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Chapter 1. Exponential and Trigonometric Functions

1.1 Definition: Let X and Y be sets and let f: X — Y. We say that f is injective (or
one-to-one, written as 1:1) when for every y € Y there exists at most one z € X such
that f(z) = y. Equivalently, f is injective when for all x1,29 € X, if f(x1) = f(z2) then
x1 = 9. We say that f is surjective (or onto) when for every y € Y there exists at least
one x € X such that f(z) =y. Equivalently, f is surjective when Range(f) =Y. We say
that f is bijective (or invertible) when f is both injective and surjective, that is when
for every y € Y there exists exactly one € X such that f(z) = y. When f is bijective,
we define the inverse of f to be the function f~1 : Y — X such that for ally € Y, f~1(y)
is equal to the unique element = € X such that f(x) = y. Note that when f is bijective so
is f~1, and in this case we have (f~1)~! = f.

1.2 Example: Let f(z) = %\/ 122 — 22 for 0 < z < 6. Show that f is injective and find
a formula for its inverse function.

Solution: Note that when 0 < x < 6 (indeed when 0 < z < 12) we have 122 — 2% =
z(12 — ) > 0, so that £v/12z — x2 exists, and we have 12z — 2% = 36 — (z — 6)% < 36 so
that % 120 — 22 < % 36 = 2. Thus if 0 < x < 6 then f(z) = %\/ 122 — 22 exists and we
have 0 < f(z) < 2. Let z,y € R with 0 <z <6 and 0 < y < 2. Then we have
y=flz) = y=1V12z — 2?2

<— 3y =12z — 22

<= 9y2: 122 — 22 , since y > 0

= 22— 1224+ 9* =0

12 4+ /144 — 3692

== T = 5 - 6 = 31v/4 —y? , by the Quadratic Formula

< 1 =06—3y/4—y? since x < 6.
Verify that when 0 < y < 2 we have 0 < 4 — y? < 4 so that /4 — y? exists and we have
0 <6 —3y4—y? < 6. Thus when we consider f as a function f : [0,6] — [0,2], it is
bisectve and its inverse f~!:[0,2] — [0, 6] is given by f~!(y) = 6 — 31/4 — y2.

1.3 Definition: Let f: A C R — R. We say that f is even when f(—x) = f(z) for all
x € A and we say that f is odd when f(—x) = —f(x) for all x € A.

1.4 Definition: Let f: A C R — R. We say that f is increasing (on A) when it has the
property that for all z,y € A, if < y then f(x) < f(y), and we say f is decreasing (on
A) when for all z,y € A with x < y we have f(z) > f(y). We say that f is monotonic
when f is either increasing or decreasing. Note that every monotonic function is injective.

1.5 Remark: We assume familiarity with exponential, logarithmic, trigonometric and
inverse trigonometric functions. These functions can be defined rigorously. We shall give a
brief description of how one can define the exponential and logarithmic function rigorously,
and we shall provide an informal (non-rigorous) description of the trigonometric and inverse
trigonometric functions, and we shall summarize some of their properties (without giving
rigorous proofs).



1.6 Definition: Let us outline one possible way to define the value of x¥ for suitable real
numbers z,y € R. First we define 2° = 1 for all z € R. Then for n € Z with n > 1 we
define 2" recursively by ™ = z - 2"~ ! for all x € R. Also, for n € Z with n > 1 we define
"= xin for all = £ 0. At this stage we have defined x¥ for y € Z.

When 0 < n € Z is odd, for all z € R we define z'/" = y where y is the unique real
number such that y™ = x (to be rigorous, one must prove that this number y exists and
is unique). When 0 < n € Z is even, for x > 0 we define z'/" = y where y is the unique
nonnegative real number such that y” = x (again, to be rigorous a proof is required). Also,
for 0 < n € Z we define = /" = wll/n , which is defined for x # 0 if n is odd, and is defined
for x > 0 when n is even. When n,m € Z with n > 0 and m > 0 and ged(n,m) = 1, we
define /™ = (z™)'/™ which is defined for all z € R when m is odd and for 2 > 0 when
m is even, and we define z="/™ = ﬁ, defined for x # 0 when m is odd and for x > 0

when m is even. At this stage, we have defined x¥ for y € Q.
For y € R, when x > 0 and y € R, we define

Y= lim o'
1=y, teQ
to be rigorous, one needs to define this limit and prove that it exists and is unique).
g p q

Finally, we define 1¥ =1 for all y € R and we define 0¥ = 0 for all y > 0.

1.7 Theorem: (Properties of Exponentials) Let a,b,z,y € R with a,b > 0. Then
(1) a® =1,

(2) a*tY = a’a®,

(3) a* Y =a”/aY,

(4) (a®)¥ = a™,

(5) (ab)* = a™b”.

Proof: We omit the proof.

1.8 Theorem: (Properties of Power Functions)

(1) When a > 0, the function f : [0,00) — [0,00) given by f(z) = x® is increasing and
bijective and its inverse function is given by f~1(x) = 2'/2.

(2) When a < 0, the function f : (0,00) — (0,00) given by f(z) = z® is decreasing and
bijective and its inverse is given by f~'(z) = a!/*.

Proof: We omit the proof.
1.9 Definition: A function of the form f(x) = z® is called a power function.

1.10 Theorem: (Properties of Exponential Functions)

(1) When a > 1 the function f : R — (0,00) given by f(z) = a” is increasing and bijective.
(2) When 0 < a < 1 the function f : R — (0,00) given by f(z) = a® is decreasing and
bijective.

Proof: We omit the proof.

1.11 Definition: For a > 0 with a # 1, the function f : R — (0,00) given by f(z) = a”
is called the base a exponential function, its inverse function f=! : (0,00) — R is called
the base a logarithmic function, and we write f~!(z) = log, x. By the definition of the
inverse function, we have log,(a®) = z for all x € R and €'°8«¥ = y for all y > 0, and for
all z,y € R with y > 0 we have y = a* <= z = log, y.



1.12 Theorem: (Properties of Logarithms) Let a,b, x,y € (0,00). Then

(1) log,1 =0,

(2) log,(zy) = log, x + log, y,

(3) log,(z/y) = log, x —log, y,

(4) log,(x¥) = ylog, x, and

(5) logb T = loga ZL’/ 1Oga b7

(6) if a > 1, the function g : (0,00) — R given by g(x) = log, x is increasing and bijective.
Proof: We leave it, as an exercise, to show that these properties follow from the properties
of exponentials.

1.13 Definition: There is a number e¢ € R called the natural base, with e = 2.71828,
which can be defined in such a way that the function f(z) = e® is equal to its own

derivative. We define
e= lim (1+1)"

n—oo

(to be rigorous, one must define this limit and prove that it exists and is unique). The
logarithm to the base e is called the natural logarithm, and we write

Inx =log, x for z > 0.

1.14 Note: The properties of exponentials and logarithms in Theorems 1.7 and 1.12 give
V=1, a" ™V =¢"Y, eV =¢"/eY, (%)Y = e,
In1=0, In(zy) =Inz+lny, In(z/y) =lnz—Iny, Inzy =ylnz
Inx

log, z = ha and a” =e

zlna



1.15 Definition: We define the trigonometric functions informally as follows. For 6 > 0,
we define cos # and sin 6 to be the z- and y-coordinates of the point at which we arrive when
we begin at the point (1,0) and travel for a distance of § units counterclockwise around the
unit circle 22 + 4% = 1. For § < 0, cos and sin 6 are the 2 and y-coordinates of the point
at which we arrive when we begin at (1,0) and travel clockwise around the unit circle for a
distance of |# units. When cos 6 # 0 we define secd = 1/ cosf and tan § = sin/ cos, and
when sinf # 0 we define cscf = 1/sinf and cotd = cosf/sinf. (This definition is not
rigorous because we did not define what it means to travel around the circle for a given
distance).

(z,y) = (cos@,sin )

0

(1,0)

1.16 Definition: We define 7, informally, to be the distance along the top half of the
unit circle from (1,0) to (—1,0), and so we have cosm = —1 and sin7 = 0. By symmetry,
the distance from (1,0) to (0,1) along the circle is equal to 7 so we also have cos § = 0

2
and sin 5 = 1.

1.17 Theorem: (Basic Trigonometric Properties) For § € R we have

(1) cos?f +sin* 0 = 1,

(2) cos(—0) = cos 8 and sin(—0) = —sin 6,

(3) cos(6 + m) = —cos @ and sin(f + 7) = —sinb,

(4) cos(6 + 2m) = cosf and sin(f + 27) = sin6).

Proof: Informally, these properties can all be seen immediately from the above definitions.
We omit a rigorous proof.

1.18 Theorem: (Trigonometric Ratios) Let 6 € (0,%). For a right angle triangle with
an angle of size 6 and with sides of lengths x, y and r as shown, we have

Y cos.@zE , Siné?:y and tan@zy.
r r x

T

Proof: We can see this informally by scaling the picture in Definition 2.17 by a factor of r.

1.19 Theorem: (Special Trigonometric Values) We have the following exact trigonometric

values. - i o
6 0 § I 3 32
V3 V2 1
cosf@ 1 5 ? \5[ 0
. 1 2 3
Sin 0 O 5 5 5 1

Proof: This follows from the above theorem using certain particular right angled triangles.

4



1.20 Theorem: (Trigonometric Sum Formulas) For «, f € R we have

cos(aw + ) = cosacos B —sinasin 8, and

sin(a + ) = sinacos B + cos asin .

Proof: Informally, we can prove this with the help of a picture. The picture below illustrates
the situation when «, 8 € (O, %)

B ¢ F
d
o A
E
b
604 a
O D C (1,0)

In the picture, O is the origin, A is the point with coordinates (cos«,sin«) and B is the
point (z,y) = (cos(a + B),sin(a + §)). In triangle ODE we see that coso = 9D _ _a

OFE cos 3
. _ DE _ _b _ . : )

and sina = G5 = 5B and so @ = cosacosfB , b =sinacos$. In triangle EF B, verify
: _ EF _ _d . _ BF _ _c

that the angle at F has size a, and so we have cosa = £5 = S and sina = g5 = S

and so ¢ = sinasin 8, d = cos asin 5. The x and y-coordinates of the point B are x = a—c¢
and y = b+ d, and so

cos(a+ ) =x=a—c¢=cosacos S —sinasinf , and
sin(a+ ) =y =b+d =sinacos 8 — cosasin 3.

This proves the theorem (informally) in the case that «, 5 € (O, %) One can then show
that the theorem holds for all a, 8 € R by using the Basic Trigonometric Properties (2),
(3) and (4).

1.21 Theorem: (Double Angle Formulas) For all z,y € R we have

(1) sin2z = 2sinz cosx and cos2x = cos? —sin’x = 2cos?x — 1 = 1 — 2sin’ 2, and
1 2 1—cos2
(2) cos? z = w and sin’z = #

Proof: The proof is left as an exercise.

1.22 Theorem: (Trigonometric Functions)

(1) The function f : [0, 7] — [—1, 1] defined by f(x) = cosx is decreasing and bijective.
(2) The function g : [ — 5,%]| — [-1,1] given by g(z) = sin is increasing and bijective.
(3) The function h : ( -5, %) given by h(x) = tanx is increasing and bijective.

Proof: We omit the proof.

1.23 Definition: The inverses of the functions f, g and A in the above theorem are called
the inverse cosine, the inverse sine, and the inverse tangent functions. We write

fYz) = cos™tz, g7' =sin" 'z and h~'(z) = tan~' 2. By the definition of the inverse
function, we have



1.24 Definition: Let A and B be sets andlet c€ F. Let f: A— R and g: B — R. We
define the functions c¢f, f+g, f—9,f-g : ANB — R by
(cf)(z) =cf(x)

(f +9)(x) = f(z)+ g(x)

(f = 9)(x) = f(z) — g(x)

(f - 9)(x) = f(x)g(x)
for all z € AN B, and for C = {z € AN B|g(x) # 0} we define f/g: C — R by
S

(f/9)(x) = f(z)/9(z)

for all x € C.

1.25 Definition: A polynomial function (over R) is a function f : R — R which can
be obtained from the functions 1 and x using (finitely many applications of) the operations
cfy f+9, f—g, f-gand fog. In other words, a polynomial is a function of the form

n .
f(x)= > izt = co+ 17 + cox® + -+ + cpa™
i=0
for some n € N and some ¢; € F. The numbers ¢; are called the coefficients of the
polynomial and when ¢,, # 0 the number n is called the degree of the polynomial.

1.26 Definition: A rational function (over R) is a function f : A C R — R which can
be obtained from the functions 1 and x using (finitely many applications of) the operations
cfy f+g, f—g, f-g, f/g and fog. In other words, a rational function is a function of

the form
f(x) =p(z)/q(z)

for some polynomials p and gq.

1.27 Definition: The functions 1, z, /™ with 0 < n € Z, e*, Inz, sinz and sin™ 'z,

are called the basic elementary functions. An elementary function is any function
f: ACR — R which can be obtained from the basic elementary functions using (finitely
many applications of) the operations cf, f+g¢g, f —g, f-g, f/g and fog.

1.28 Example: The following functions are elementary
|$ | =V wzv
cos T = sin (x + %),

tan~ !z = sin ™! (L),
V14 a2
Vx+sinz
J(@) = ———
tan~!(Inz)

We shall see later that every elementary function is continuous in its domain, so any
function which is discontinuos at a point in its domain cannot be elementary.



Chapter 2. Limits of Sequences

2.1 Notation: We write N = {0,1,2,---} for the set of natural numbers (which
we take to include the number 0), ZT = {1,2,3,---} for the set of positive integers,
Z = {0,£1,+2,---} for the set of all integers, Q for the set of rational numbers and
we write R for the set of real numbers. We assume familiarity with the sets N, ZT, Z,
Q and R and with the algebraic operations +, —, X, = and the order relations <, <,
>, > on these sets.

2.2 Definition: Forp € Z, let Z>, = {k € Z|k > p}. A sequence in a set A is a function
of the form z : Z>, — A for some p € Z. Given a sequence z : Z>, — A, the k™ term of
the sequence is the element z; = z(k) € A, and we denote the sequence = by

(Tk)k>p = (Tlk > p) = (Tp, Tpi1, Tpra, -+ +).
Note that the range of the sequence (x)x>p is the set {zx}i>p = {i|k > p}.

2.3 Definition: Let (x)r>p be a sequence in R. For a € R we say that the sequence
(k) k>p converges to a (or that the limit of (xy)r>), is equal to a), and we write z, — a

(as k — 00), or we write lim xj = a, when
k—o0

Ve>03Ime Zsy, Yk €Z>, (k>m = |z, —a| <e).

We say that the sequence (z%)r>, converges (in R) when there exists a € R such that
(k) k>p converges to a. We say that the sequence (xj)r>, diverges (in R) when it does
not converge (to any a € R). We say that (z3)r>, diverges to infinity, or that the
limit of (zx)k>p is equal to infinity, and we write x — oo (as k — o0), or we write
lim z; = oo, when

k—o00
VreRdm e Z>, Vk € Z>, (kZm:>xk>T).

Similarly we say that (zj)r>, diverges to —oo, or that the limit of (xj)r>, is equal to

negative infinity, and we write x;, — —oo (as k — 00), or we write lim z; = —oo when
k— o0

VreRIAm € Zsp, Vhk € Zsy (k> m =z <r).

2.4 Example: Let (x)r>0 be the sequence in R given by zj = (_]j)k for k > 0. Show
that klim zr = 0.
—00

Solution: Note that for k > 2 we have |zj| = % = (%) (%) (%) (k 1) (%) < % . % = %.
Given € € R with € > 0, we can choose m € Zxy with m > 2 (by the Archimedean
Property of Z in R), and then for all k > m we have |z, — 0| = |z;| < + < 2 <e. Thus

lim x; = 0, by the definition of the limit.

k—oo

2.5 Example: Let (ax)r>0 be the Fibonacci sequence in R, which is defined recursively
by ap =0, a1 =1 and by ap = ax_1 + ar_2 for k > 2. Show that hm ap = 00

k— o0
Solution: We have ag = 0, a1 = 1, as = 1 and a3 = 2. Note that ap > k — 1 when
k € {0,1,2,3}. Let n > 4 and suppose, inductively, that a, > k — 1 for all k¥ € Z with
0<k<mn.Thena, =ap_1+a,—2>n—-2)+(n-3)=n+n—-5>n+4-5=n—1. By
the Strong Principle of Induction, we have a,, > n — 1 for all n > 0. Given r € R we can
choose m € Z>q with m > r 41, and then for all K > m we have ap, > k—1>m —1>r.
Thus lem ar = oo by the definition of the limit.



2.6 Example: Let x;, = (—1)* for k > 0. Show that (xy)x>o diverges.
Solution: Suppose, for a contradiction, that (zj)r>¢ converges and let a = hm xrr. By

taking € = 1 in the definition of the limit, we can choose m € Z so the for all k € N,
if & > m then |z — a| < 1. Choose k € N with 2k > m. Since |z, —a] < 1 and
Tor = (—1)2* = 1, we have |1 —a] < 1 so that 0 < a < 2. Since |r2x11 —a| < 1 and
Topp1 = (—1)%%T1 = —1, we also have | — 1 — a| < 1 which implies that —2 < a < 0. But
then we have a < 0 and a > 0, which is not possible.

2.7 Theorem: (Independence of the Limit on the Initial Terms) Let (zx)r>, be a sequence
in R.
(1) If ¢ > p and yx, = =z for all k > q, then (xy)r>p converges if and only if (yx)k>4

converges, and in this case lim zp = hm Yk -
k—o0

(2) If | > 0 and yx, = x4y for all k > p, then (z1)r>p converges if and only if (yi)r>p

converges, and in this case khm Ty = hm Yk -
— 00

Proof: We prove Part 1 and leave the proof of Part 2 as an exercise. Let ¢ > p and let
yr = x, for k > q. Suppose (zj)r>, converges and let a = klim xi. Let € > 0. Choose
— 00

m € Z so that for all k € Z>,, if Kk > m then |z —a| < e. Let k € Z>, with k& > m.

Since ¢ > p we also have k € Z>,, and so |yx — a| = |z — a| < e. Thus (yk)k>q converges
with hm yr = a. Conversely, suppose that (yx)r>, converges and let a = hm yr. Let
k—o0 k— oo

e > 0. Choose m; € Z so that for all k € Z>,, if & > m; then |yx — a| < e. Choose
m = max{mi,q}. Let k € Z>, with £ > m. Since kK > m, we have k > ¢ and k > m; and

so |z —a| = |yr — a| < e. Thus (xg)k>p converges with klim T = a.
- — 00

2.8 Remark: Because of the above theorem, we often denote the sequence (xy)x>, simply
as (x), omitting the initial index p from our notation. Also, in the statements of some
theorems and in some proofs we select a particular starting point, often p = 1, with the
understanding that any other starting value would work just as well.

2.9 Theorem: (Uniqueness of the Limit) Let (i) be a sequence in R. If (z1) has a limit
(finite or infinite) then the limit is unique.

Proof: Suppose, for a contradiction, that x; — oo and x — —oo. Since xp — oo we can
choose my € Z so that £ > m; = x;, > 0. Since x, — —oo we can choose my € Z so
that k > my = x;, < 0. Choose any k € Z>, with £ > m; and kK > mg. Then x5, > 0
and zp < 0, which is not possible.

Suppose, for a contradiction, that zp — oo and xp — a € F. Since xp — a we can
choose my € Z so that k > m; = |z — a| < 1. Since x — 0o we can choose my € Z
so that k > my = x, > a+ 1. Choose any k € Z>, with k > m; and k > ms. Then
we have |rp —al < 1 so that © < a + 1 and we have x; > a + 1, which is not possible.
Similarly, it is not possible to have x;, — —oc and xp — a € F.

Finally suppose, for a contradiction, that xx — a and x; — b where a,b € F with
a # b. Since x; — a we can choose my € Z so that k > m; = |z —a| < |a bl Since
xr — b we can choose mg € Z so that k > my = |z — b| < %. Choose any k € Z>,,
with £ > my and k > my. Then we have |z, — a| < bg“ and |x, — b < b_T“ and so, using
the Triangle Inequality, we have

|a—b|:|a—mk+xk—b|§|xk—a|+|mk—b|<|a—;b|+@:|a—b|,

which is not possible.



2.10 Theorem: (Basic Limits) For a € R we have

lim a=a, lim k=00 and lim — =0.
k—o0 k—o0 k—oo k

Proof: The proof is left as an exercise.

2.11 Theorem: (Operations on Limits) Let (x) and (yx) be sequences in R and let
c € R. Suppose that (xy) and (yi) both converge with x; — a and yy, — b. Then

(1) (cxy) converges with cxy — ca,

(2) (z + yi) converges with (xy + y) — a + b,

(3) (xx — yx) converges with (xx — yx) — a — b,

(4) (xxyx) converges with xyy, — ab, and

(5) if b # 0 then (xy/yx) converges with xy/yr — a/b.

Proof: We prove Parts 4 and 5 leaving the proofs of the other parts as an exercise. First
we prove Part 4. Note that for all k£ we have
|Zkyk — abl = |zryr — Tkb+ b — ab| < |xpyr — kb + |[2£b — ab| = |zk| lyr — b[ +[b]|z) — al.
Since x — a we can choose m; € Z so that k > m; = |z} — a| < 1 and we can choose
my € Z so that k > my = |2 —a| < Since yr — b we can choose mg € Z so
that k > mg = |yr, — b| < TTTan
have |z —a| <1, |2x — a| < gy and [2e — b < giap-
|zk| = |z —a+a| < |z —al + |a] < 1+ |a|. By our above calculation (where we found a
bound for |z,yr — ab|) we have

|[wryr — abl < [zrflyr — 0] + [bllzx — af < (1 + af)|yr — 0] + (1 + [b])|zx — a

< (1 + |a|)m + (1 + |b|)m = €.

AT
Let m = max{mj, mo, mz} and let k > m. Then we

Since |z — a| < 1, we have

Thus we have xxyr — ab, by the definition of the limit.
To prove Part 5, suppose that b # 0. Since yx — b # 0, we can choose m1 € Z so that
that £ > m; = |yp — b| < %. Then for k > m; we have

b
6] = 16— yi +yi| < 10— il + ux] < B+ |yx|

so that
b b
gl > bl = 5 =15 > 0.
In particular, we remark that when & > m; we have yi # 0 so that yik is defined. Note
that for all &k > m; we have
1 1‘_’b_yk’<|b_yk|_ 2

yr b

= < = 05 Yk — bl
lyel (o]~ LLogpp (B2

2
Let € > 0. Choose mgy € Z so that k > my = |y — b| < |b|T€. Let m = max{mq, mso}.

2 2
For k > m we have k > m; and k > mgy and so |y;€]>%and |y;€—b|<|b‘76andso

1 1 bl2
R P T O NI T . il S
U b’ = 2 |yk | [b]2 D)
. . 1 1 . . Te 1t ! o 1 _a
This proves that klglgo T b Using Part 4, we have klggo = klglgo (a:k —yk) =a- -y =7



2.12 Example: Let x, = for k£ > 0. Find klim L.
— 00

k241
2k2+k+3
R _ 4 (3)”
s =

TR = 3 g+ (1)
Limits 1 — 1, 2 — 2 and % — 0 together with Operations on Limits.

1402
2+40+3-02

Solution: We have xj, = 5 — = % where we used the Basic

2.13 Definition: The above theorem can be extended to include many situations involving
infinite limits. To deal with these cases, we define the set of extended real numbers to
be the set R

R =RU{—00,00}.

We extend the order relation < on R to an order relation on R by defining —oo < co and
—o0 < a and a < oo for all a € R. We partially extend the operations + and x to R as
follows: for a € R we define

ot+oo=00, 0+a=00, (—0)+ (—0)=—-00, (—0)+a,
0000 =00 ,(00)(—00) =—00, (—00)(—0) =00,
xifa>0 —oo if a > 0,
00-a= and (—oo)(a) =
-0 ifa<0 o if a < 0,

but other values, including oo + (—00), oo - 0 and —oo - 0 are left undefined in R. Ina

similar way, we partially extend the inverse operations — and + to R. For example, for
a € R we define

00— (—00) = 00, —00—00 = —00, 0—G = 00, —00—a = —00, A—00 = —00, a—(—00) = 00,
a 00 oo ifa >0 —0 —oo if a >0
— =0, — = and — =
o0 a —ooifa <0 a oo ifa <0

>

with other values, including co — oo, 2 and 5, left undefined. The expressions which are

left undefined in IA{, including

o0—o00, -0, ,

818

0o a
0’0’
are known as indeterminate forms.

2.14 Theorem: (Extended Operations on Limits) Let (xy) and (yx) be sequences in R.

A~

Suppose that lim zp = u and lim yr = v where u,v € R.
k—oo k—oo

(1) if u+ v is defined in R then klim (xk +yr) = u+ v,
—00
(2) if w — v is defined in R then klim (xk —yk) = u — v,
— 00
(3) if u- v is defined in R then klim (k- yr) = u-v, and
— 00

(4) if u/v is defined in R then klim (xk/yK) = u/v.
—00

Proof: The proof is left as an exercise.
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2.15 Theorem: (Comparison) Let (xy) and (yi) be sequences in R. Suppose that xy, < y
for all k. Then

(1) if zj; — a and yr — b then a < b,
(2) if x, — oo then y, — oo, and
(3) if yr, — —oo then z — —oo.

Proof: We prove Part 1. Suppose that x; — a and yi — b. Suppose, for a contradiction,

that a > b. Choose my € Z so that k > m; = |z — a] < ‘IT_b. Choose mo € Z so

that k > mo = |yx — b < %5°. Let k = max{my,ms}. Since |z —a| < %52, we have

T > a—“T_b = aT’Lb. Since |y, — b < “T_b, we have y, < b+“7_b = “TH’. This is not
possible since zp < yg.

2.16 Example: Let z;, = (2 +sink)Ink for £ > 1. Find lim Tk

Solution: For all £ > 1 we have sink > —1 so (2 4+ sink) > ; and hence z;, > 1 Ink.

Since xj > 1 Ink for all £ > 1 and 1 Ink — 5 -00=o00,it follows that zp — o by the
Comparlson Theorem.

2.17 Theorem: (Squeeze) Let (xy), (yx) and (zj) be sequences in R and let a € R.

(1) If xp, <y, < zi, for all k and xy, — a and zy, — a then y, — a.
(2) If x| < yi for all k and y,, — 0 then ) — 0.

Proof: We prove Part 1. Suppose that z; < y, < zi for all k, and suppose that z, — a
and zp — a. Let € > 0. Choose my € Z so that k > m; = |z — a] < ¢, choose my € Z
so that k > my = |z — a| < € and let m = max{my, ma}. Then for k > m we have
a—e<xp <yp <z <a+eandso |y, —al <e Thus yp — a, as required.

2.18 Example: Let z;, = % for k > 1. Find klim T
— 00

Solution: For all £ > 1 we have —3 < tan~ 1k < 5 and —1 <sink <1 and so

k—3% <k:+tan_1k:< k+ 3
2k:+1— 2k +sink — 2k—1"
k:+2

k+tan™
2k+sm k — 3

. : k—
As in previous examples, we have - 5 and - 5 , and so rp =

2k—|—1
by the Squeeze Theorem.
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2.19 Definition: Let (zx) be a sequence in R. For a,b € R, we say that the sequence
(zx) is bounded above by b when z;, < b for all k, and we say that the sequence (xy) is
bounded below by a when a < xj, for all k. We say (zj) is bounded above when it
is bounded above by some element b € R, we say that (zj) is bounded below when it
is bounded below by some a € R, and we say that (z) is bounded when it is bounded
above and bounded below.

2.20 Definition: Let (x) be a sequence in R. We say that (zj) is increasing (for £ > p)
when for all k,1 € Z>,, if k£ < then z;, < x;. We say that (z) is strictly increasing
(for k > p) when for all k,l € Z>,, if K <[ then z;, < ;. Similarly, we say that (z) is
decreasing when for all k,l € Z>,, if kK <[ the x;, > x; and we say that (z) is strictly
decreasing when for all k,l € Z>,, if k <[ the x;, > ;. We say that (x}) is monotonic
when it is either increasing or decreasing.

2.21 Theorem: (Monotonic Convergence) Let (x) be a sequence in R.

(1) Suppose (z) is increasing. If (z1) is bounded above then it converges, and if (xy) is
not bounded above then x; — 0o.

(2) Suppose (z) is decreasing. If (xy) is bounded below then it converges, and if (zy) is
not bounded below then x;, — —o0.

Proof: The statement of this theorem is intuitively reasonable, but it is quite difficult to
prove. In most calculus courses this theorem is accepted axiomatically, without proof. A
rigorous proof is often provided in analysis courses.

2.22 Example: Let 1 = % and let xx11 =5 — % for £ > 1. Determine whether (zy)
converges, and if so then find the limit.

Solution: Suppose, for now, that (xx) does converge, say xr — a. By Independence of

Converge on Initial Terms, we also have z; 11 — a. Using Operations on Limits, we have

a= lim x4 = lim (5—i) =5—4%. Since a = 5— 4, we have a? = 5a—4 or equivalently
k— o0 k— oo Tk @ @

(a —1)(a —4) = 0. We have proven that if the sequence converges then its limit must be
equal to 1 or 4.

The first few terms of the sequence are x; = %, ro = 2 and x3 = 3. Since the terms
appear to be increasing, we shall try to prove that 1 <z, < x,4+1 <4 for all n > 1. This
is true when n = 1. Suppose it is true when n = k. Then we have

l1<zgp<tp1 <4d=1>L>_L >l _ygy<_ 2+ <__4 <_j
<y < < > = <

k — Tpy1 — 4 Tk — Tkl —

= 1<5- - <5- - <4=1<uapy <zp2 < 4

Tk+1
Thus, by the Principle of Induction, we have 1 <z, <z, <4 for alln > 1.
Since z,, < x,41 for all n > 1, the sequence is increasing, and since z,, < 4 for all
n > 1, the sequence is bounded above by 4. By the Monotone Convergence Theorem, the
sequence does converge. By the first paragraph, we know the limit must be either 1 or 4,
and since the sequence starts at x1 = 2 and increases, the limit must be 4.

12



Chapter 3. Limits of Functions and Continuity

3.1 Definition: Let A C R and let a € R. We say that a is a limit point of A when
Vé>03dxeA 0< |z —al <.

We say that a is a limit point of A from below (or from the left) when
Vo >0dreAd a—d<zx<a.

We say that a is a limit point of A from above (or from the right) when
Vo>0dreA a<z<a+d.

We say that A is not bounded above when VmeR dr€ A x > m, and we say that A
is not bounded below when VmeR dJzc A =z < m.

3.2 Example: Let A be a finite union of non-degenerate intervals in R (a non-degenerate
interval is an interval which contains more than one point). The limit points of A are
the points a € R such that either a € A or a is an endpoint of one of the intervals. The
limit points of A from below are the points a € R such that either a € A or a is the right
endpoint of one of the intervals. The set A is not bounded above when one of the intervals
is of one of the forms (a, o), [a,0) or (—oo,o0) = R.

3.3 Definition: Let A C R and let f: A — R. When a € R is a limit point of A, we
make the following definitions.

(1) For b € R, we say that the limit of f(z) as x tends to a is equal to b, and we write
lim f(z) =b or we write f(z) — b as x — a, when
T—a

Ve>036>0VzeA (0< |z —a| <d = |f(z) — b <e).
(2) We say the limit of f(x) as x tends to a is equal to infinity, and we write lim f(x) = oo,

Tr—a
or we write f(z) — oo as ¢ — a, when

VreR30>0VzeA (0< |z —a| <0 = f(z)>r).
(3) We say that the limit of f(z) as x tends to a is equal to negative infinity, and we
write lim f(z) = —o0, or we write f(x) = —o0 as © — a, when
r—a

VreR 36>0VzeA (0< |z —a| <d = f(z) <r).

When q is a limit point of A from below and b € R, we make the following definitions.
(4) lim f(z)=b <= Ve>036>0VzeA (a—d<z<a= [f(z)—Db] <e).

(5) Il_;r?l_ f@)=00 <= VWeRII>0Vzed (a—d<z<a= f(z)>r).

(6) zlzrgl_ f@)=-00 <= WeR3I>0Vzcd (a—d<z<a= f(z)<r).

When a is a limit point of A from above and b € R, we make the following definitions.
(7) mli>r£1+f(a:) =b < Ve>036>0Vz€d (a<z<a+d= |f(z)—b<e).

(8) mligaf(x) =00 <= WeRI>0Vred (a<z<a+d= f(z)>r).

9) mli)r£1+f(x):—oo — VreR3I6>0Vzed (a<z<a+d= f(z)<r).
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When A is not bounded above and b € R, we make the following definitions.
(10) xlg{)lof(m) =b < Ve>03ImecRVzeA (z >m = |f(z) — b <e¢).
(11) Ilglgof(w) =0 <= VreR3ImeRVzeA (z>m = f(z)>r).
(12) xl;rgof(x) =00 <= VreR3ImeRVzed (z>m = f(z)<r).

When A is not bounded below and b € R, we make the following definitions.
(13) xgrfloof(x) =b <<= Ve>0dmeRVzcA (:1; <m=|f(z) b < e).
(14) mli)riloof(x) =0 <= VreRdImeRVzecAd (x <m = f(x) > r).
(15) xEIow(x) =-0 <= VreR3ImeRVzeA (z <m = f(z)<r).

2422 -3
3.4 Example: Let f(x) = HQ—ZC Show that lim f(x) = 2.
e —1 z—1
Solution: Note that for x # 1 we have
| 22420-3 | @+3)(z—1) _ |zt3 _ |z4+3-2z—2| _ |—z41| _ |z—1]
|f(5‘7) _2| - ;2_1 _2‘ — | (D) (z—1) _2‘ - a:il _2’ - +gc+1 ‘ - ac++1 ‘  Jz+1]”

Let € > 0. Choose § = min{l,¢e}. Let 0 < |z — 1] < 4. Since 0 < |x — 1| we have z # 1

I;;H Since |z — 1] < 6 <1 we have 0 < x < 3 so that
1 <x+1, and hence |f(z) — 2| = Ii;ﬂ < |z — 1]. Finally, since |z — a|] < d < € we have

|f(z) —2| <|x—1| <e. Thus lim1 f(z)=2.
z—

so, as shown above, |f(z) — 2| =

3.5 Theorem: (Two Sided Limits) Let A C R, let f : A — R and let a € R. Suppose
that a is a limit point of A both from the left and from the right. Then for u € R we have
ligl f(z) =w if and only if lim f(x)=u = lim+ f(z).

r—a r—a~ r—a

Proof: We prove the theorem in the case that u = b € R. Suppose that lim f(x) =b € R.
Tr—a

Let € > 0. Choose § > 0 so that for all z € A, if 0 < |x — a|] < § then |f(x) — b| < e. For
x € Awitha—6 <x <awehave 0 < |z —a| <dandso |f(x)—b] <e This shows that
lim f(z)="0. Forx € Awitha <z < x4+ we have 0 < |[x—a| < § and so |f(x) —b| < e.

T—a~—

This show that lim f(x) =b.

z—at

Conversely, suppose that lim f(z) =b = lim+ f(z). Let e > 0. Since f(x) — b
T—a

r—a—
as * — a~, we can choose §; > 0 so that for all z € A with a —§ < a < a we have

|f(z) —b] < e Since f(x) — b as x — at we can choose d; > 0 so that for all z € A
with @ < = < a + 2 we have |f(z) — b] < e. Let 6 = min{d;,d2}. Let z € A with
0 < |z —a| < §. Either we have x < a or we have x > a. In the case that z < a we have
a—08 <a—0<z<aandso |f(x)— bl <e (by the choice of ;). In the case that z > a
we have a < z < a+ 6 < a+ 6 and so |f(x) — b| < € (by the choice of d2). In either case
we have |f(x) — b| < ¢, and so il_)na f(x) = b, as required.
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3.6 Remark: For the sequence (zx)r>p in R given by z = f(k) where f : Z>, — R,
the definitions (10), (11) and (12) agree with our definitions for limits of sequences. Thus
limits of sequences are a special case of limits of functions. The following theorem shows
that limits of functions are determined by limits of sequences.

3.7 Theorem: (The Sequential Characterization of Limits of Functions) Let A C R, let
f+A—= R, and let u € R.

(1) When a € R is a limit point of A, lim f(x) = w if and only if for every sequence (zy)

r—ra
in A\ {a} with x), — a we have f(x) — u.

(2) When a is a limit point of A from below, lim f(x) = u if and only if for every sequence
r—a—

(xg) in {x € Alx < a} with x}, — a we have f(x) — u.

(3) When a is a limit point of A from above, lim+ f(x) = w if and only if for every sequence
Tr—a

(xg) in {x € Alx > a} with x}, — a we have f(x) — u.

(4) When A is not bounded above, wlg{)lo f(x) = u if and only if for every sequence (xy,)
in A with z; — oo we have f(xy) — u.

(5) When A is not bounded below, mEIEloof(m) = u if and only if for every sequence (xy)

in A with x;, — —oo we have f(xy) — u.

Proof: We prove Part 1 in the case that u = b € R. Let a € R be a limit point of A.
Suppose that lim f(z) = b € R. Let (z) be a sequence in A\ {a} with zx — a. Let
T—a

€ > 0. Since lim f(x) = b, we can choose § > 0so that 0 < [z —a| <d = |f(z) =b| <e.
r—a

Since x, — a we can choose m € Z so that k > m = |z — a| < §. Then for k > m, we
have |z — a] < § and we have z; # a (since the sequence (zy) is in the set A\ {a}) so
that 0 < |z — a| < 0 and hence |f(x) — b| < e. This shows that f(zx) — b.

Conversely, suppose that ilg}l f(z) # b. Choose ¢y > 0 so that for all 6 > 0 there
exists € A with 0 < |z —a| < 6 and |f(z) — b] > €. For each k € ZT, choose =}, € A
with 0 < |z — a| < ¢ and |f(2x) — b] > €o. In this way we obtain a sequence (zj)r>1 in
A\ {a}. Since |z —a| < 1 for all k € ZT, it follows that zx — a (indeed, given € > 0
we can choose m € Z with m > % and then k > m = |z, —a| < % < % < €). Since
|f(xk) — b > € for all k, it follows that f(xx) 4 b (indeed if we had f(zr) — b we could
choose m € Z so that k > m = |f(xx) — b| < €y and then we could choose k = m to get

| f(zk) — b] < €0).

3.8 Remark: It follows from the Sequential Characterization of Limits of Functions that
all of our theorems about limits of sequences imply analogous theorems in the more general
setting of limits of functions. We list several of those theorems and give one sample proof.

3.9 Theorem: (Local Determination of Limits) Let A C B C R, let a be a limit point of
A (hence also of B) and let f : A — R and g : B — R with f(z) = g(z) for all x € A.

Then if lim g(z) = u € R then lim f(z) = u.
r—ra r—ra
Similar results holds for limits x — a® and = — +00.

3.10 Theorem: (Uniqueness of Limits) Let A C R, let a be a limit point of A, and let
f:A— R. Foru,v € R, if lim f(z) = w and lim f(x) = v then v = v. Similar results
r—a Tr—a

hold for limits © — a* and z — +oo.

15



3.11 Theorem: (Basic Limits) Let F' be a subfield of R, and let A C F'. For the constant
function f : A — F given by f(x) = b for all x € A, we have

lim f(z) =0, lim f(x)=5b, lim f(x)=0b, lim f(z)=0 and lim f(x)=0"0,
r—sa+t rT—a— —00 T——00

T—a

and for the identity function f : A — F given by f(x) = x for all x € A we have

lm f(z)=a, lm f(z)=a, lim f(z)=a, lm f(z)=co and lim f(z)= oo

whenever the limits are defined.

3.12 Theorem: (Extended OperatiAons on Limits) Let A C R, let f,g: A — R and let
a be a limit point of A. Let u,v € R and suppose that il_rgl f(z) = u and ;gr(ll g(z) = v.
Then

(1) if u+ v is defined in R then gllirb(f +g)(x) =u+w,

(2) if u — v is defined in R then :llgz(f —g)(x) =u—wv,

(3) if u- v is defined in R then :llgb(fg)(x) =u- v, and

(4) if u/v is defined in R then glg}l(f/g)(ac) =u/v.

Similar results hold for limits x — a* and x — %oo0.

Proof: We prove Part 4. Suppose that u/v is defined in R. Let (zx) be any sequence in
A\ {a} with z;, — a. By the Sequential Characterization of Limits, since lim f(z) = u we
Tr—a

have f(zr) — u, and since lim g(x) = v we have f(z;) — v. By Extended Operations on
Tr—a

Limits of Sequences (Theorem 1.14), since f(zy) — w and g(zx) — v and u/v is defined

in R, we have (f/g)(zs) = % — u/v. Thus (f/g)(xx) — u/v for every sequence (x)

in A\ {a} with ; — a. By the Sequential Characterization of Limits, it follows that
lim (7/9)(0) = u/v.
3.13 Theorem: (The Comparison Theorem) Let A C F, let f,g: A — R and let a € R
be a limit point of A. Suppose that f(x) < g(z) for all x € A. Then
(1) if lim f(x) = v and lim f(z) = v with u,v € R, then u < v,
T—a Tr—a
(2) if lim f(x) = oo then lim g(z) = oo, and
T—a r—a
(3) 1f£1_>nzg(x) = —o0 then a%l—%g(x) = —00.
Similar results hold for limits © — a® and x — 4o0.

3.14 Theorem: (The Squeeze Theorem) Let A C R, let f,g,h: A — R, and let a € R
be a limit point of A.

(1) If f(z) < g(z) < h(zx) for all z € A and liin flz)=0b= li_r>n h(zx), then li_r>n g(z) =b.
(2) If | f(x)| < g(x) for all x € A and lim g(z) = 0 then lim f(x) = 0.
T—a Tr—a

Similar results hold for limits x — a* and z — +o0.
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3.15 Definition: Let A C R, and let f: A — R. For a € A, we say that f is continuous
at a when
Ve>0 36 >0 Vz e A (Jzr—a|<déd = |f(z)— fla)| <e).

We say that f is continuous (on A) when f is continuous at every point a € A.

3.16 Theorem: Let AC R, Ilet f: A— R and let a € A. Then

(1) if a is not a limit point of A then f is continuous at a, and
(2) if a is a limit point of A then f is continuous at a if and only if lim f(z) = f(a).

Tr—a

Proof: The proof is left as an exercise.

3.17 Theorem: (The Sequential Characterization of Continuity) Let A C R, let a € A,
and let f : A — R. Then f is continuous at a if and only if for every sequence (zj) in A
with xp, — a we have f(x) — f(a).

Proof: Suppose that f is continuous at a. Let (x) be a sequence in A with 2, — a. Let
€ > 0. Choose § > 0 so that for all z € A we have |z —a| < § = |f(z) — f(a)| < e.
Choose m € Z so that for all indices k we have k > m = |z, —a| < 6. Then when k > m
we have |z — a| < § and hence |f(zr) — f(a)| < e. Thus we have f(xy) — f(a).

Conversely, suppose that f is not continuous at a. Choose ¢y > 0 so that for all § > 0
there exists z € A with |z —a| < ¢ and |f(z) — f(a)| > €. For each k € Z™, choose
xy, € A with |2y, —a| < § and |f(z)) — f(a)| > €. Consider the sequence (z}) in A. Since
2k, —a| < 4 for all k € Z*, it follows that z — a. Since |f(z)) — f(a)| > € for all
k € Z*, it follows that f(xy) 4 f(a).

3.18 Theorem: (Operations on Continuous Functions) Let A C R, let f,g : A — R,
let a € A and let ¢ € R. Suppose that f and g are continuous at a. Then the functions
cf, f+g9, f—g and fg are all continuous at a, and if g(a) # 0 then the function f/g is
continuous at a.

Proof: The proof is left as an exercise.

3.19 Theorem: (Composition of Continuous Functions) Let A,B C R, let f : A - R
and g: B— R, andlet h=go f:C — R where C = AN f~Y(B).

(1) If f is continuous at a € C and g is continuous at f(a), then h is continuous at a.

(2) If f is continuous (on A) and g is continuous (on B) then h is continuous (on C').

Proof: Note that Part 2 follows immediately from Part 1, so it suffices to prove Part 1.
Suppose that f is continuous at a € A and g is continuous at b = f(a) € B. Let (xx)
be a sequence in C' with z; — a. Since f is continuous at a, we have f(xy) — f(a) = b
by the Sequential Characterization of Continuity. Since ( f (xk)) is a sequence in B with
f(zr) — b and since g is continuous at b, we have g(f(zx)) — ¢(b) by the Sequential
Characterization of Continuity. Thus we have h(zx) = g(f(zx)) = 9(b) = g(f(a)) = h(a).
We have shown that for every sequence (xj) in C' with z; — a we have h(zy) — h(a).
Thus h is continuous at a by the Sequential Characterization of Continuity.
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3.20 Theorem: (Functions Acting on Limits) Let A, B C R,let f: A—R,letg: B— R

and let h = go f : C — F where C = AN f~Y(B). Let a be a limit point of C' (hence

also of A) and let b be a limit point of B. Suppose that lim f(z) = a and lin}Jg(y) =c.
r—a y—

Suppose either that f(x) # b for all x € C'\ {a} or that g is continuous at b € B. Then
lim h(z) = ¢

Tr—a

Analogous results hold, dealing with limits  — a*, x — +o00, y — b and y — +o0.

Proof: The proof is left as an exercise. It is similar to the proof of the Composition of
Continuous Functions Theorem.

3.21 Definition: The functions 1, z, {/z with n € Z*, €%, Inz, sinz and sin~!z,
are called the basic elementary functions. An elementary function is any function
f:AC R — R which can be obtained from the basic elementary functions using (finitely
many applications of) the operations ¢f, f+g¢, f —g, f-g, f/g and fog.

3.22 Example: Each of the following functions f(x) is elementary: f(x) = |z| = Va2,

f(x) = cosz = sin(z+ %), f(z) = tanz = 2L f(z) = tan 'z = sin_1<

T
Vitz2 )’
VT +sin x

e
tan—!(Inz) *

f(x) = 2% = e*™% where a € R, f(x) = a® = ¢*™% where a > 0, and f(z) =

3.23 Note: We shall assume familiarity with exponential, logarithmic, trigonometric and
inverse trigonometric functions. In particular, we shall assume that they are known to be
continuous in their domains, (and it follows that every elementary function is continuous
in its domain). We shall also assume that their asymptotic behaviour, the intervals on
which they are increasing and decreasing, and all of their usual algebraic identities are
known. A review of this material can be found in Chapter 1.

A rigorous proof that these basic elementary functions are continuous, and that they
satisfy their usual well-known properties, is quite long and difficult (and we shall not
give a proof in this course). The main difficulty lies in giving a rigorous definition for
each of the basic elementary functions. In most calculus courses, we define exponential
and trigonometric functions informally. We might define the function f(z) = e* to be
the function with f(0) = 1 which is equal to its own derivative, but we do not ever
prove rigorously that such a function actually exists. We might define the sine and cosine
functions by saying that for § > 0, when we start at (1,0) and travel a distance 6 units
counterclockwise around the unit circle 22 + 2 = 1, the point at which we arrive is (by
definition) the point (z,y) = (cos#,sinf), but we have not yet rigorously defined the
meaning of distance along a curve. We use these informal definitions to argue, informally,
that % sinx = cosx and % cosx = —sinx and then we argue that because e”, sinx and
cos x are differentiable, therefore they must be continuous.

There are various possible ways to define exponential and trigonometric functions
rigorously. One way is to wait until one has rigorously defined power series and then
define

= 1 (-1
Z_: nl ", sinx = Z (2n+)1),x , COST = Z (2n)' x"
If we define e, sinz and cos z using these formulas, then one can prove (rigorously) that

they are differential and continuous, and one can verify (although it is quite time consuming
to do so) that they satisfy all of their usual well-known properties.
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3.24 Example: For each of the following sequences (xj)i>0, evaluate lim xy, if it exists.

k— o0
(a) @), = YE (b) @k = gy (c) o = sin~* (k= VI +F)

. /352 \/ 3+ V/
Solution: For Part (a), we have xj = iﬁ_;’l = 1+2£2 — 143;-8 = /3 where we used
k

Basic Limits, Extended Operations on Limits, the fact that /x is continuous, and the
Sequential Characterization of Limits (Since x is continuous at 3 we have lin:13 vz =3,
T—

and since 3 + % — 3 we have klim \/3+ k% = lir% Vv = V/3 by the Sequential Charac-
—00 T—

terization of Limits) .

1
_ 143k __ 13 . 1.1/3 0+3 | 1. _
For Part (b), z = Ve~ /5 kP — gpEs= - 00 = —1-00 = —oo where
k

we used Basic Limits, Extended Operations, the continuity of </x, and the Sequential
Characterization of Limits

12 et Uit ) R L | -1 1
For Part (c), note that k—vk? + k = FVITTE T RVRTTE i ATl — T

and so 75, = sin”! (k; —Vk?2 — k:) — sin”! (— %) =-I
3.25 Exercise: Evaluate each of the following limits, if they exist.

2V -2 2
(a) lim ve+ -2 (b) lim sin_l( - x—}—?)) (c¢) lim e/

r—3 3 —x rx—1 r—1 x2—1 x—0
1 3_2 2 2_2 o
(@) Tim _CEEDVE g, YRR T2t () lim L 23
z—00 \/Ax3 — 2z + 1 e—1- 224 2x—3 1+ 23 4+ 422 + 5x 4+ 2

3.26 Theorem: (Intermediate Value Theorem) Let I be an intervalin R andlet f : I — R
be continuous. Let a,b € I with a <b and let y € R. Suppose that either f(a) <y < f(b)
or f(b) <y < f(a). Then there exists z € [a,b] with f(z) = y.

Proof: Like the Monotone Convergence Theorem, the statement of this theorem is in-
tuitively reasonable, but it is quite difficult to prove, and in most calculus courses this
theorem is accepted axiomatically, without proof.

3.27 Example: Prove that there exists z € [0, 1] such that 3z — 23 = 1.

Solution: Let f(z) = 3z — 3. Note that f is continuous (it is an elementary function) with
f(0) =0 and f(1) = 2 and so, by the Intermediate Value Theorem, there exists z € [0, 1]

such that f(z) = 1. We remark that in fact f(z) =1 when z = 2cos (7).

3.28 Definition: Let A C R, and let f: A — R. For a € A, if f(a) > f(x) for every
x € A, then we say that f(a) is the maximum value of f and that f attains its maximum
value at a. Similarly for b € A, if f(b) < f(x) for every x € A then we say that f(b) is the
minimum value of f (in A) and that f attains its minimum value at b. We say that f
attains its extreme values in A when [ attains its maximum value at some point a € A
and f attains its minimum value at some point b € A.

3.29 Theorem: (Extreme Value Theorem) Let a,b € R with a < b, and let f : [a,b] = R
be continuous. Then f attains its extreme values in [a, b].

Proof: Like the Monotone Convergence Theorem and the Intermediate Value Theorem,
the statement of this theorem seems reasonable, but it is difficult to prove.
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Chapter 4. Differentiation

4.1 Definition: For a subset A C R, we say that A is open when it is a union of open
intervals. Let A C R be open, let f: A — R. For a € A, we say that f is differentiable
at a when the limit

@) - fa)

r—a T —a

exists in R. In this case we call the limit the derivative of f at a, and we denote to by
f'(a), so we have

T—a Tr—a
We say that f is differentiable (on A) when f is differentiable at every point a € A. In
this case, the derivative of f is the function f’: A — R defined by

o) — 1im £ = @)

Uu—T u —I
When [’ is differentiable at a, denote the derivative of f’ at a by f”(a), and we call
f"(a) the second derivative of f at a. When f”(a) exists for every a € A, we say that
[ is twice differentiable (on A), and the function f” : A — R is called the second
derivative of f. Similarly, f"/(a) is the derivative of f” at a and so on. More generally,

for any function f : A — R, we define its derivative to be the function /' : B — R
where B = {a € A} f is differentiable at a}, and we define its second derivative to be

the function f”: C'— R where C = {a € B}f’ is differentiable at a} and so on.

4.2 Remark: Note that
L f@) = @) . flath) o)

z—a T —a h—0 h

To be precise, the limit on the left exists in R if and only if the limit on the right exists in
R, and in this case the two limits are equal.

4.3 Note: Let A C R be open, let f: A — R, and let a € A. Then

f is differentiable at a with derivative f'(a) = lim w = f'(a)
< Ve>039>0VzxecA (0< |z —al <d = 'w — f'(a) <e)
— Ve>036>0VzrecA <0 <lzr—al<d= 'f(x) _f<a;__‘];/(a)(x_a) < e)

= Ve>030>0VreA (o <lw—al <6 = |f(z) - fla) - f'(a)(z —a)| < eyx—a\)

We can also simplify this last expression a little bit by noting that when x = a we have
|f(z) = f(a) = f'(a)(x — a)| = 0 = €|z — al, so we can replace inequalities by equalities
and say that f is differentiable at a if and only if

Ve>039>0VreA (\x—a| <0 = |f(z)—l(z)| < e|x—a|>
where [ : R — R is given by I(z) = f(a) + f'(a)(z — a).
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4.4 Definition: When f : A — R is differentiable at a with derivative f’(a), the function
l(z) = f(a) + f'(a)(z — a)

is called the linearization of f at a. Note that the graph y = I(x) of the linearization is
the line through the point (a, f(a)) with slope f’(a). This line is called the tangent line
to the graph y = f(x) at the point (a, f(a)).

4.5 Theorem: (Differentiability Implies Continuity) Let A C R be open, let f : A — R
and let a € A. If f is differentiable at a then f is continuous at a.

Proof: We have
(z—a)— f(a)-0=0 asx —a
and so

f(x) = (f(z) = f(a)) + fla) — 0+ f(a) = f(a) asz — a.
This proves that f is continuous at a.

4.6 Theorem: (Local Determination of the Derivative) Let A,B C R be open with
ACB,let f:A—Randg:B— R wih f(z) =g(z) for all x € A. and let a € A. Then
f is differentiable at a if and only if g is differentiable at a and, in this case, f'(a) = ¢'(a).

Proof: The proof is left as an exercise.
4.7 Theorem: (Operations on Derivatives) Let A C R be open, let f,g : A — R, let
a € A, and let ¢ € R. Suppose that f and g are differentiable at a. Then
(1) (Linearity) the functions cf, f + g and f — g are differentiable at a with
(cf)(a) =cf(a), (f+9)(a)=Ff(a)+¢'(a), (f—9)(a) = f(a) - g'(a),
(2) (Product Rule) the function fg is differentiable at a with
(f9)'(a) = f(a)g(a) + f(a)g'(a),
(3) (Reciprocal Rule) if g(a) # 0 then the function 1/g is differentiable at a with
o g'(a)
<g> W=
(4) (Quotient Rule) if g(a) # 0 then the function f/g is differentiable at a with
Y f'(a)g(a) = f(a)g'(a
(_) (a) = 119 2( )
9 g(a)
Proof: We prove Parts (2), (3) and (4). For x € A with = # a, we have
(f9)(x) = (f9)(a) _ f(z)g(z) — f(a)g(a)

_ f(@)g(x) — f(x)g(a) + f2)g(a) — fla)g(a)
— f(z)- g(x) — g(a) +g(a)- f(z) — f(a)

— f(a) - g'(a) +g(a) - f'(a) asz— a.
Note that f(x) — f(a) as * — a because f is continuous at a since differentiability implies
continuity. This proves the Product Rule.
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Suppose that g(a) # 0. Since g is continuous at a (because differentiability implies
continuity) we can choose § > 0 so that |z —a| < = |g(z) — g(a)| < @ and then

when |z — a| < 6 we have |g(x)| > @ so that g(z) # 0. For z € A with |x —a|] < § we
have
1 — (1L 1 1
H@-()@ - 1 sw-g@ 1,
- : — 2 g (a)
x——a T —a g(x)g(a) T—a g(a)

as x — a. This Proves the Reciprocal Rule.

Finally, note that Part (4) follows from Parts (2) and (3). Indeed when g(a) # 0, we

have
(D w=(r2) @=r@-G)+1@ ()@
P () _ f'(@)gla) ~ f(a)g/(0)
= 7)o+ fla) N = SR

4.8 Theorem: (Chain Rule) Let A,B C R be open, let f : A — R, let g: B — R and
let h=gof:C— R where C = AN f~1(B). Let a € C and let b= f(a) € B. Suppose
that f is differentiable at a and g is differentiable at b. Then h is differentiable at a with

h'(a) =g'(f(a)) f'(a).
Proof: We provide an explanation which can be converted (with a bit of trouble) into a
rigorous proof. When z € A with z # a and y = f(z) € B wih y # b we have

h(z) —ha)  g(f(@) —g(f(a)  gly) — g(b)

! _ g(y)—g(_b) y=b _ g(y)_—g(b) f(z) = f(a)
y—b r—a y—>b r—a

—g'(b) f'(a) =g (f(a))  f'(a) as 2 —a
because as © — a, since f is continuous at a we also have f(x) — f(a), that is y — b.

We remark that when one tries to make this argument rigorous, using the e-¢ definition
of limits, a difficulty arises because x # a does not imply that y # b.

4.9 Definition: Recall that when f: A C R — R, we say that f is nondecreasing (on A
when for all z,y € A, if x <y then f(z) < f(y), we say that f is (strictly) increasing (on
A) when for all z,y € A, if x <y then f(z) < f(y), we say that f is (strictly) decreasing
(on A) when for all z,y € A, if z < y then f(z) > f(y), and we say that f is (strictly)
monotonic (on A) when either f is strictly increasing on A or f is strictly decreasing on

A.

4.10 Theorem: (The Inverse Function Theorem) Let I be an interval in R, let f : I — R,
let J = f(I), and let a be a point in I which is not an endpoint.

(1) If f is continuous then its range J = f(I) is an interval in R.

(2) If f is injective and continuous then f is strictly monotonic.

(3) If f : I — J is strictly monotonic, then so is its inverse g : J — 1.
(4) If f is bijective and continuous then its inverse g is continuous.

(5) If f is bijective and continuous, and f is differentiable at a with f'(a) # 0, then its
inverse g is differentiable at b = f(a) with ¢'(b) = ﬁ

Proof: This theorem is quite difficult to prove and we omit the proof.
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4.11 Theorem: (Derivatives of the Basic Elementary Functions) The basic elementary
functions have the following derivatives.

(1) (%) = az® ! where a € R and x € R is such that ™! is defined,

(2) (a*) =Ilna-a”® Wherea>0anda:€Rand
(log, z)' = = - = where 0 < a # 1 and x > 0, and in particular
(e*) =€ for all z € R and (Inz)’ = < for all z > 0,
(3) (sinz)’ = cosx and (cosz) = —sinz for all v € R, and
(tanz)" = sec® z and (secx)’ = secx tanx for all x € R with ¢ # § + km, k € Z,
(Cotx) = —CSCQCL‘ and (cscx) = —cotx cscx for all x € R with © # © + kn, k € Z,
(4) (sin~tz) = m2 and (cos™!tz) = \E_—lx2 for |z| < 1,
(sec™tz) = \/7_ and (csc™lx) = a:\/;—;i for |x| > 1, and
(tan™! )—H_Qa,nd(cot1 ):1+2forall:1:€R

Proof: First we prove Part 1 in the case that a € Q. When n € Z1 and f(z) = 2™ we
have

f(u) — f(z) out—a” (u— x)(un_l +ur 2+ 32 4+ xn—l)

u—x u—x u—=
:u”_l—|—u"_2x—|—un_3$2+"'+l’n_1 szt asu— .

This shows that (z")’ = na™~! for all x € R when n € ZT. By the Reciprocal Rule, for
x # 0 we have

= (o) = -

x’I’L

The function g(x) = /™ is the inverse of the function f(z) = ™ (when n is odd, z'/™

is defined for all 2 € R, and when n is even, 2!/ is defined only for z > 0). Since
f'(z) = (2™) = na""! we have f/(x) = 0 when x = 0. By the Inverse Function Theorem,
when = # 0 we have

1 1 1 1 1
1/n\t _ 1 - . o o 1 =—1
x =4 (z) = = = = =
NI = @) T nger T @ e
Finally, when n € Z* and k € Z with ged(k,n) = 1, by the Chain Rule we have
(:Uk/”)’ = ((xl/n)k)/ = k(l’l/n)k_l(f}?l/n)/ = k.’]?% . %.’EliTn = %[13%_1.

We have proven Part 1 in the case that a € Q.
Next we shall prove Part 2. For f(z) = a” where a > 0, we have

fl+h)—fz) o™ —a® a%a" —a” _ e ah —1

n  h h T

and so we have f'(z) = ax<}lllr% a"— ) provided that the limit exists and is finite. For
%
g(x) = log, x, where 0 < a # 1 and x > 0, we have

gl@+h)—g(x) log,(x+h)—log,x log, (“£") log, (1 +%)
h N h h - T -

= L.log, (144)*/"

][>

and so we have ¢'(z) = 1 -log, ( hm (1+2 )m/ h) provided the limit exists and is finite.
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By letting u = % we see that

lim (14 2)"" = lim (1+1)" =

h—0t U—00

by the definition of the number e. By letting u = —%, a similar argument shows that

lim (1+2)"" = 1im (1-1) " =

h—0— U— 00

Thus the derivative ¢'(x) does exist and we have

im (1+%)x/h>:%10gae: L. lne _ _1

1 T o
h—0 x na r Ina

(log, z)’ = g'(x) = L log, (

Since g(x) = log, x is differentiable with ¢’(z) # 0 it follows from the Inverse Function
Theorem that f(x) = a® is differentiable with derivative
1 1
(a®) = f'(x) = = =Ina- f(z) =Ilna-a”.
g @) o

This proves Part 2.
Now we return to complete the proof of Part 1, in the case that a ¢ Q. When a > 0

we have a® = e*'¢ for all x > 0 and so by the Chain Rule

%) = ealnac ’:ealnac alnz) = 2% . & :CLIL’a_l.
T

Let us move on to the proof of Part 3. We shall need two trigonometric limits which we
shall explain informally (non-rigorously) with the help of pictures. Consider the following
two pictures, the first showing an angle 6 with 0 < 6 < 7 and the second with —5 < 6 < 0.
In both diagrams, the circle has radius 1 and s = sinf and ¢t = tan 6.

s| 6

|s]{16]

In the first diagram, where 0 < 6 < 3, we have sinf) < 6§ < tan6, and dividing by
sinf (which is positive) gives 1 < size < colsa' In the second diagram, where —3 <
6 < 0, we have —sinf < —0 < —tan6, and dividing by —siné (which is positive) gives

1< %2 < 19. In either case, taking the reciprocal gives cosf < 8¢ < 1. Since

sin 6 cos 0
t%im% cosf = cos(0) = 1, it follows from the Squeeze Theorem that
—
lim 520 _
0—0

From this limit we obtain the second trigonometric limit,

. 1 —cosf . 1 — cos?6 . sinf sin 0 1 0
m ——— = |liIm ——— = |l1m . — . = 0.
6—0 0 0—00 (1 +cosf) 6—0 6 1+ cosb

[V}
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Using the above two trigonometric limits, we have

.+ .. sin(z+h)—sinz . sinxcosh — coszsinh —sinx
(sinz)’ = lim = lim
h—0 h h—0 h
. sin h . 1 —cosh
= lim ( cosz - —— —sinx - ——
h—0 h h
=cosz-1—sinz-0=cosz
, .. cos(x+h)—cosx . cosxcosh —sinxsinh — cosx
(cosz) = lim = lim
h—0 h h—0 h
) ) sin h 1 —rcosh
= lim ( —sinz - —COST + —————
h—0 h
= —sinx-1—-cosx-0= —sinz.
By the Quotient Rule, we have
, sinz\’ cos®z +sin’z 1 9
(tanzx) = = 5 = —— =sec”T.
cos T cos? x cos? x

We leave it as an exercise to complete the proof of Part 3 by calculating the derivatives of
secx and cscz.

Finally, we shall derive the formula for (sin~'z)" and leave the rest of the proof of
Part 4 as an exercise. Note that by the Inverse Function Theorem (which we did not
prove), the function sin™'z is differentiable in (—1,1). Since sin(sin~'z) =  for all
x € (—1,1), we can take the derivative on both sides (using the Chain Rule on the left) to
get cos(sin™ ! z) - (sin”' )’ = 1 and hence

. 1 1 1

(sin""z) = — = = .
cos(sin ! z) \/1 — sin?(sin~ z) V1 — a2

4.12 Definition: Let A C R, let f: A — R and let a € A. We say that f has a local
maximum value at a when

6>0VeeA (|:1; —a| <0 = f(x) < f(a)).
Similarly, we say that f has a local minimum value at a when
36>0 Vee A (|a: 4| <6 = f(x)> f(a)).

4.13 Theorem: (Fermat’s Theorem) Let A C R be open, let f : A — R, and let a € A.
Suppose that f is differentiable at a and that f has a local maximum or minimum value
at a. Then f'(a) = 0.

Proof: We suppose that f has a local maximum value at a (the case that f has a local
minimum value at a is similar). Choose § > 0 so that |z —a| < § = f(z) < f(a). For

x € Awitha <z <a+d,since z>a and f(z) > f(a) WehaveWZO, and so

) — 1 T@) =@

z—at Tr—a

>0
by the Comparison Theorem. Similarly, for z € A with a — § < x < a, since x < a and
f(x) > f(a) we have W <0, and so

o) — 1w T@ @)

r—a~ r—a
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4.14 Theorem: (Rolle’s Theorem and the Mean Value Theorem) Let a,b € R with a < b.

(1) (Rolle’s Theorem) If f : [a,b] — R differentiable in (a,b) and continuous at a and b
with f(a) =0 = f(b) then there exists a point ¢ € (a,b) such that f'(c) = 0.

(2) (The Mean Value Theorem) If f : [a,b] — R is differentiable in (a,b) and continuous
at a and b then there exists a point ¢ € (a,b) with f'(c) (b —a) = f(b) — f(a).

Proof: To Prove Rolle’s Theorem, let f : [a,b] — R be differentiable in (a,b) and contin-
uous at a and b with f(a) = 0 = f(b). If f is constant, then f’(x) = 0 for all x € [a, ]].
Suppose that f is not constant. Either f(x) > 0 for some z € (a,b) or f(x) < 0 for some
x € (a,b). Suppose that f(z) > 0 for some = € (a,b) (the case that f(z) < 0 for some
x € (a,b) is similar). By the Extreme Value Theorem, f attains its maximum value at
some point, say ¢ € [a,b]. Since f(z) > 0 for some = € (a,b), we must have f(c) > 0.
Since f(a) = f(b) = 0 and f(c) > 0, we have ¢ € (a,b). By Fermat’s Theorem, we have
f’(¢) = 0. This completes the proof of Rolle’s Theorem.

To prove the Mean Value Theorem, suppose that f : [a,b] — R is differentiable in

(a,b) and continuous at a and b. Let g(z) = f(z) — f(a) — W (x —a). Then g is

differentiable in (a,b) with ¢'(z) = f'(z) — W and g is continuous at a and b with
g(a) = 0= g(b). By Rolle’s Theorem, we can choose ¢ € (a,b) so that f’(c) = 0, and then

g'(c) = W, as required.

4.15 Corollary: Let a,b € R with a < b. Let f : [a,b] — R. Suppose that f is
differentiable in (a,b) and continuous at a and b.

(1) If f'(x) > 0 for all x € (a,b) then f is nondecreasing on [a, b|.

(2) If f'(x) > 0 for all = € (a,b) then f is strictly increasing on [a, b).

(3) If f'(x) <O for all = € (a,b) then f is nonincreasing on [a, b].

(4) If f'(x) < O for all z € (a,b) then f is strictly decreasing on [a, b].

(5) If f'(x) =0 for all x € (a,b) then f is constant on [a,b].

(6) If g : [a,b] — R is continuous at a and b and differentiable in (a,b) with ¢'(z) = f'(z)
for all x € (a,b), then for some ¢ € R we have g(x) = f(x) + ¢ for all z € (a,b).

Proof: We prove Part 1 and leave the rest of the proofs as exercises. Suppose that f/(z) >0
for all z € (a,b). Let a < x <y < b. Choose ¢ € (z,y) so that f'(c) = % Then
f(y) — f(x) = f'(c)(y —x) >0 and so f(y) > f(x). Thus f is nondecreasing on [a, b].

4.16 Corollary: (The Second Derivative Test) Let I be an interval in R, let f : [ — R
and let a € I. Suppose that f is differentiable in I with f'(a) = 0.

(1) If f"(a) > O then f has a local minimum at a.
(2) If f"(a) < O then f has a local maximum at a.

Proof: The proof is left as an exercise.

4.17 Theorem: (I’'Hopital’s Rule) Let I be a non degenerate interval in R. Let a € I, or
let a be an endpoint of I. Let f,g: I\ {a} — R. Suppose that f and g are differentiable
in I\ {a} with ¢’(x) # 0 for all x € I \ {a}. Suppose either that lim f(z) =0 = lim g(x)

Tr—a T—a
f'(z) f(x)

or that lim g(x) = £oo. Suppose that lim —u € R. Then lim =% =
T—a r—a g (l‘) r—a g(l‘)

Similar results hold for limits v — a™, *x — a~, v — oo and x — —00.

Proof: We omit the proof, which is fairly difficult.
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