1—cos?0=,/1 0 = 1o We

put y=1,4y = —1 and sinf = \/ifo into the above equation to get
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/6 cosx dx

3 5: Find —
[ ] (a) m 0 v1+6sinx

Solution: Let u =1 + 6sinx so du = 6 cosx dz. Then
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[3] (b) Let g(= / V5 +t2dt. Find ¢'(4).

Solution: Let u(x) = +/z and let F(u) = / f(t) dt where f(t) = v/5+ 12, so that we have g(z) = F(u(x)).
1
By the FTC we have F'(u) = f(u) and by the Chain Rule we have

§(@) = P (ula))ul () = f(ula))ul(2) = V5r a5 = Lt

In particular ¢'(4) = 2.

2
z? + 1 dz by finding a limit of Riemann sums using the right endpoints of n equal-sized

[4] (c) Evaluate /

-1
subintervals.

Solution: Let a = —1,b=2, A,z = b_Ta = %, and z,;, =a+iA,x=-1+ % Then
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[5] 6: (a) An object moves along the z-axis with acceleration at time ¢ given by a(t) = \/% —1for0<t<8.
Given that z(0) = v(0) = 0, find x(8).
Solution: We have
u(t) = /a(t) dt = /2(t+ DTV ldt=4(t+1)Y2 —t+c
for some constant c. Since v(0) = 0 we have 4 4+ ¢ = 0 so ¢ = —4.Thus
o(t) =4t +1)V2 —t—4.

Since z(0) = 0 we have

(8) x(8)—a:(0):/Ogv(t)dt:/084(t+1)1/2—t—4dt

8
- [g(tﬂ)?’/?—%t?—zu]o:(72—32—32)—(%):%.
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Solution: It helps to sketch the two curves. The parabola y = z(x — 4) is shown in cyan, the hyperbola

y = 2% =2+ -5 is shown in green, and the region bounded by the two curves is outlined in blue. If your

sketch is sufficiently accurate, then it will show the exact coordinates of the points of intersection of the two
curves. Alternatively, we can find the z-coordinates of the points of intersection as follows:
2z

€T —

[5] (b) Find the area of the region bounded by the curves y = z(x —4) and y =

z(r—4) = 3 —= z(z—4)(z—-3)=2r <= 2 - T2*+ 122 =22
= 2 -T2+ 102 =0 <= z(z-2)(z-5) =0 <= x€{0,2,5}.

The area of the bounded region is

2
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A:/ z —z(x—4) dz.
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We solve the integral in two ways. For the first solution, we write =5 = % + 2 to get

2 2
A:/ 63+2+4x7x2d:c:{61n|x73|+2x+2x27%x3}
0 0

T —
=(6lnl1+4+8-%)—(6In3) =2 —6In3.
For the second solution we make the substitution © = x — 3 so that x = v + 3 and dx = du to get

1 -1 -1

2

A:/ 7(u+3)7(u+3)(u71) du:/ 2+§7(u2+2u73) du:/ §+572u+u2 du
u=-3 u -3 U -3 U

-1
= [61n Jul + 5u - u? — L] ,=(=5-1+44)—(6Mm3-15-9+9) = % I3,




7: Suppose that f(z) is defined for all 2 in an open interval I with a € I.
(a) Prove the Decreasing Test: if f'(z) < 0 for all = € I then f is decreasing in I.

Solution: Suppose that f'(z) < 0 for all x € I. Let a,b € I with a < b. We must show that f(a) > f(b).
Since f(z) is differentiable in (a,b) and f(z) is continuous on [a,b] (indeed f(x) is differentiable and hence
continuous at every point = € I), by the Mean Value Theorem we can choose ¢ € (a,b) such that

f(b) = f(a)
1) —
f (C) - b —a :
Since f'(¢) < 0 and b—a > 0 we have f(b) — f(a) = f'(¢)(b—a) < 0 and so f(b) < f(a), as required.
(b) Prove Fermat’s Theorem: if f’(a) exists and f has a local maximum or minimum at x = a, then f'(a) = 0.

Solution 1: We shall prove the equivalent statement that if f'(a) exists but f’(a) # 0 then f(x) does not
have a maximum or minimum value at © = a. Suppose that f’(a) exists but f'(a) # 0. Say f/(a) > 0 (the
case that f’(a) < 0 is similar). By the definition of the derivative, we have

i O I0) _p

Since f’(a) > 0, by the definition of the limit we can choose § > 0 so that for all z € T

0<|z—al<d= W—f’(a) < f'(a).
Note that
f(x:z:g(a)ff/(a) <f/(a):>f(xa)::i(a)ff/(a)>ff/(a):>f(xa)j:i(a)>0

If z € (a,a+6) so that x —a > 0 then we have f(z) — f(a) > 0 so that f(z) > f(a), and if z € (a — §,a) so
that  — a < 0 then we have f(x) — f(a) < 0 so that f(z) < f(a). Since f(z) > f(a) for all € (a,a + 9)
it follows that f(z) cannot have a local maximum at x = a, and since f(z) < f(a) for all z € (a — J,a) it
follows that f(x) cannot have a local minimum at z = a.

Solution 2: Suppose that f/(a) exists and that f has a local maximum at z = a (the case that f has a local
minimum at z = a is similar). Then for h sufficiently close to zero we have f(a + h) < f(a), that is

flat+h)=fla)<0 (1),
fla+h) - f(a)

When h > 0, dividing both sides of (1) by h gives < 0 and so we have

h
o) = i LOE Iy S0 =510)
When h < 0, dividing both sides of (1) by h gives w > 0 and so we have
) i LOED =@ Tt = f)

h— 0 h h—0- h
Since f'(a) <0 and f'(a) > 0, we have f’(a) = 0, as required.



