
Lecture Notes for MATH 137

Single Variable Differential Calculus

by Stephen New

0



Chapter 1. Exponential and Trigonometric Functions

1.1 Definition: Let X and Y be sets and let f : X → Y . We say that f is injective (or
one-to-one, written as 1 : 1) when for every y ∈ Y there exists at most one x ∈ X such
that f(x) = y. Equivalently, f is injective when for all x1, x2 ∈ X, if f(x1) = f(x2) then
x1 = x2. We say that f is surjective (or onto) when for every y ∈ Y there exists at least
one x ∈ X such that f(x) = y. Equivalently, f is surjective when Range(f) = Y . We say
that f is bijective (or invertible) when f is both injective and surjective, that is when
for every y ∈ Y there exists exactly one x ∈ X such that f(x) = y. When f is bijective,
we define the inverse of f to be the function f−1 : Y → X such that for all y ∈ Y , f−1(y)
is equal to the unique element x ∈ X such that f(x) = y. Note that when f is bijective so
is f−1, and in this case we have (f−1)−1 = f .

1.2 Example: Let f(x) = 1
3

√
12x− x2 for 0 ≤ x ≤ 6. Show that f is injective and find

a formula for its inverse function.

Solution: Note that when 0 ≤ x ≤ 6 (indeed when 0 ≤ x ≤ 12) we have 12x − x2 =
x(12− x) ≥ 0, so that 1

3

√
12x− x2 exists, and we have 12x− x2 = 36− (x− 6)2 ≤ 36 so

that 1
3

√
12x− x2 ≤ 1

3

√
36 = 2. Thus if 0 ≤ x ≤ 6 then f(x) = 1

3

√
12x− x2 exists and we

have 0 ≤ f(x) ≤ 2. Let x, y ∈ R with 0 ≤ x ≤ 6 and 0 ≤ y ≤ 2. Then we have

y = f(x) ⇐⇒ y = 1
3

√
12x− x2

⇐⇒ 3y =
√

12x− x2

⇐⇒ 9y2 = 12x− x2 , since y ≥ 0

⇐⇒ x2 − 12x+ 9y2 = 0

⇐⇒ x =
12±

√
144− 36y2

2
= 6± 3

√
4− y2 , by the Quadratic Formula

⇐⇒ x = 6− 3
√

4− y2 since x ≤ 6.

Verify that when 0 ≤ y ≤ 2 we have 0 ≤ 4 − y2 ≤ 4 so that
√

4− y2 exists and we have

0 ≤ 6 − 3
√

4− y2 ≤ 6. Thus when we consider f as a function f : [0, 6] → [0, 2], it is

bisectve and its inverse f−1 : [0, 2]→ [0, 6] is given by f−1(y) = 6− 3
√

4− y2.

1.3 Definition: Let f : A ⊆ R → R. We say that f is even when f(−x) = f(x) for all
x ∈ A and we say that f is odd when f(−x) = −f(x) for all x ∈ A.

1.4 Definition: Let f : A ⊆ R→ R. We say that f is increasing (on A) when it has the
property that for all x, y ∈ A, if x < y then f(x) < f(y), and we say f is decreasing (on
A) when for all x, y ∈ A with x < y we have f(x) > f(y). We say that f is monotonic
when f is either increasing or decreasing. Note that every monotonic function is injective.

1.5 Remark: We assume familiarity with exponential, logarithmic, trigonometric and
inverse trigonometric functions. These functions can be defined rigorously. We shall give a
brief description of how one can define the exponential and logarithmic function rigorously,
and we shall provide an informal (non-rigorous) description of the trigonometric and inverse
trigonometric functions, and we shall summarize some of their properties (without giving
rigorous proofs).
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1.6 Definition: Let us outline one possible way to define the value of xy for suitable real
numbers x, y ∈ R. First we define x0 = 1 for all x ∈ R. Then for n ∈ Z with n ≥ 1 we
define xn recursively by xn = x · xn−1 for all x ∈ R. Also, for n ∈ Z with n ≥ 1 we define
x−n = 1

xn for all x 6= 0. At this stage we have defined xy for y ∈ Z.

When 0 < n ∈ Z is odd, for all x ∈ R we define x1/n = y where y is the unique real
number such that yn = x (to be rigorous, one must prove that this number y exists and
is unique). When 0 < n ∈ Z is even, for x ≥ 0 we define x1/n = y where y is the unique
nonnegative real number such that yn = x (again, to be rigorous a proof is required). Also,
for 0 < n ∈ Z we define x−1/n = 1

x1/n , which is defined for x 6= 0 if n is odd, and is defined
for x > 0 when n is even. When n,m ∈ Z with n > 0 and m > 0 and gcd(n,m) = 1, we
define xn/m = (xn)1/m, which is defined for all x ∈ R when m is odd and for x ≥ 0 when
m is even, and we define x−n/m = 1

xn/m
, defined for x 6= 0 when m is odd and for x > 0

when m is even. At this stage, we have defined xy for y ∈ Q.
For y ∈ R, when x > 0 and y ∈ R, we define

xy = lim
t→y,t∈Q

xt

(to be rigorous, one needs to define this limit and prove that it exists and is unique).
Finally, we define 1y = 1 for all y ∈ R and we define 0y = 0 for all y > 0.

1.7 Theorem: (Properties of Exponentials) Let a, b, x, y ∈ R with a, b > 0. Then

(1) a0 = 1,
(2) ax+y = ab ac,
(3) ax−y = ax/ay,
(4) (ax)y = axy,
(5) (ab)x = axbx.

Proof: We omit the proof.

1.8 Theorem: (Properties of Power Functions)

(1) When a > 0, the function f : [0,∞) → [0,∞) given by f(x) = xa is increasing and
bijective and its inverse function is given by f−1(x) = x1/a.
(2) When a < 0, the function f : (0,∞) → (0,∞) given by f(x) = xa is decreasing and
bijective and its inverse is given by f−1(x) = a1/x.

Proof: We omit the proof.

1.9 Definition: A function of the form f(x) = xa is called a power function.

1.10 Theorem: (Properties of Exponential Functions)

(1) When a > 1 the function f : R→ (0,∞) given by f(x) = ax is increasing and bijective.
(2) When 0 < a < 1 the function f : R → (0,∞) given by f(x) = ax is decreasing and
bijective.

Proof: We omit the proof.

1.11 Definition: For a > 0 with a 6= 1, the function f : R→ (0,∞) given by f(x) = ax

is called the base a exponential function, its inverse function f−1 : (0,∞)→ R is called
the base a logarithmic function, and we write f−1(x) = loga x. By the definition of the
inverse function, we have loga(ax) = x for all x ∈ R and eloga y = y for all y > 0, and for
all x, y ∈ R with y > 0 we have y = ax ⇐⇒ x = loga y.
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1.12 Theorem: (Properties of Logarithms) Let a, b, x, y ∈ (0,∞). Then

(1) loga 1 = 0,
(2) loga(xy) = loga x+ loga y,
(3) loga(x/y) = loga x− loga y,
(4) loga(xy) = y loga x, and
(5) logb x = loga x/ loga b,
(6) if a > 1, the function g : (0,∞)→ R given by g(x) = loga x is increasing and bijective.

Proof: We leave it, as an exercise, to show that these properties follow from the properties
of exponentials.

1.13 Definition: There is a number e ∈ R called the natural base, with e ∼= 2.71828,
which can be defined in such a way that the function f(x) = ex is equal to its own
derivative. We define

e = lim
n→∞

(1 + 1
n

)n
(to be rigorous, one must define this limit and prove that it exists and is unique). The
logarithm to the base e is called the natural logarithm, and we write

lnx = loge x for x > 0.

1.14 Note: The properties of exponentials and logarithms in Theorems 1.7 and 1.12 give

e0 = 1 , ax+y = exey , ex−y = ex/ey , (ex)y = exy,

ln 1 = 0 , ln(xy) = lnx+ ln y , ln(x/y) = lnx− ln y , lnxy = y lnx

loga x =
lnx

ln a
and ax = ex ln a.
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1.15 Definition: We define the trigonometric functions informally as follows. For θ ≥ 0,
we define cos θ and sin θ to be the x- and y-coordinates of the point at which we arrive when
we begin at the point (1, 0) and travel for a distance of θ units counterclockwise around the
unit circle x2 + y2 = 1. For θ ≤ 0, cos θ and sin θ are the x and y-coordinates of the point
at which we arrive when we begin at (1, 0) and travel clockwise around the unit circle for a
distance of |θ units. When cos θ 6= 0 we define sec θ = 1/ cos θ and tan θ = sin θ/ cos θ, and
when sin θ 6= 0 we define csc θ = 1/ sin θ and cot θ = cos θ/ sin θ. (This definition is not
rigorous because we did not define what it means to travel around the circle for a given
distance).

(x, y) = (cos θ, sin θ)

θ

(1, 0)

1.16 Definition: We define π, informally, to be the distance along the top half of the
unit circle from (1, 0) to (−1, 0), and so we have cosπ = −1 and sinπ = 0. By symmetry,
the distance from (1, 0) to (0, 1) along the circle is equal to π

2 so we also have cos π2 = 0
and sin π

2 = 1.

1.17 Theorem: (Basic Trigonometric Properties) For θ ∈ R we have

(1) cos2 θ + sin2 θ = 1,
(2) cos(−θ) = cos θ and sin(−θ) = − sin θ,
(3) cos(θ + π) = − cos θ and sin(θ + π) = − sin θ,
(4) cos(θ + 2π) = cos θ and sin(θ + 2π) = sin θ).

Proof: Informally, these properties can all be seen immediately from the above definitions.
We omit a rigorous proof.

1.18 Theorem: (Trigonometric Ratios) Let θ ∈
(
0, π2

)
. For a right angle triangle with

an angle of size θ and with sides of lengths x, y and r as shown, we have

r y

θ
x

cos θ =
x

r
, sin θ =

y

r
and tan θ =

y

x
.

Proof: We can see this informally by scaling the picture in Definition 2.17 by a factor of r.

1.19 Theorem: (Special Trigonometric Values) We have the following exact trigonometric
values.

θ 0 π
6

π
4

π
3

π
2

cos θ 1
√
3
2

√
2
2

1
2 0

sin θ 0 1
2

√
2
2

√
3
2 1

Proof: This follows from the above theorem using certain particular right angled triangles.
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1.20 Theorem: (Trigonometric Sum Formulas) For α, β ∈ R we have

cos(α+ β) = cosα cosβ − sinα sinβ , and

sin(α+ β) = sinα cosβ + cosα sinβ.

Proof: Informally, we can prove this with the help of a picture. The picture below illustrates
the situation when α, β ∈

(
0, π2

)
.

B c F

d

α A

E
b

β
α a

O D C (1,0)

In the picture, O is the origin, A is the point with coordinates (cosα, sinα) and B is the
point (x, y) =

(
cos(α + β), sin(α + β)

)
. In triangle ODE we see that cosα = OD

OE = a
cos β

and sinα = DE
OE = b

cos β , and so a = cosα cosβ , b = sinα cosβ. In triangle EFB, verify

that the angle at E has size α, and so we have cosα = EF
EB = d

sin β and sinα = BF
BE = c

sin β ,
and so c = sinα sinβ , d = cosα sinβ. The x and y-coordinates of the point B are x = a−c
and y = b+ d, and so

cos(α+ β) = x = a− c = cosα cosβ − sinα sinβ , and

sin(α+ β) = y = b+ d = sinα cosβ − cosα sinβ.

This proves the theorem (informally) in the case that α, β ∈
(
0, π2

)
. One can then show

that the theorem holds for all α, β ∈ R by using the Basic Trigonometric Properties (2),
(3) and (4).

1.21 Theorem: (Double Angle Formulas) For all x, y ∈ R we have

(1) sin 2x = 2 sinx cosx and cos 2x = cos2− sin2 x = 2 cos2 x− 1 = 1− 2 sin2 x, and

(2) cos2 x =
1 + cos 2x

2
and sin2 x =

1− cos 2x

2
.

Proof: The proof is left as an exercise.

1.22 Theorem: (Trigonometric Functions)

(1) The function f : [0, π]→ [−1, 1] defined by f(x) = cosx is decreasing and bijective.
(2) The function g :

[
− π

2 ,
π
2

]
→ [−1, 1] given by g(x) = sinx is increasing and bijective.

(3) The function h :
(
− π

2 ,
π
2

)
given by h(x) = tanx is increasing and bijective.

Proof: We omit the proof.

1.23 Definition: The inverses of the functions f , g and h in the above theorem are called
the inverse cosine, the inverse sine, and the inverse tangent functions. We write
f−1(x) = cos−1 x, g−1 = sin−1 x and h−1(x) = tan−1 x. By the definition of the inverse
function, we have
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1.24 Definition: Let A and B be sets and let c ∈ F . Let f : A→ R and g : B → R. We
define the functions cf , f + g , f − g , f · g : A ∩B → R by

(cf)(x) = c f(x)

(f + g)(x) = f(x) + g(x)

(f − g)(x) = f(x)− g(x)

(f · g)(x) = f(x)g(x)

for all x ∈ A ∩B, and for C = {x ∈ A ∩B | g(x) 6= 0} we define f/g : C → R by

(f/g)(x) = f(x)/g(x)

for all x ∈ C.

1.25 Definition: A polynomial function (over R) is a function f : R→ R which can
be obtained from the functions 1 and x using (finitely many applications of) the operations
cf , f + g, f − g, f · g and f ◦ g. In other words, a polynomial is a function of the form

f(x) =
n∑
i=0

cix
i = c0 + c1x+ c2x

2 + · · ·+ cnx
n

for some n ∈ N and some ci ∈ F . The numbers ci are called the coefficients of the
polynomial and when cn 6= 0 the number n is called the degree of the polynomial.

1.26 Definition: A rational function (over R) is a function f : A ⊆ R→ R which can
be obtained from the functions 1 and x using (finitely many applications of) the operations
cf , f + g, f − g, f · g, f/g and f ◦ g. In other words, a rational function is a function of
the form

f(x) = p(x)/q(x)

for some polynomials p and q.

1.27 Definition: The functions 1, x, x1/n with 0 < n ∈ Z, ex, lnx, sinx and sin−1 x,
are called the basic elementary functions. An elementary function is any function
f : A ⊆ R→ R which can be obtained from the basic elementary functions using (finitely
many applications of) the operations cf , f + g, f − g, f · g, f/g and f ◦ g.

1.28 Example: The following functions are elementary

|x| =
√
x2,

cosx = sin
(
x+ π

2

)
,

tan−1 x = sin−1
( x√

1 + x2

)
,

f(x) =
e
√
x+sin x

tan−1(lnx)

We shall see later that every elementary function is continuous in its domain, so any
function which is discontinuos at a point in its domain cannot be elementary.
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Chapter 2. Limits of Sequences

2.1 Notation: We write N = {0, 1, 2, · · ·} for the set of natural numbers (which
we take to include the number 0), Z+ = {1, 2, 3, · · ·} for the set of positive integers,
Z = {0,±1,±2, · · ·} for the set of all integers, Q for the set of rational numbers and
we write R for the set of real numbers. We assume familiarity with the sets N, Z+, Z,
Q and R and with the algebraic operations + , − , × , ÷ and the order relations < , ≤ ,
> , ≥ on these sets.

2.2 Definition: For p ∈ Z, let Z≥p = {k ∈ Z|k ≥ p}. A sequence in a set A is a function
of the form x : Z≥p → A for some p ∈ Z. Given a sequence x : Z≥p → A, the kth term of
the sequence is the element xk = x(k) ∈ A, and we denote the sequence x by

(xk)k≥p = (xk|k ≥ p) = (xp, xp+1, xp+2, · · ·).
Note that the range of the sequence (xk)k≥p is the set {xk}k≥p = {xk|k ≥ p}.
2.3 Definition: Let (xk)k≥p be a sequence in R. For a ∈ R we say that the sequence
(xk)k≥p converges to a (or that the limit of (xk)k≥p is equal to a), and we write xk → a
(as k →∞), or we write lim

k→∞
xk = a, when

∀ ε > 0 ∃m ∈ Z≥p ∀ k ∈ Z≥p
(
k ≥ m =⇒ |xk − a| < ε

)
.

We say that the sequence (xk)k≥p converges (in R) when there exists a ∈ R such that
(xk)k≥p converges to a. We say that the sequence (xk)k≥p diverges (in R) when it does
not converge (to any a ∈ R). We say that (xk)k≥p diverges to infinity, or that the
limit of (xk)k≥p is equal to infinity, and we write xk → ∞ (as k → ∞), or we write
lim
k→∞

xk =∞, when

∀ r ∈ R ∃m ∈ Z≥p ∀ k ∈ Z≥p
(
k ≥ m =⇒ xk > r

)
.

Similarly we say that (xk)k≥p diverges to −∞, or that the limit of (xk)k≥p is equal to
negative infinity, and we write xk → −∞ (as k →∞), or we write lim

k→∞
xk = −∞ when

∀ r ∈ R ∃m ∈ Z≥p ∀ k ∈ Z≥p
(
k ≥ m =⇒ xk < r

)
.

2.4 Example: Let (xk)k≥0 be the sequence in R given by xk = (−2)k
k! for k ≥ 0. Show

that lim
k→∞

xk = 0.

Solution: Note that for k ≥ 2 we have |xk| = 2k

k! =
(
2
1

) (
2
2

) (
2
3

)
· · ·
(

2
k−1

) (
2
k

)
≤ 2

1 ·
2
n = 4

n .

Given ε ∈ R with ε > 0, we can choose m ∈ Z≥2 with m > 4
ε (by the Archimedean

Property of Z in R), and then for all k ≥ m we have |xk − 0| = |xk| ≤ 4
k ≤

4
m < ε. Thus

lim
k→∞

xk = 0, by the definition of the limit.

2.5 Example: Let (ak)k≥0 be the Fibonacci sequence in R, which is defined recursively
by a0 = 0, a1 = 1 and by ak = ak−1 + ak−2 for k ≥ 2. Show that lim

k→∞
ak =∞.

Solution: We have a0 = 0, a1 = 1, a2 = 1 and a3 = 2. Note that ak ≥ k − 1 when
k ∈ {0, 1, 2, 3}. Let n ≥ 4 and suppose, inductively, that ak ≥ k − 1 for all k ∈ Z with
0 ≤ k < n. Then an = an−1 +an−2 ≥ (n−2) + (n−3) = n+n−5 ≥ n+ 4−5 = n−1. By
the Strong Principle of Induction, we have an ≥ n− 1 for all n ≥ 0. Given r ∈ R we can
choose m ∈ Z≥0 with m > r+ 1, and then for all k ≥ m we have ak ≥ k − 1 ≥ m− 1 > r.
Thus lim

k→∞
ak =∞ by the definition of the limit.
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2.6 Example: Let xk = (−1)k for k ≥ 0. Show that (xk)k≥0 diverges.

Solution: Suppose, for a contradiction, that (xk)k≥0 converges and let a = lim
k→∞

xk. By

taking ε = 1 in the definition of the limit, we can choose m ∈ Z so the for all k ∈ N,
if k ≥ m then |xk − a| < 1. Choose k ∈ N with 2k ≥ m. Since |x2k − a| < 1 and
x2k = (−1)2k = 1, we have |1 − a| < 1 so that 0 < a < 2. Since |x2k+1 − a| < 1 and
x2k+1 = (−1)2k+1 = −1, we also have | − 1− a| < 1 which implies that −2 < a < 0. But
then we have a < 0 and a > 0, which is not possible.

2.7 Theorem: (Independence of the Limit on the Initial Terms) Let (xk)k≥p be a sequence
in R.

(1) If q ≥ p and yk = xk for all k ≥ q, then (xk)k≥p converges if and only if (yk)k≥q
converges, and in this case lim

k→∞
xk = lim

k→∞
yk.

(2) If l ≥ 0 and yk = xk+l for all k ≥ p, then (xk)k≥p converges if and only if (yk)k≥p
converges, and in this case lim

k→∞
xk = lim

k→∞
yk.

Proof: We prove Part 1 and leave the proof of Part 2 as an exercise. Let q ≥ p and let
yk = xk for k ≥ q. Suppose (xk)k≥p converges and let a = lim

k→∞
xk. Let ε > 0. Choose

m ∈ Z so that for all k ∈ Z≥p, if k ≥ m then |xk − a| < ε. Let k ∈ Z≥q with k ≥ m.
Since q ≥ p we also have k ∈ Z≥p and so |yk − a| = |xk − a| < ε. Thus (yk)k≥q converges
with lim

k→∞
yk = a. Conversely, suppose that (yk)k≥q converges and let a = lim

k→∞
yk. Let

ε > 0. Choose m1 ∈ Z so that for all k ∈ Z≥q, if k ≥ m1 then |yk − a| < ε. Choose
m = max{m1, q}. Let k ∈ Z≥p with k ≥ m. Since k ≥ m, we have k ≥ q and k ≥ m1 and
so |xk − a| = |yk − a| < ε. Thus (xk)k≥p converges with lim

k→∞
xk = a.

2.8 Remark: Because of the above theorem, we often denote the sequence (xk)k≥p simply
as (xk), omitting the initial index p from our notation. Also, in the statements of some
theorems and in some proofs we select a particular starting point, often p = 1, with the
understanding that any other starting value would work just as well.

2.9 Theorem: (Uniqueness of the Limit) Let (xk) be a sequence in R. If (xk) has a limit
(finite or infinite) then the limit is unique.

Proof: Suppose, for a contradiction, that xk → ∞ and xk → −∞. Since xk → ∞ we can
choose m1 ∈ Z so that k ≥ m1 =⇒ xk > 0. Since xk → −∞ we can choose m2 ∈ Z so
that k ≥ m2 =⇒ xk < 0. Choose any k ∈ Z≥p with k ≥ m1 and k ≥ m2. Then xk > 0
and xk < 0, which is not possible.

Suppose, for a contradiction, that xk → ∞ and xk → a ∈ F . Since xk → a we can
choose m1 ∈ Z so that k ≥ m1 =⇒ |xk − a| < 1. Since xk → ∞ we can choose m2 ∈ Z
so that k ≥ m2 =⇒ xk > a + 1. Choose any k ∈ Z≥p with k ≥ m1 and k ≥ m2. Then
we have |xk − a| < 1 so that x < a + 1 and we have xk > a + 1, which is not possible.
Similarly, it is not possible to have xk → −∞ and xk → a ∈ F .

Finally suppose, for a contradiction, that xk → a and xk → b where a, b ∈ F with

a 6= b. Since xk → a we can choose m1 ∈ Z so that k ≥ m1 =⇒ |xk − a| < |a−b|
2 . Since

xk → b we can choose m2 ∈ Z so that k ≥ m2 =⇒ |xk − b| < |a−b|
2 . Choose any k ∈ Z≥p

with k ≥ m1 and k ≥ m2. Then we have |xk − a| < b−a
2 and |xk − b| < b−a

2 and so, using
the Triangle Inequality, we have

|a− b| = |a− xk + xk − b| ≤ |xk − a|+ |xk − b| < |a−b|
2 + |a−b|

2 = |a− b|,
which is not possible.
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2.10 Theorem: (Basic Limits) For a ∈ R we have

lim
k→∞

a = a , lim
k→∞

k =∞ and lim
k→∞

1

k
= 0.

Proof: The proof is left as an exercise.

2.11 Theorem: (Operations on Limits) Let (xk) and (yk) be sequences in R and let
c ∈ R. Suppose that (xk) and (yk) both converge with xk → a and yk → b. Then

(1) (c xk) converges with c xk → ca,
(2) (xk + yk) converges with (xk + yk)→ a+ b,
(3) (xk − yk) converges with (xk − yk)→ a− b,
(4) (xkyk) converges with xkyk → ab, and
(5) if b 6= 0 then (xk/yk) converges with xk/yk → a/b.

Proof: We prove Parts 4 and 5 leaving the proofs of the other parts as an exercise. First
we prove Part 4. Note that for all k we have

|xkyk−ab| = |xkyk−xkb+xkb−ab| ≤ |xkyk−xkb|+ |xkb−ab| = |xk| |yk− b|+ |b||xk−a|.
Since xk → a we can choose m1 ∈ Z so that k ≥ m1 =⇒ |xk − a| < 1 and we can choose
m2 ∈ Z so that k ≥ m2 =⇒ |xk − a| < ε

2(1+|b|) . Since yk → b we can choose m3 ∈ Z so

that k ≥ m3 =⇒ |yk − b| < ε
2(1+|a|) . Let m = max{m1,m2,m3} and let k ≥ m. Then we

have |xk − a| < 1, |xk − a| < ε
2(1+|b|) and |xk − b| < ε

2(1+|a|) . Since |xk − a| < 1, we have

|xk| = |xk − a+ a| ≤ |xk − a|+ |a| < 1 + |a|. By our above calculation (where we found a
bound for |xkyk − ab|) we have

|xkyk − ab| ≤ |xk||yk − b|+ |b||xk − a| ≤ (1 + |a|)|yk − b|+ (1 + |b|)|xk − a|
< (1 + |a|) ε

2(1+|a|) + (1 + |b|) ε
2(1+|b|) = ε.

Thus we have xkyk → ab, by the definition of the limit.
To prove Part 5, suppose that b 6= 0. Since yk → b 6= 0, we can choose m1 ∈ Z so that

that k ≥ m1 =⇒ |yk − b| < |b|
2 . Then for k ≥ m1 we have

|b| = |b− yk + yk| ≤ |b− yk|+ |yk| < |b|
2 + |yk|

so that
|yk| > |b| − |b|2 = |b|

2 > 0.

In particular, we remark that when k ≥ m1 we have yk 6= 0 so that 1
yk

is defined. Note
that for all k ≥ m1 we have∣∣∣∣ 1

yk
− 1

b

∣∣∣∣ =
|b− yk|
|yk| |b|

≤ |b− yk||b|
2 · |b|

=
2

|b|2
· |yk − b|.

Let ε > 0. Choose m2 ∈ Z so that k ≥ m2 =⇒ |yk − b| < |b|2ε
2 . Let m = max{m1,m2}.

For k ≥ m we have k ≥ m1 and k ≥ m2 and so |yk| > |b|2
2 and |yk − b| < |b|2ε

2 and so∣∣∣∣ 1

yk
− 1

b

∣∣∣∣ ≤ 2
|b|2 · |yk − b| <

2
|b|2 ·

|b|2ε
2 = ε.

This proves that lim
k→∞

1
yk

= 1
b . Using Part 4, we have lim

k→∞
xk
yk

= lim
k→∞

(
xk · 1

yk

)
= a · 1b = a

b .
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2.12 Example: Let xk = k2+1
2k2+k+3 for k ≥ 0. Find lim

k→∞
xk.

Solution: We have xk = k2+1
2k2+k+2 =

1+( 1
k )

2

2+ 1
k+3·( 1

k )
2 −→ 1+02

2+0+3·02 = 1
2 where we used the Basic

Limits 1→ 1, 2→ 2 and 1
k → 0 together with Operations on Limits.

2.13 Definition: The above theorem can be extended to include many situations involving
infinite limits. To deal with these cases, we define the set of extended real numbers to
be the set

R̂ = R ∪ {−∞,∞}.

We extend the order relation < on R to an order relation on R̂ by defining −∞ <∞ and
−∞ < a and a < ∞ for all a ∈ R. We partially extend the operations + and × to R̂ as
follows: for a ∈ R we define

∞+∞ =∞ , ∞+ a =∞ , (−∞) + (−∞) = −∞ , (−∞) + a ,

∞ ·∞ =∞ , (∞)(−∞) = −∞ , (−∞)(−∞) =∞ ,

∞ · a =

{
∞ if a > 0

−∞ if a < 0
and (−∞)(a) =

{
−∞ if a > 0,

∞ if a < 0,

but other values, including ∞ + (−∞), ∞ · 0 and −∞ · 0 are left undefined in R̂. In a

similar way, we partially extend the inverse operations − and ÷ to R̂. For example, for
a ∈ R we define

∞−(−∞) =∞ ,−∞−∞ = −∞ , ∞−a =∞ ,−∞−a = −∞ , a−∞ = −∞ , a−(−∞) =∞ ,

a

∞
= 0 ,

∞
a

=

{
∞ if a > 0

−∞ if a < 0
and

−∞
a

=

{
−∞ if a > 0

∞ if a < 0

with other values, including ∞−∞, ∞∞ and ∞0 , left undefined. The expressions which are

left undefined in R̂, including

∞−∞ , ∞ · 0 , ∞
∞

,
∞
0
,
a

0
,

are known as indeterminate forms.

2.14 Theorem: (Extended Operations on Limits) Let (xk) and (yk) be sequences in R.

Suppose that lim
k→∞

xk = u and lim
k→∞

yk = v where u, v ∈ R̂.

(1) if u+ v is defined in R̂ then lim
k→∞

(xk + yk) = u+ v,

(2) if u− v is defined in R̂ then lim
k→∞

(xk − yk) = u− v,

(3) if u · v is defined in R̂ then lim
k→∞

(xk · yk) = u · v, and

(4) if u/v is defined in R̂ then lim
k→∞

(xk/yk) = u/v.

Proof: The proof is left as an exercise.
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2.15 Theorem: (Comparison) Let (xk) and (yk) be sequences in R. Suppose that xk ≤ yk
for all k. Then

(1) if xk → a and yk → b then a ≤ b,
(2) if xk →∞ then yk →∞, and
(3) if yk → −∞ then xk → −∞.

Proof: We prove Part 1. Suppose that xk → a and yk → b. Suppose, for a contradiction,
that a > b. Choose m1 ∈ Z so that k ≥ m1 =⇒ |xk − a| < a−b

2 . Choose m2 ∈ Z so

that k ≥ m2 =⇒ |yk − b| < a−b
2 . Let k = max{m1,m2}. Since |xk − a| < a−b

2 , we have

xk > a − a−b
2 = a+b

2 . Since |yk − b| < a−b
2 , we have yk < b + a−b

2 = a+b
2 . This is not

possible since xk ≤ yk.

2.16 Example: Let xk = ( 3
2 + sin k) ln k for k ≥ 1. Find lim

k→∞
xk.

Solution: For all k ≥ 1 we have sin k ≥ −1 so ( 3
2 + sin k) ≥ 1

2 and hence xk ≥ 1
2 ln k.

Since xk ≥ 1
2 ln k for all k ≥ 1 and 1

2 ln k −→ 1
2 · ∞ = ∞, it follows that xk → ∞ by the

Comparison Theorem.

2.17 Theorem: (Squeeze) Let (xk), (yk) and (zk) be sequences in R and let a ∈ R.

(1) If xk ≤ yk ≤ zk for all k and xk → a and zk → a then yk → a.
(2) If |xk| ≤ yk for all k and yk → 0 then xk → 0.

Proof: We prove Part 1. Suppose that xk ≤ yk ≤ zk for all k, and suppose that xk → a
and zk → a. Let ε > 0. Choose m1 ∈ Z so that k ≥ m1 =⇒ |xk − a| < ε, choose m2 ∈ Z
so that k ≥ m2 =⇒ |zk − a| < ε and let m = max{m1,m2}. Then for k ≥ m we have
a− ε < xk ≤ yk ≤ zk < a+ ε and so |yk − a| < ε. Thus yk → a, as required.

2.18 Example: Let xk = k+tan−1 k
2k+sin k for k ≥ 1. Find lim

k→∞
xk.

Solution: For all k ≥ 1 we have −π2 < tan−1 k < π
2 and −1 ≤ sin k ≤ 1 and so

k − π
2

2k + 1
≤ k + tan−1 k

2k + sin k
≤

k + π
2

2k − 1
.

As in previous examples, we have
k−π2
2k+1 →

1
2 and

k+π
2

2k−1 →
1
2 , and so xk = k+tan−1 k

2k+sin k →
1
2

by the Squeeze Theorem.
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2.19 Definition: Let (xk) be a sequence in R. For a, b ∈ R, we say that the sequence
(xk) is bounded above by b when xk ≤ b for all k, and we say that the sequence (xk) is
bounded below by a when a ≤ xk for all k. We say (xk) is bounded above when it
is bounded above by some element b ∈ R, we say that (xk) is bounded below when it
is bounded below by some a ∈ R, and we say that (xk) is bounded when it is bounded
above and bounded below.

2.20 Definition: Let (xk) be a sequence in R. We say that (xk) is increasing (for k ≥ p)
when for all k, l ∈ Z≥p, if k ≤ l then xk ≤ xl. We say that (xk) is strictly increasing
(for k ≥ p) when for all k, l ∈ Z≥p, if k < l then xk < xl. Similarly, we say that (xk) is
decreasing when for all k, l ∈ Z≥p, if k ≤ l the xk ≥ xl and we say that (xk) is strictly
decreasing when for all k, l ∈ Z≥p, if k < l the xk > xl. We say that (xk) is monotonic
when it is either increasing or decreasing.

2.21 Theorem: (Monotonic Convergence) Let (xk) be a sequence in R.

(1) Suppose (xk) is increasing. If (xk) is bounded above then it converges, and if (xk) is
not bounded above then xk →∞.
(2) Suppose (xk) is decreasing. If (xk) is bounded below then it converges, and if (xk) is
not bounded below then xk → −∞.

Proof: The statement of this theorem is intuitively reasonable, but it is quite difficult to
prove. In most calculus courses this theorem is accepted axiomatically, without proof. A
rigorous proof is often provided in analysis courses.

2.22 Example: Let x1 = 4
3 and let xk+1 = 5 − 4

xn
for k ≥ 1. Determine whether (xk)

converges, and if so then find the limit.

Solution: Suppose, for now, that (xk) does converge, say xk → a. By Independence of
Converge on Initial Terms, we also have xk+1 → a. Using Operations on Limits, we have
a = lim

k→∞
xk+1 = lim

k→∞

(
5− 4

xk

)
= 5− 4

a . Since a = 5− 4
a , we have a2 = 5a−4 or equivalently

(a− 1)(a− 4) = 0. We have proven that if the sequence converges then its limit must be
equal to 1 or 4.

The first few terms of the sequence are x1 = 4
3 , x2 = 2 and x3 = 3. Since the terms

appear to be increasing, we shall try to prove that 1 ≤ xn ≤ xn+1 ≤ 4 for all n ≥ 1. This
is true when n = 1. Suppose it is true when n = k. Then we have

1 ≤ xk ≤xk+1 ≤ 4 =⇒ 1 ≥ 1
xk
≥ 1

xk+1
≥ 1

4 =⇒ − 4 ≤ − 4
xk
≤ − 4

xk+1
≤ −1

=⇒ 1 ≤ 5− 4
xk
≤ 5− 4

xk+1
≤ 4 =⇒ 1 ≤ xk+1 ≤ xk+2 ≤ 4.

Thus, by the Principle of Induction, we have 1 ≤ xn ≤ xn+1 ≤ 4 for all n ≥ 1.
Since xn ≤ xn+1 for all n ≥ 1, the sequence is increasing, and since xn ≤ 4 for all

n ≥ 1, the sequence is bounded above by 4. By the Monotone Convergence Theorem, the
sequence does converge. By the first paragraph, we know the limit must be either 1 or 4,
and since the sequence starts at x1 = 2 and increases, the limit must be 4.
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Chapter 3. Limits of Functions and Continuity

3.1 Definition: Let A ⊆ R and let a ∈ R. We say that a is a limit point of A when

∀ δ>0 ∃x∈A 0 < |x− a| < δ.

We say that a is a limit point of A from below (or from the left) when

∀δ > 0 ∃x ∈ A a− δ < x < a .

We say that a is a limit point of A from above (or from the right) when

∀δ > 0 ∃x ∈ A a < x < a+ δ .

We say that A is not bounded above when ∀m∈R ∃x∈A x ≥ m, and we say that A
is not bounded below when ∀m∈R ∃x∈A x ≤ m.

3.2 Example: Let A be a finite union of non-degenerate intervals in R (a non-degenerate
interval is an interval which contains more than one point). The limit points of A are
the points a ∈ R such that either a ∈ A or a is an endpoint of one of the intervals. The
limit points of A from below are the points a ∈ R such that either a ∈ A or a is the right
endpoint of one of the intervals. The set A is not bounded above when one of the intervals
is of one of the forms (a,∞), [a,∞) or (−∞,∞) = R.

3.3 Definition: Let A ⊆ R and let f : A → R. When a ∈ R is a limit point of A, we
make the following definitions.

(1) For b ∈ R, we say that the limit of f(x) as x tends to a is equal to b, and we write
lim
x→a

f(x) = b or we write f(x)→ b as x→ a, when

∀ε>0 ∃δ>0 ∀x∈A
(
0 < |x− a| < δ =⇒ |f(x)− b| < ε

)
.

(2) We say the limit of f(x) as x tends to a is equal to infinity, and we write lim
x→a

f(x) =∞,

or we write f(x)→∞ as x→ a, when

∀r∈R ∃δ>0 ∀x∈A
(
0 < |x− a| < δ =⇒ f(x) > r

)
.

(3) We say that the limit of f(x) as x tends to a is equal to negative infinity, and we
write lim

x→a
f(x) = −∞, or we write f(x)→ −∞ as x→ a, when

∀r∈R ∃δ>0 ∀x∈A
(
0 < |x− a| < δ =⇒ f(x) < r

)
.

When a is a limit point of A from below and b ∈ R, we make the following definitions.

(4) lim
x→a−

f(x) = b ⇐⇒ ∀ε>0 ∃δ>0 ∀x∈A
(
a− δ < x < a =⇒ |f(x)− b| < ε

)
.

(5) lim
x→a−

f(x) =∞ ⇐⇒ ∀r∈R ∃δ>0 ∀x∈A
(
a− δ < x < a =⇒ f(x) > r

)
.

(6) lim
x→a−

f(x) = −∞ ⇐⇒ ∀r∈R ∃δ>0 ∀x∈A
(
a− δ < x < a =⇒ f(x) < r

)
.

When a is a limit point of A from above and b ∈ R, we make the following definitions.

(7) lim
x→a+

f(x) = b ⇐⇒ ∀ε>0 ∃δ>0 ∀x∈A
(
a < x < a+ δ =⇒ |f(x)− b| < ε

)
.

(8) lim
x→a+

f(x) =∞ ⇐⇒ ∀r∈R ∃δ>0 ∀x∈A
(
a < x < a+ δ =⇒ f(x) > r

)
.

(9) lim
x→a+

f(x) = −∞ ⇐⇒ ∀r∈R ∃δ>0 ∀x∈A
(
a < x < a+ δ =⇒ f(x) < r

)
.
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When A is not bounded above and b ∈ R, we make the following definitions.

(10) lim
x→∞

f(x) = b ⇐⇒ ∀ε>0 ∃m∈R ∀x∈A
(
x ≥ m =⇒ |f(x)− b| < ε

)
.

(11) lim
x→∞

f(x) =∞ ⇐⇒ ∀r∈R ∃m∈R ∀x∈A
(
x ≥ m =⇒ f(x) > r

)
.

(12) lim
x→∞

f(x) = −∞ ⇐⇒ ∀r∈R ∃m∈R ∀x∈A
(
x ≥ m =⇒ f(x) < r

)
.

When A is not bounded below and b ∈ R, we make the following definitions.

(13) lim
x→−∞

f(x) = b ⇐⇒ ∀ε>0 ∃m∈R ∀x∈A
(
x ≤ m =⇒ |f(x)− b| < ε

)
.

(14) lim
x→−∞

f(x) =∞ ⇐⇒ ∀r∈R ∃m∈R ∀x∈A
(
x ≤ m =⇒ f(x) > r

)
.

(15) lim
x→−∞

f(x) = −∞ ⇐⇒ ∀r∈R ∃m∈R ∀x∈A
(
x ≤ m =⇒ f(x) < r

)
.

3.4 Example: Let f(x) =
x2 + 2x− 3

x2 − 1
. Show that lim

x→1
f(x) = 2.

Solution: Note that for x 6= 1 we have

|f(x)− 2| =
∣∣∣x2+2x−3

x2−1 − 2
∣∣∣ =

∣∣∣ (x+3)(x−1)
(x+1)(x−1) − 2

∣∣∣ =
∣∣∣x+3
x+1 − 2

∣∣∣ =
∣∣∣x+3−2x−2

x+1

∣∣∣ =
∣∣∣−x+1
x+1

∣∣∣ = |x−1|
|x+1| .

Let ε > 0. Choose δ = min{1, ε}. Let 0 < |x − 1| < δ. Since 0 < |x − 1| we have x 6= 1

so, as shown above, |f(x) − 2| = |x−1|
|x+1| . Since |x − 1| < δ ≤ 1 we have 0 < x < 3 so that

1 < x + 1, and hence |f(x) − 2| = |x−1|
|x+1| < |x − 1|. Finally, since |x − a| < δ ≤ ε we have

|f(x)− 2| ≤ |x− 1| < ε. Thus lim
x→1

f(x) = 2.

3.5 Theorem: (Two Sided Limits) Let A ⊆ R, let f : A → R and let a ∈ R. Suppose

that a is a limit point of A both from the left and from the right. Then for u ∈ R̂ we have
lim
x→a

f(x) = u if and only if lim
x→a−

f(x) = u = lim
x→a+

f(x).

Proof: We prove the theorem in the case that u = b ∈ R. Suppose that lim
x→a

f(x) = b ∈ R.

Let ε > 0. Choose δ > 0 so that for all x ∈ A, if 0 < |x − a| < δ then |f(x)− b| < ε. For
x ∈ A with a− δ < x < a we have 0 < |x− a| < δ and so |f(x)− b| < ε. This shows that
lim
x→a−

f(x) = b. For x ∈ A with a < x < x+δ we have 0 < |x−a| < δ and so |f(x)−b| < ε.

This show that lim
x→a+

f(x) = b.

Conversely, suppose that lim
x→a−

f(x) = b = lim
x→a+

f(x). Let ε > 0. Since f(x) → b

as x → a−, we can choose δ1 > 0 so that for all x ∈ A with a − δ < a < a we have
|f(x) − b| < ε. Since f(x) → b as x → a+ we can choose δ2 > 0 so that for all x ∈ A
with a < x < a + δ2 we have |f(x) − b| < ε. Let δ = min{δ1, δ2}. Let x ∈ A with
0 < |x − a| < δ. Either we have x < a or we have x > a. In the case that x < a we have
a− δ1 ≤ a− δ < x < a and so |f(x)− b| < ε (by the choice of δ1). In the case that x > a
we have a < x < a+ δ ≤ a+ δ2 and so |f(x)− b| < ε (by the choice of δ2). In either case
we have |f(x)− b| < ε, and so lim

x→a
f(x) = b, as required.
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3.6 Remark: For the sequence (xk)k≥p in R given by xk = f(k) where f : Z≥p → R,
the definitions (10), (11) and (12) agree with our definitions for limits of sequences. Thus
limits of sequences are a special case of limits of functions. The following theorem shows
that limits of functions are determined by limits of sequences.

3.7 Theorem: (The Sequential Characterization of Limits of Functions) Let A ⊆ R, let

f : A→ R, and let u ∈ R̂.

(1) When a ∈ R is a limit point of A, lim
x→a

f(x) = u if and only if for every sequence (xk)

in A \ {a} with xk → a we have f(xk)→ u.

(2) When a is a limit point of A from below, lim
x→a−

f(x) = u if and only if for every sequence

(xk) in {x ∈ A|x < a} with xk → a we have f(xk)→ u.

(3) When a is a limit point of A from above, lim
x→a+

f(x) = u if and only if for every sequence

(xk) in {x ∈ A|x > a} with xk → a we have f(xk)→ u.

(4) When A is not bounded above, lim
x→∞

f(x) = u if and only if for every sequence (xk)

in A with xk →∞ we have f(xk)→ u.

(5) When A is not bounded below, lim
x→−∞

f(x) = u if and only if for every sequence (xk)

in A with xk → −∞ we have f(xk)→ u.

Proof: We prove Part 1 in the case that u = b ∈ R. Let a ∈ R be a limit point of A.
Suppose that lim

x→a
f(x) = b ∈ R. Let (xk) be a sequence in A \ {a} with xk → a. Let

ε > 0. Since lim
x→a

f(x) = b, we can choose δ > 0 so that 0 < |x− a| < δ =⇒ |f(x) = b| < ε.

Since xk → a we can choose m ∈ Z so that k ≥ m =⇒ |xk − a| < δ. Then for k ≥ m, we
have |xk − a| < δ and we have xk 6= a (since the sequence (xk) is in the set A \ {a}) so
that 0 < |x− a| < δ and hence |f(xk)− b| < ε. This shows that f(xk)→ b.

Conversely, suppose that lim
x→a

f(x) 6= b. Choose ε0 > 0 so that for all δ > 0 there

exists x ∈ A with 0 < |x − a| < δ and |f(x) − b| ≥ ε0. For each k ∈ Z+, choose xk ∈ A
with 0 < |xk − a| ≤ 1

k and |f(xk) − b| ≥ ε0. In this way we obtain a sequence (xk)k≥1 in
A \ {a}. Since |xk − a| ≤ 1

k for all k ∈ Z+, it follows that xk → a (indeed, given ε > 0
we can choose m ∈ Z with m > 1

ε and then k ≥ m =⇒ |xk − a| ≤ 1
k ≤

1
m < ε). Since

|f(xk)− b| ≥ ε0 for all k, it follows that f(xk) 6→ b (indeed if we had f(xk)→ b we could
choose m ∈ Z so that k ≥ m =⇒ |f(xk)− b| < ε0 and then we could choose k = m to get
|f(xk)− b| < ε0).

3.8 Remark: It follows from the Sequential Characterization of Limits of Functions that
all of our theorems about limits of sequences imply analogous theorems in the more general
setting of limits of functions. We list several of those theorems and give one sample proof.

3.9 Theorem: (Local Determination of Limits) Let A ⊆ B ⊆ R, let a be a limit point of
A (hence also of B) and let f : A → R and g : B → R with f(x) = g(x) for all x ∈ A.

Then if lim
x→a

g(x) = u ∈ R̂ then lim
x→a

f(x) = u.

Similar results holds for limits x→ a± and x→ ±∞.

3.10 Theorem: (Uniqueness of Limits) Let A ⊆ R, let a be a limit point of A, and let

f : A → R. For u, v ∈ R̂, if lim
x→a

f(x) = u and lim
x→a

f(x) = v then u = v. Similar results

hold for limits x→ a± and x→ ±∞.
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3.11 Theorem: (Basic Limits) Let F be a subfield of R, and let A ⊆ F . For the constant
function f : A→ F given by f(x) = b for all x ∈ A, we have

lim
x→a

f(x) = b , lim
x→a+

f(x) = b , lim
x→a−

f(x) = b , lim
x→∞

f(x) = b and lim
x→−∞

f(x) = b,

and for the identity function f : A→ F given by f(x) = x for all x ∈ A we have

lim
x→a

f(x) = a , lim
x→a+

f(x) = a , lim
x→a−

f(x) = a , lim
x→∞

f(x) =∞ and lim
x→−∞

f(x) = −∞

whenever the limits are defined.

3.12 Theorem: (Extended Operations on Limits) Let A ⊆ R, let f, g : A → R and let

a be a limit point of A. Let u, v ∈ R̂ and suppose that lim
x→a

f(x) = u and lim
x→a

g(x) = v.

Then

(1) if u+ v is defined in R̂ then lim
x→a

(f + g)(x) = u+ v,

(2) if u− v is defined in R̂ then lim
x→a

(f − g)(x) = u− v,

(3) if u · v is defined in R̂ then lim
x→a

(fg)(x) = u · v, and

(4) if u/v is defined in R̂ then lim
x→a

(f/g)(x) = u/v.

Similar results hold for limits x→ a± and x→ ±∞.

Proof: We prove Part 4. Suppose that u/v is defined in R̂. Let (xk) be any sequence in
A \ {a} with xk → a. By the Sequential Characterization of Limits, since lim

x→a
f(x) = u we

have f(xk)→ u, and since lim
x→a

g(x) = v we have f(xk)→ v. By Extended Operations on

Limits of Sequences (Theorem 1.14), since f(xk) → u and g(xk) → v and u/v is defined

in R̂, we have (f/g)(xk) = f(xk)
g(xk)

→ u/v. Thus (f/g)(xk) → u/v for every sequence (xk)

in A \ {a} with xk → a. By the Sequential Characterization of Limits, it follows that
lim
x→a

(f/g)(x) = u/v.

3.13 Theorem: (The Comparison Theorem) Let A ⊆ F , let f, g : A→ R and let a ∈ R
be a limit point of A. Suppose that f(x) ≤ g(x) for all x ∈ A. Then

(1) if lim
x→a

f(x) = u and lim
x→a

f(x) = v with u, v ∈ R̂, then u ≤ v,

(2) if lim
x→a

f(x) =∞ then lim
x→a

g(x) =∞, and

(3) if lim
x→a

g(x) = −∞ then lim
x→a

g(x) = −∞.

Similar results hold for limits x→ a± and x→ ±∞.

3.14 Theorem: (The Squeeze Theorem) Let A ⊆ R, let f, g, h : A → R, and let a ∈ R
be a limit point of A.

(1) If f(x) ≤ g(x) ≤ h(x) for all x ∈ A and lim
x→a

f(x) = b = lim
x→a

h(x), then lim
x→a

g(x) = b.

(2) If |f(x)| ≤ g(x) for all x ∈ A and lim
x→a

g(x) = 0 then lim
x→a

f(x) = 0.

Similar results hold for limits x→ a± and x→ ±∞.
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3.15 Definition: Let A ⊆ R, and let f : A→ R. For a ∈ A, we say that f is continuous
at a when

∀ε > 0 ∃δ > 0 ∀x ∈ A
(
|x− a| < δ =⇒ |f(x)− f(a)| < ε

)
.

We say that f is continuous (on A) when f is continuous at every point a ∈ A.

3.16 Theorem: Let A ⊆ R, let f : A→ R and let a ∈ A. Then

(1) if a is not a limit point of A then f is continuous at a, and
(2) if a is a limit point of A then f is continuous at a if and only if lim

x→a
f(x) = f(a).

Proof: The proof is left as an exercise.

3.17 Theorem: (The Sequential Characterization of Continuity) Let A ⊆ R, let a ∈ A,
and let f : A → R. Then f is continuous at a if and only if for every sequence (xk) in A
with xk → a we have f(xk)→ f(a).

Proof: Suppose that f is continuous at a. Let (xk) be a sequence in A with xk → a. Let
ε > 0. Choose δ > 0 so that for all x ∈ A we have |x − a| < δ =⇒ |f(x) − f(a)| < ε.
Choose m ∈ Z so that for all indices k we have k ≥ m =⇒ |xk−a| < δ. Then when k ≥ m
we have |xk − a| < δ and hence |f(xk)− f(a)| < ε. Thus we have f(xk)→ f(a).

Conversely, suppose that f is not continuous at a. Choose ε0 > 0 so that for all δ > 0
there exists x ∈ A with |x − a| < δ and |f(x) − f(a)| ≥ ε0. For each k ∈ Z+, choose
xk ∈ A with |xk − a| ≤ 1

k and |f(xk)− f(a)| ≥ ε0. Consider the sequence (xk) in A. Since
|xk − a| ≤ 1

k for all k ∈ Z+, it follows that xk → a. Since |f(xk) − f(a)| ≥ ε0 for all
k ∈ Z+, it follows that f(xk) 6→ f(a).

3.18 Theorem: (Operations on Continuous Functions) Let A ⊆ R, let f, g : A → R,
let a ∈ A and let c ∈ R. Suppose that f and g are continuous at a. Then the functions
cf , f + g, f − g and fg are all continuous at a, and if g(a) 6= 0 then the function f/g is
continuous at a.

Proof: The proof is left as an exercise.

3.19 Theorem: (Composition of Continuous Functions) Let A,B ⊆ R, let f : A → R
and g : B → R, and let h = g ◦ f : C → R where C = A ∩ f−1(B).

(1) If f is continuous at a ∈ C and g is continuous at f(a), then h is continuous at a.
(2) If f is continuous (on A) and g is continuous (on B) then h is continuous (on C).

Proof: Note that Part 2 follows immediately from Part 1, so it suffices to prove Part 1.
Suppose that f is continuous at a ∈ A and g is continuous at b = f(a) ∈ B. Let (xk)
be a sequence in C with xk → a. Since f is continuous at a, we have f(xk) → f(a) = b
by the Sequential Characterization of Continuity. Since

(
f(xk)

)
is a sequence in B with

f(xk) → b and since g is continuous at b, we have g(f(xk)) → g(b) by the Sequential
Characterization of Continuity. Thus we have h(xk) = g

(
f(xk)

)
→ g(b) = g

(
f(a)

)
= h(a).

We have shown that for every sequence (xk) in C with xk → a we have h(xk) → h(a).
Thus h is continuous at a by the Sequential Characterization of Continuity.
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3.20 Theorem: (Functions Acting on Limits) Let A,B ⊆ R, let f : A→ R, let g : B → R
and let h = g ◦ f : C → F where C = A ∩ f−1(B). Let a be a limit point of C (hence
also of A) and let b be a limit point of B. Suppose that lim

x→a
f(x) = a and lim

y→b
g(y) = c.

Suppose either that f(x) 6= b for all x ∈ C \ {a} or that g is continuous at b ∈ B. Then
lim
x→a

h(x) = c.

Analogous results hold, dealing with limits x→ a±, x→ ±∞, y → b± and y → ±∞.

Proof: The proof is left as an exercise. It is similar to the proof of the Composition of
Continuous Functions Theorem.

3.21 Definition: The functions 1, x, n
√
x with n ∈ Z+, ex, lnx, sinx and sin−1 x,

are called the basic elementary functions. An elementary function is any function
f : A ⊆ R→ R which can be obtained from the basic elementary functions using (finitely
many applications of) the operations cf , f + g, f − g, f · g, f/g and f ◦ g.

3.22 Example: Each of the following functions f(x) is elementary: f(x) = |x| =
√
x2,

f(x) = cosx = sin
(
x + π

2

)
, f(x) = tanx = sin x

cos x , f(x) = tan−1 x = sin−1
(

x√
1+x2

)
,

f(x) = xa = ea ln x where a ∈ R, f(x) = ax = ex ln a where a > 0, and f(x) = e

√
x+sin x

tan−1(ln x) .

3.23 Note: We shall assume familiarity with exponential, logarithmic, trigonometric and
inverse trigonometric functions. In particular, we shall assume that they are known to be
continuous in their domains, (and it follows that every elementary function is continuous
in its domain). We shall also assume that their asymptotic behaviour, the intervals on
which they are increasing and decreasing, and all of their usual algebraic identities are
known. A review of this material can be found in Chapter 1.

A rigorous proof that these basic elementary functions are continuous, and that they
satisfy their usual well-known properties, is quite long and difficult (and we shall not
give a proof in this course). The main difficulty lies in giving a rigorous definition for
each of the basic elementary functions. In most calculus courses, we define exponential
and trigonometric functions informally. We might define the function f(x) = ex to be
the function with f(0) = 1 which is equal to its own derivative, but we do not ever
prove rigorously that such a function actually exists. We might define the sine and cosine
functions by saying that for θ > 0, when we start at (1, 0) and travel a distance θ units
counterclockwise around the unit circle x2 + y2 = 1, the point at which we arrive is (by
definition) the point (x, y) = (cos θ, sin θ), but we have not yet rigorously defined the
meaning of distance along a curve. We use these informal definitions to argue, informally,
that d

dx sinx = cosx and d
dx cosx = − sinx and then we argue that because ex, sinx and

cosx are differentiable, therefore they must be continuous.
There are various possible ways to define exponential and trigonometric functions

rigorously. One way is to wait until one has rigorously defined power series and then
define

ex =
∞∑
n=0

1
n! x

n , sinx =
∞∑
n=0

(−1)n
(2n+1)! x

n , cosx =
∞∑
n=0

(−1)n
(2n)! x

n.

If we define ex, sinx and cosx using these formulas, then one can prove (rigorously) that
they are differential and continuous, and one can verify (although it is quite time consuming
to do so) that they satisfy all of their usual well-known properties.
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3.24 Example: For each of the following sequences (xk)k≥0, evaluate lim
k→∞

xk if it exists.

(a) xk =
√
3k2+1
k+2 (b) xk = 1+3k

3√2+k−k2 (c) xk = sin−1
(
k −
√
k2 + k

)
Solution: For Part (a), we have xk =

√
3k2+1
k+2 =

√
3+ 1

k2

1+2· 1k
−→

√
3+0

1+2·0 =
√

3 where we used

Basic Limits, Extended Operations on Limits, the fact that
√
x is continuous, and the

Sequential Characterization of Limits
(
since

√
x is continuous at 3 we have lim

x→3

√
x =
√

3,

and since 3 + 1
k2 → 3 we have lim

k→∞

√
3 + 1

k2 = lim
x→3

√
x =

√
3 by the Sequential Charac-

terization of Limits
)
.

For Part (b), xk = 1+3k
3√2+k−k2 =

1
k+3

3
√

2
k2

+ 1
k−1
· k1/3 −→ 0+3

3
√
0+0−1 · ∞ = −1 · ∞ = −∞ where

we used Basic Limits, Extended Operations, the continuity of 3
√
x, and the Sequential

Characterization of Limits

For Part (c), note that k−
√
k2 + k = k2−(k2+k)

k+
√
k2+k

= −k
k+
√
k2+k

= −1
1+
√

1+ 1
k

−→ −1
1+
√
1+0

= − 1
2 ,

and so xk = sin−1
(
k −
√
k2 − k

)
−→ sin−1

(
− 1

2

)
= −π6 .

3.25 Exercise: Evaluate each of the following limits, if they exist.

(a) lim
x→3

√
x+ 1− 2

3− x
(b) lim

x→1
sin−1

( 2

x− 1
− x+ 3

x2 − 1

)
(c) lim

x→0
e−1/x

2

(d) lim
x→∞

(3x+ 1)
√
x√

4x3 − 2x+ 1
(e) lim

x→1−

√
x3 − 2x2 + x

x2 + 2x− 3
(f) lim

x→−1+
x2 − 2x− 3

x3 + 4x2 + 5x+ 2

3.26 Theorem: (Intermediate Value Theorem) Let I be an interval in R and let f : I → R
be continuous. Let a, b ∈ I with a ≤ b and let y ∈ R. Suppose that either f(a) ≤ y ≤ f(b)
or f(b) ≤ y ≤ f(a). Then there exists x ∈ [a, b] with f(x) = y.

Proof: Like the Monotone Convergence Theorem, the statement of this theorem is in-
tuitively reasonable, but it is quite difficult to prove, and in most calculus courses this
theorem is accepted axiomatically, without proof.

3.27 Example: Prove that there exists x ∈ [0, 1] such that 3x− x3 = 1.

Solution: Let f(x) = 3x−x3. Note that f is continuous (it is an elementary function) with
f(0) = 0 and f(1) = 2 and so, by the Intermediate Value Theorem, there exists x ∈ [0, 1]
such that f(x) = 1. We remark that in fact f(x) = 1 when x = 2 cos

(
2π
9

)
.

3.28 Definition: Let A ⊆ R, and let f : A → R. For a ∈ A, if f(a) ≥ f(x) for every
x ∈ A, then we say that f(a) is the maximum value of f and that f attains its maximum
value at a. Similarly for b ∈ A, if f(b) ≤ f(x) for every x ∈ A then we say that f(b) is the
minimum value of f (in A) and that f attains its minimum value at b. We say that f
attains its extreme values in A when f attains its maximum value at some point a ∈ A
and f attains its minimum value at some point b ∈ A.

3.29 Theorem: (Extreme Value Theorem) Let a, b ∈ R with a < b, and let f : [a, b]→ R
be continuous. Then f attains its extreme values in [a, b].

Proof: Like the Monotone Convergence Theorem and the Intermediate Value Theorem,
the statement of this theorem seems reasonable, but it is difficult to prove.
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Chapter 4. Differentiation

4.1 Definition: For a subset A ⊆ R, we say that A is open when it is a union of open
intervals. Let A ⊆ R be open, let f : A→ R. For a ∈ A, we say that f is differentiable
at a when the limit

lim
x→a

f(x)− f(a)

x− a
exists in R. In this case we call the limit the derivative of f at a, and we denote to by
f ′(a), so we have

f ′(a) = lim
x→a

f(x)− f(a)

x− a
.

We say that f is differentiable (on A) when f is differentiable at every point a ∈ A. In
this case, the derivative of f is the function f ′ : A→ R defined by

f ′(x) = lim
u→x

f(u)− f(x)

u− x
.

When f ′ is differentiable at a, denote the derivative of f ′ at a by f ′′(a), and we call
f ′′(a) the second derivative of f at a. When f ′′(a) exists for every a ∈ A, we say that
f is twice differentiable (on A), and the function f ′′ : A → R is called the second
derivative of f . Similarly, f ′′′(a) is the derivative of f ′′ at a and so on. More generally,
for any function f : A → R, we define its derivative to be the function f ′ : B → R
where B =

{
a ∈ A

∣∣f is differentiable at a
}

, and we define its second derivative to be

the function f ′′ : C → R where C =
{
a ∈ B

∣∣f ′ is differentiable at a
}

and so on.

4.2 Remark: Note that

lim
x→a

f(x)− f(a)

x− a
= lim
h→0

f(a+ h)− f(a)

h
.

To be precise, the limit on the left exists in R if and only if the limit on the right exists in
R, and in this case the two limits are equal.

4.3 Note: Let A ⊆ R be open, let f : A→ R, and let a ∈ A. Then

f is differentiable at a with derivative f ′(a) ⇐⇒ lim
x→a

f(x)− f(a)

x− a
= f ′(a)

⇐⇒ ∀ε>0 ∃δ>0 ∀x∈A
(

0 < |x− a| < δ =⇒
∣∣∣∣f(x)− f(a)

x− a
− f ′(a)

∣∣∣∣ < ε

)
⇐⇒ ∀ε>0 ∃δ>0 ∀x∈A

(
0 < |x− a| < δ =⇒

∣∣∣∣f(x)− f(a)− f ′(a)(x− a)

x− a

∣∣∣∣ < ε

)
⇐⇒ ∀ε>0 ∃δ>0 ∀x∈A

(
0 < |x− a| < δ =⇒

∣∣f(x)− f(a)− f ′(a)(x− a)
∣∣ < ε |x− a|

)
We can also simplify this last expression a little bit by noting that when x = a we have∣∣f(x) − f(a) − f ′(a)(x − a)

∣∣ = 0 = ε |x − a|, so we can replace inequalities by equalities
and say that f is differentiable at a if and only if

∀ε>0 ∃δ>0 ∀x∈A
(
|x− a| ≤ δ =⇒

∣∣f(x)− l(x)
∣∣ ≤ ε |x− a|)

where l : R→ R is given by l(x) = f(a) + f ′(a)(x− a).
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4.4 Definition: When f : A→ R is differentiable at a with derivative f ′(a), the function

l(x) = f(a) + f ′(a)(x− a)

is called the linearization of f at a. Note that the graph y = l(x) of the linearization is
the line through the point (a, f(a)) with slope f ′(a). This line is called the tangent line
to the graph y = f(x) at the point (a, f(a)).

4.5 Theorem: (Differentiability Implies Continuity) Let A ⊆ R be open, let f : A → R
and let a ∈ A. If f is differentiable at a then f is continuous at a.

Proof: We have

f(x)− f(a) =
f(x)− f(a)

x− a
· (x− a) −→ f ′(a) · 0 = 0 as x→ a

and so
f(x) =

(
f(x)− f(a)

)
+ f(a) −→ 0 + f(a) = f(a) as x→ a.

This proves that f is continuous at a.

4.6 Theorem: (Local Determination of the Derivative) Let A,B ⊆ R be open with
A ⊆ B, let f : A→ R and g : B → R wih f(x) = g(x) for all x ∈ A. and let a ∈ A. Then
f is differentiable at a if and only if g is differentiable at a and, in this case, f ′(a) = g′(a).

Proof: The proof is left as an exercise.

4.7 Theorem: (Operations on Derivatives) Let A ⊆ R be open, let f, g : A → R, let
a ∈ A, and let c ∈ R. Suppose that f and g are differentiable at a. Then

(1) (Linearity) the functions cf , f + g and f − g are differentiable at a with

(cf)′(a) = c f ′(a) , (f + g)′(a) = f ′(a) + g′(a) , (f − g)′(a)− f ′(a)− g′(a),

(2) (Product Rule) the function fg is differentiable at a with

(fg)′(a) = f ′(a)g(a) + f(a)g′(a),

(3) (Reciprocal Rule) if g(a) 6= 0 then the function 1/g is differentiable at a with(1

g

)′
(a) = − g

′(a)

g(a)2
,

(4) (Quotient Rule) if g(a) 6= 0 then the function f/g is differentiable at a with(f
g

)′
(a) =

f ′(a)g(a)− f(a)g′(a)

g(a)2
.

Proof: We prove Parts (2), (3) and (4). For x ∈ A with x 6= a, we have

(fg)(x)− (fg)(a)

x− a
=
f(x)g(x)− f(a)g(a)

x− a

=
f(x)g(x)− f(x)g(a) + f(x)g(a)− f(a)g(a)

x− a

= f(x) · g(x)− g(a)

x− a
+ g(a) · f(x)− f(a)

x− a
−→ f(a) · g′(a) + g(a) · f ′(a) as x→ a.

Note that f(x)→ f(a) as x→ a because f is continuous at a since differentiability implies
continuity. This proves the Product Rule.
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Suppose that g(a) 6= 0. Since g is continuous at a (because differentiability implies

continuity) we can choose δ > 0 so that |x − a| ≤ δ =⇒ |g(x) − g(a)| ≤ |g(a)|
2 and then

when |x− a| ≤ δ we have |g(x)| ≥ |g(a)|2 so that g(x) 6= 0. For x ∈ A with |x− a| ≤ δ we
have (

1
g

)
(x)−

(
1
g

)
(a)

x−−a
=

1
g(x) −

1
g(a)

x− a
=

−1

g(x)g(a)
· g(x)− g(a)

x− a
−→ −1

g(a)2
· g′(a)

as x→ a. This Proves the Reciprocal Rule.
Finally, note that Part (4) follows from Parts (2) and (3). Indeed when g(a) 6= 0, we

have (f
g

)′
(a) =

(
f · 1

g

)′
(a) = f ′(a) ·

(1

g

)
(a) + f(a) ·

(1

g

)′
(a)

= f ′(a) · 1

g(a)
+ f(a) · −g

′(a)

g(a)2
=
f ′(a)g(a)− f(a)g′(a)

g(a)2
.

4.8 Theorem: (Chain Rule) Let A,B ⊆ R be open, let f : A → R, let g : B → R and
let h = g ◦ f : C → R where C = A ∩ f−1(B). Let a ∈ C and let b = f(a) ∈ B. Suppose
that f is differentiable at a and g is differentiable at b. Then h is differentiable at a with

h′(a) = g′
(
f(a)

)
f ′(a).

Proof: We provide an explanation which can be converted (with a bit of trouble) into a
rigorous proof. When x ∈ A with x 6= a and y = f(x) ∈ B wih y 6= b we have

h(x)− h(a)

x− a
=
g
(
f(x)

)
− g
(
f(a)

)
x− a

=
g(y)− g(b)

x− a

=
g(y)− g(b)

y − b
· y − b
x− a

=
g(y)− g(b)

y − b
· f(x)− f(a)

x− a
−→ g′(b) · f ′(a) = g′

(
f(a)

)
· f ′(a) as x→ a

because as x→ a, since f is continuous at a we also have f(x)→ f(a), that is y → b.
We remark that when one tries to make this argument rigorous, using the ε-δ definition

of limits, a difficulty arises because x 6= a does not imply that y 6= b.

4.9 Definition: Recall that when f : A ⊆ R→ R, we say that f is nondecreasing (on A
when for all x, y ∈ A, if x ≤ y then f(x) ≤ f(y), we say that f is (strictly) increasing (on
A) when for all x, y ∈ A, if x < y then f(x) < f(y), we say that f is (strictly) decreasing
(on A) when for all x, y ∈ A, if x < y then f(x) > f(y), and we say that f is (strictly)
monotonic (on A) when either f is strictly increasing on A or f is strictly decreasing on
A.

4.10 Theorem: (The Inverse Function Theorem) Let I be an interval in R, let f : I → R,
let J = f(I), and let a be a point in I which is not an endpoint.

(1) If f is continuous then its range J = f(I) is an interval in R.
(2) If f is injective and continuous then f is strictly monotonic.
(3) If f : I → J is strictly monotonic, then so is its inverse g : J → I.
(4) If f is bijective and continuous then its inverse g is continuous.

(5) If f is bijective and continuous, and f is differentiable at a with f ′(a) 6= 0, then its
inverse g is differentiable at b = f(a) with g′(b) = 1

f ′(a) .

Proof: This theorem is quite difficult to prove and we omit the proof.
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4.11 Theorem: (Derivatives of the Basic Elementary Functions) The basic elementary
functions have the following derivatives.

(1) (xa)′ = a xa−1 where a ∈ R and x ∈ R is such that xa−1 is defined,

(2) (ax)′ = ln a · ax where a > 0 and x ∈ R and

(loga x)′ = 1
ln a ·

1
x where 0 < a 6= 1 and x > 0, and in particular

(ex)′ = ex for all x ∈ R and (lnx)′ = 1
x for all x > 0,

(3) (sinx)′ = cosx and (cosx)′ = − sinx for all x ∈ R, and

(tanx)′ = sec2 x and (secx)′ = secx tanx for all x ∈ R with x 6= π
2 + kπ, k ∈ Z,

(cotx)′ = − csc2 x and (cscx)′ = − cotx cscx for all x ∈ R with x 6= π + kπ, k ∈ Z,

(4) (sin−1 x)′ = 1√
1−x2

and (cos−1 x)′ = −1√
1−x2

for |x| < 1,

(sec−1 x)′ = 1
x
√
x2−1 and (csc−1 x)′ = −1

x
√
x2−1 for |x| > 1, and

(tan−1 x)′ = 1
1+x2 and (cot−1 x)′ = −1

1+x2 for all x ∈ R.

Proof: First we prove Part 1 in the case that a ∈ Q. When n ∈ Z+ and f(x) = xn we
have

f(u)− f(x)

u− x
=
un − xn

u− x
=

(u− x)(un−1 + un−2x+ un−3x2 + · · ·+ xn−1)

u− x
= un−1 + un−2x+ un−3x2 + · · ·+ xn−1 −→ nxn−1 as u→ x.

This shows that (xn)′ = nxn−1 for all x ∈ R when n ∈ Z+. By the Reciprocal Rule, for
x 6= 0 we have

(x−n)′ =
( 1

xn

)′
= − (xn)′

(xn)2
= −nx

n−1

x2n
= −nx−n−1.

The function g(x) = x1/n is the inverse of the function f(x) = xn (when n is odd, x1/n

is defined for all x ∈ R, and when n is even, x1/n is defined only for x ≥ 0). Since
f ′(x) = (xn)′ = nxn−1 we have f ′(x) = 0 when x = 0. By the Inverse Function Theorem,
when x 6= 0 we have

(x1/n)′ = g′(x) =
1

f ′(g(x))
=

1

n g(x)n−1
=

1

n(x1/n)n−1
=

1

nx1−
1
n

= 1
n x

1
n−1.

Finally, when n ∈ Z+ and k ∈ Z with gcd(k, n) = 1, by the Chain Rule we have

(xk/n)′ =
(
(x1/n)k

)′
= k(x1/n)k−1(x1/n)′ = k x

k−1
n · 1n x

1−n
n = k

n x
k
n−1.

We have proven Part 1 in the case that a ∈ Q.

Next we shall prove Part 2. For f(x) = ax where a > 0, we have

f(x+ h)− f(x)

h
=
ax+h − ax

h
=
axah − ax

h
= ax · a

h − 1

h

and so we have f ′(x) = ax
(

lim
h→0

ah−1
h

)
provided that the limit exists and is finite. For

g(x) = loga x, where 0 < a 6= 1 and x > 0, we have

g(x+ h)− g(x)

h
=

loga(x+ h)− loga x

h
=

loga
(
x+h
x

)
h

=
loga

(
1 + h

x

)
x · hx

= 1
x ·loga

(
1+ h

x

)x/h
and so we have g′(x) = 1

x · loga

(
lim
h→0

(
1 + h

x

)x/h)
provided the limit exists and is finite.
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By letting u = h
x we see that

lim
h→0+

(
1 + h

x

)x/h
= lim
u→∞

(
1 + 1

u

)u
= e

by the definition of the number e. By letting u = −hx , a similar argument shows that

lim
h→0−

(
1 + h

x

)x/h
= lim
u→∞

(
1− 1

u

)−u
= e.

Thus the derivative g′(x) does exist and we have

(loga x)′ = g′(x) = 1
x loga

(
lim
h→0

(
1 + h

x

)x/h)
= 1

x loga e = 1
x ·

ln e
ln a = 1

x ln a .

Since g(x) = loga x is differentiable with g′(x) 6= 0 it follows from the Inverse Function
Theorem that f(x) = ax is differentiable with derivative

(ax)′ = f ′(x) =
1

g′(f(x))
=

1
1

f(x) ln a

= ln a · f(x) = ln a · ax.

This proves Part 2.
Now we return to complete the proof of Part 1, in the case that a /∈ Q. When a > 0

we have ax = ex ln a for all x > 0 and so by the Chain Rule

(xa)′ =
(
ea ln x

)′
= ea ln x(a lnx)′ = xa · ax = a xa−1.

Let us move on to the proof of Part 3. We shall need two trigonometric limits which we
shall explain informally (non-rigorously) with the help of pictures. Consider the following
two pictures, the first showing an angle θ with 0 < θ < π

2 and the second with −π2 < θ < 0.
In both diagrams, the circle has radius 1 and s = sin θ and t = tan θ.

t
s θ

|s| |θ|
|t|

In the first diagram, where 0 < θ < π
2 , we have sin θ < θ < tan θ, and dividing by

sin θ (which is positive) gives 1 < θ
sin θ < 1

cos θ . In the second diagram, where −π2 <
θ < 0, we have − sin θ < −θ < − tan θ, and dividing by − sin θ (which is positive) gives
1 < θ

sin θ < 1
cos θ . In either case, taking the reciprocal gives cos θ < sin θ

θ < 1. Since
lim
θ→0

cos θ = cos(0) = 1, it follows from the Squeeze Theorem that

lim
θ→0

sin θ

θ
= 1.

From this limit we obtain the second trigonometric limit,

lim
θ→0

1− cos θ

θ
= lim
θ→0

1− cos2 θ

θ (1 + cos θ)
= lim
θ→0

sin θ

θ
· sin θ

1 + cos θ
= 1 · 02 = 0.
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Using the above two trigonometric limits, we have

(sinx)′ = lim
h→0

sin(x+ h)− sinx

h
= lim
h→0

sinx cosh− cosx sinh− sinx

h

= lim
h→0

(
cosx · sinh

h
− sinx · 1− cosh

h

)
= cosx · 1− sinx · 0 = cosx

(cosx)′ = lim
h→0

cos(x+ h)− cosx

h
= lim
h→0

cosx cosh− sinx sinh− cosx

h

= lim
h→0

(
− sinx · sinh

h
− cosx · 1− cosh

h

)
= − sinx · 1− cosx · 0 = − sinx.

By the Quotient Rule, we have

(tanx)′ =
( sinx

cosx

)′
=

cos2 x+ sin2 x

cos2 x
=

1

cos2 x
= sec2 x.

We leave it as an exercise to complete the proof of Part 3 by calculating the derivatives of
secx and cscx.

Finally, we shall derive the formula for (sin−1 x)′ and leave the rest of the proof of
Part 4 as an exercise. Note that by the Inverse Function Theorem (which we did not
prove), the function sin−1 x is differentiable in (−1, 1). Since sin(sin−1 x) = x for all
x ∈ (−1, 1), we can take the derivative on both sides (using the Chain Rule on the left) to
get cos(sin−1 x) · (sin−1 x)′ = 1 and hence

(sin−1 x)′ =
1

cos(sin−1 x)
=

1√
1− sin2(sin−1 x)

=
1√

1− x2
.

4.12 Definition: Let A ⊆ R, let f : A → R and let a ∈ A. We say that f has a local
maximum value at a when

∃δ>0 ∀x∈A
(
|x− a| ≤ δ =⇒ f(x) ≤ f(a)

)
.

Similarly, we say that f has a local minimum value at a when

∃δ>0 ∀x∈A
(
|x− a| ≤ δ =⇒ f(x) ≥ f(a)

)
.

4.13 Theorem: (Fermat’s Theorem) Let A ⊆ R be open, let f : A→ R, and let a ∈ A.
Suppose that f is differentiable at a and that f has a local maximum or minimum value
at a. Then f ′(a) = 0.

Proof: We suppose that f has a local maximum value at a (the case that f has a local
minimum value at a is similar). Choose δ > 0 so that |x − a| ≤ δ =⇒ f(x) ≤ f(a). For

x ∈ A with a < x < a+ δ, since x > a and f(x) ≥ f(a) we have f(x)−f(a)
x−a ≥ 0, and so

f ′(a) = lim
x→a+

f(x)− f(a)

x− a
≥ 0

by the Comparison Theorem. Similarly, for x ∈ A with a − δ ≤ x < a, since x < a and

f(x) ≥ f(a) we have f(x)−f(a)
x−a ≤ 0, and so

f ′(a) = lim
x→a−

f(x)− f(a)

x− a
≤ 0.
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4.14 Theorem: (Rolle’s Theorem and the Mean Value Theorem) Let a, b ∈ R with a < b.

(1) (Rolle’s Theorem) If f : [a, b] → R differentiable in (a, b) and continuous at a and b
with f(a) = 0 = f(b) then there exists a point c ∈ (a, b) such that f ′(c) = 0.

(2) (The Mean Value Theorem) If f : [a, b] → R is differentiable in (a, b) and continuous
at a and b then there exists a point c ∈ (a, b) with f ′(c) (b− a) = f(b)− f(a).

Proof: To Prove Rolle’s Theorem, let f : [a, b] → R be differentiable in (a, b) and contin-
uous at a and b with f(a) = 0 = f(b). If f is constant, then f ′(x) = 0 for all x ∈ [a, b].
Suppose that f is not constant. Either f(x) > 0 for some x ∈ (a, b) or f(x) < 0 for some
x ∈ (a, b). Suppose that f(x) > 0 for some x ∈ (a, b) (the case that f(x) < 0 for some
x ∈ (a, b) is similar). By the Extreme Value Theorem, f attains its maximum value at
some point, say c ∈ [a, b]. Since f(x) > 0 for some x ∈ (a, b), we must have f(c) > 0.
Since f(a) = f(b) = 0 and f(c) > 0, we have c ∈ (a, b). By Fermat’s Theorem, we have
f ′(c) = 0. This completes the proof of Rolle’s Theorem.

To prove the Mean Value Theorem, suppose that f : [a, b] → R is differentiable in

(a, b) and continuous at a and b. Let g(x) = f(x) − f(a) − f(b)−f(a)
b−a (x − a). Then g is

differentiable in (a, b) with g′(x) = f ′(x) − f(b)−f(a)
b−a and g is continuous at a and b with

g(a) = 0 = g(b). By Rolle’s Theorem, we can choose c ∈ (a, b) so that f ′(c) = 0, and then

g′(c) = f(b)−f(a)
b−a , as required.

4.15 Corollary: Let a, b ∈ R with a < b. Let f : [a, b] → R. Suppose that f is
differentiable in (a, b) and continuous at a and b.

(1) If f ′(x) ≥ 0 for all x ∈ (a, b) then f is nondecreasing on [a, b].
(2) If f ′(x) > 0 for all x ∈ (a, b) then f is strictly increasing on [a, b].
(3) If f ′(x) ≤ 0 for all x ∈ (a, b) then f is nonincreasing on [a, b].
(4) If f ′(x) < 0 for all x ∈ (a, b) then f is strictly decreasing on [a, b].
(5) If f ′(x) = 0 for all x ∈ (a, b) then f is constant on [a, b].
(6) If g : [a, b]→ R is continuous at a and b and differentiable in (a, b) with g′(x) = f ′(x)
for all x ∈ (a, b), then for some c ∈ R we have g(x) = f(x) + c for all x ∈ (a, b).

Proof: We prove Part 1 and leave the rest of the proofs as exercises. Suppose that f ′(x) ≥ 0

for all x ∈ (a, b). Let a ≤ x < y ≤ b. Choose c ∈ (x, y) so that f ′(c) = f(y)−f(x)
y−x . Then

f(y)− f(x) = f ′(c)(y − x) ≥ 0 and so f(y) ≥ f(x). Thus f is nondecreasing on [a, b].

4.16 Corollary: (The Second Derivative Test) Let I be an interval in R, let f : I → R
and let a ∈ I. Suppose that f is differentiable in I with f ′(a) = 0.

(1) If f ′′(a) > 0 then f has a local minimum at a.
(2) If f ′′(a) < 0 then f has a local maximum at a.

Proof: The proof is left as an exercise.

4.17 Theorem: (l’Hôpital’s Rule) Let I be a non degenerate interval in R. Let a ∈ I, or
let a be an endpoint of I. Let f, g : I \ {a} → R. Suppose that f and g are differentiable
in I \ {a} with g′(x) 6= 0 for all x ∈ I \ {a}. Suppose either that lim

x→a
f(x) = 0 = lim

x→a
g(x)

or that lim
x→a

g(x) = ±∞. Suppose that lim
x→a

f ′(x)

g′(x)
= u ∈ R̂. Then lim

x→a

f(x)

g(x)
= u.

Similar results hold for limits x→ a+, x→ a−, x→∞ and x→ −∞.

Proof: We omit the proof, which is fairly difficult.
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