

MATH 137 Calculus 1, Solutions to Assignment 9

1: Let T be the triangle with vertices at $a = (-1, 0)$, $b = (1, 0)$ and $c = (0, 2)$.

(a) A point p lies inside T along the y -axis. Find the smallest possible value for the sum $|p-a|+|p-b|+|p-c|$ (where $|p-a|$ denotes the distance between p and a).

Solution: Let $p = (0, y)$ where $0 \leq y \leq 2$. We need to minimize the sum

$$S(y) = |p-a| + |p-b| + |p-c| = \sqrt{1+y^2} + \sqrt{1+y^2} + (2-y) = 2\sqrt{1+y^2} + 2 - y.$$

We differentiate to get

$$S'(y) = \frac{2y}{\sqrt{1+y^2}} - 1.$$

Since $y \geq 0$ we have

$$S'(y) = 0 \iff 2y = \sqrt{1+y^2} \iff 4y^2 = 1+y^2 \iff 3y^2 = 1 \iff y = \frac{1}{\sqrt{3}}.$$

Note that $S(0) = 4$, $S\left(\frac{1}{\sqrt{3}}\right) = 2\sqrt{\frac{4}{3}} + 2 - \frac{1}{\sqrt{3}} = 2 + \sqrt{3}$, and $S(2) = 2\sqrt{5}$. Thus the minimum sum is

$$S\left(\frac{1}{\sqrt{3}}\right) = 2 + \sqrt{3}.$$

(b) A smaller triangle S , with its lower vertex at $(0, 0)$ and its upper edge parallel to the x -axis, is inscribed in T . Determine the minimum possible perimeter of S .

Solution: Let $p = (x, y)$ be upper-right vertex of S . We have $0 \leq x \leq 1$ (when $x = 0$ or 1 , S is a degenerate triangle with area zero). The point p lies on the right edge of T , which is the line through $(1, 0)$ and $(0, 2)$, and so we have $y = 2 - 2x$. The perimeter of S is given by

$$P = 2x + 2\sqrt{x^2 + y^2} = 2(x + \sqrt{5x^2 - 8x + 4}).$$

Differentiate to get

$$P'(x) = 2 \left(1 + \frac{5x-4}{\sqrt{5x^2-8x+4}} \right).$$

We have

$$\begin{aligned} P'(x) = 0 &\iff \sqrt{5x^2-8x+4} = 4-5x \implies 5x^2-8x+4 = 16-40x+25x^2 \\ &\iff 20x^2-32x+12=0 \iff 5x^2-8x+3=0 \iff (5x-3)(x-1)=0 \iff x=1 \text{ or } \frac{3}{5}. \end{aligned}$$

Since $P(0) = 4$, $P\left(\frac{3}{5}\right) = \frac{16}{5}$, and $P(1) = 4$, the minimum perimeter is $P\left(\frac{3}{5}\right) = \frac{16}{5}$.

2: Let $a = (1, 5)$ and $b = (2, 2)$ and let $c = (x, 0)$ with $x \geq \frac{8}{3}$ be a point along the x -axis.

(a) Find the maximum possible angle at c in the triangle abc .

Solution: Let α be the angle between line ac and the x -axis, and let β be the angle between bc and the x -axis. Note that $\alpha = \tan^{-1} \frac{5}{x-1}$ and $\beta = \tan^{-1} \frac{2}{x-2}$, and the angle at c in the triangle abc is

$$\theta = \alpha - \beta = \tan^{-1} \frac{5}{x-1} - \tan^{-1} \frac{2}{x-2}.$$

Differentiate to get

$$\theta'(x) = \frac{\frac{-5}{(x-1)^2}}{1 + \frac{25}{(x-1)^2}} - \frac{\frac{-2}{(x-2)^2}}{1 + \frac{4}{(x-2)^2}} = -\frac{5}{x^2 - 2x + 26} + \frac{2}{x^2 - 4x + 8}.$$

We have

$$\begin{aligned} \theta'(x) = 0 &\iff 5(x^2 - 4x + 8) = 2(x^2 - 2x + 26) \iff 3x^2 - 16x - 12 = 0 \\ &\iff x = \frac{16 \pm \sqrt{256+144}}{6} = \frac{8 \pm 10}{3} \iff x = 6 \text{ or } -\frac{2}{3}. \end{aligned}$$

Since $x > \frac{8}{3}$, $\theta'(x) = 0 \iff x = 6$. By the nature of the problem, it is clear that $x = 6$ will maximize the value of θ , and we have

$$\theta(6) = \tan^{-1} 1 - \tan^{-1} \frac{1}{2} = \frac{\pi}{4} - \tan^{-1} \frac{1}{2}.$$

We remark that this can also be written as $\theta(6) = \tan^{-1} \frac{1}{3}$.

(b) Find the maximum possible length for the shadow along the y -axis cast by the line segment ab when a light is placed at point c .

Solution: To avoid confusion, we shall write $c = (t, 0)$ (instead of $c = (x, 0)$). The line ac has equation $y = \frac{-5}{t-1}(x-t)$, and it has y -intercept $y = u = \frac{5t}{t-1}$. The line bc has equation $y = \frac{-2}{t-2}(x-t)$, and it has y -intercept $y = v = \frac{5t}{t-2}$. Thus the length of the shadow along the y -axis is

$$L(t) = u - v = \frac{5t}{t-1} - \frac{2t}{t-2}.$$

Differentiate to get

$$L'(t) = \frac{5(t-1) - 5t}{(t-1)^2} - \frac{2(t-2) - 2t}{(t-2)^2} = \frac{-5}{(t-1)^2} + \frac{4}{(t-2)^2}.$$

We have

$$\begin{aligned} L'(t) = 0 &\iff 5(t-2)^2 = 4(t-1)^2 \iff 5(t^2 - 4t + 4) = 4(t^2 - 2t + 1) \iff t^2 - 12t + 16 = 0 \\ &\iff t = \frac{12 \pm 144 - 64}{2} = 6 \pm 2\sqrt{5}. \end{aligned}$$

Since $x > \frac{8}{3}$, $L(t) = 0 \iff t = 6 + 2\sqrt{5}$. By the nature of the problem, it is fairly clear that $t = 6 + 2\sqrt{5}$ will maximize the value of L , and we have

$$\begin{aligned} L(6 + 2\sqrt{5}) &= \frac{5(6+2\sqrt{5})}{5+2\sqrt{5}} - \frac{2(6+2\sqrt{5})}{4+2\sqrt{5}} = \frac{5(6+2\sqrt{5})(5-2\sqrt{5})}{25-20} - \frac{2(6+2\sqrt{5})(4-2\sqrt{5})}{16-20} \\ &= (6+2\sqrt{5})(5-2\sqrt{5}) + (3+\sqrt{5})(4-2\sqrt{5}) = (10-2\sqrt{5}) + (2-2\sqrt{5}) \\ &= 12 - 4\sqrt{5}. \end{aligned}$$

In case it is not clear that we maximized L , we note that $\lim_{t \rightarrow \frac{8}{3}} L(t) = \frac{5 \cdot 8/3}{5/3} - \frac{2 \cdot 8/3}{2/3} = 0$ and $\lim_{t \rightarrow \infty} L(t) = 5 - 2 = 3$, and we have $L(6 + 2\sqrt{5}) > 3$ because $12 - 4\sqrt{5} > 3 \iff 9 > 4\sqrt{5} \iff 81 > 80$.

3: (a) Find the maximum possible capacity of a conical cup which is made from a circular piece of paper, of radius 3, with a slit along a radius.

Solution: Let r be the radius of the rim of the cup and let h be the height (or depth) of the cup. Then we have $r^2 + h^2 = 3^2 = 9$. The volume of the cup is

$$V = \frac{1}{3} \pi r^2 h = \frac{1}{3} \pi r^2 \sqrt{9 - r^2}.$$

Differentiate to get

$$V'(r) = \frac{\pi}{3} \left(2r\sqrt{9-r^2} - \frac{r^3}{\sqrt{9-r^2}} \right) = \frac{\pi}{3} \left(\frac{2r(9-r^2) - r^3}{\sqrt{9-r^2}} \right) = \frac{-\pi r(r^2 - 6)}{\sqrt{9-r^2}}.$$

We have

$$V'(r) = 0 \iff r(r^2 - 6) = 0 \iff r = 0 \text{ or } \pm\sqrt{6}.$$

From the nature of the problem, it is clear that $r = \sqrt{6}$ must maximize the volume, and we have

$$V(\sqrt{6}) = \frac{1}{3} \pi 6 \sqrt{3} = 2\pi\sqrt{3}.$$

(b) Find the volume of the largest cone which can be inscribed in a sphere of radius $\frac{3}{2}$ m.

Solution: Let x , r and θ be as shown and let $R = \frac{3}{2}$. Then the volume of the cone is

$$V = \frac{1}{3} \pi r^2 (R + x) = \frac{1}{3} \pi (R \sin \theta)^2 (R + R \cos \theta) = \frac{\pi R^3}{3} \sin^2 \theta (1 + \cos \theta) = \frac{\pi R^3}{3} (1 - \cos^2 \theta) (1 + \cos \theta)$$

where $0 \leq \theta \leq \pi$. We introduce the variable $u = \cos \theta$ and we have

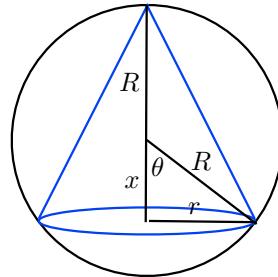
$$V(u) = \frac{\pi R^3}{3} \cdot (1 - u^2)(u + 1) = \frac{\pi R^3}{3} (-u^3 - u^2 + u + 1)$$

where $-1 \leq u \leq 1$. Differentiate to get

$$V'(u) = \frac{\pi R^3}{3} (-3u^2 - 2u + 1) = -\frac{\pi R^3}{3} (3u - 1)(u + 1)$$

so that $V'(u) = 0$ when $u = -\frac{1}{3}$ or 1. Since $V'(u) > 0$ for $-1 < u < -\frac{1}{3}$ and $V'(u) > 0$ for $-\frac{1}{3} < u < 1$, we see that the maximum volume is

$$V\left(-\frac{1}{3}\right) = \frac{\pi R^3}{3} \left(-\frac{1}{27} - \frac{1}{9} + \frac{1}{3} + 1\right) = \frac{\pi}{3} \left(\frac{3}{2}\right)^3 \cdot \frac{32}{27} = \frac{4\pi}{3}.$$



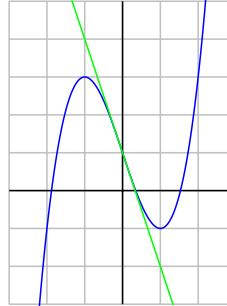
4: (a) Let $f(x) = x^3 - 3x + 1$ and let $x_1 = 0$. Apply Newton's method to find the approximations x_2 and x_3 to one of the roots of f . Sketch the graph of f and indicate which root is being approximated.

Solution: We have $f(x) = x^3 - 3x + 1$ and $f'(x) = 3x^2 - 3$ and $x_1 = 0$, and so

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} = 0 - \frac{1}{-3} = \frac{1}{3}$$

$$x_3 = x_2 - \frac{f(x_2)}{f'(x_2)} = \frac{1}{3} - \frac{\frac{1}{27} - 1 + 1}{\frac{1}{3} - 3} = \frac{1}{3} - \frac{\frac{1}{27}}{-\frac{8}{3}} = \frac{1}{3} + \frac{1}{72} = \frac{25}{72}.$$

From the graph of $y = f(x)$ and its tangent line at $x = 0$, it is clear that it is the middle root which is being approximated. (We remark that the exact value of this root is $2 \sin(10^\circ)$).



(b) Let $f(x) = x^3 - 4x$. Find $x_1 > 0$ such that when Newton's method is applied, we obtain $x_n = (-1)^{n+1}x_1$. Draw a sketch which explains the situation.

Solution: We have

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} = x_n - \frac{x_n^3 - 4x_n}{3x_n^2 - 4} = \frac{3x_n^3 - 4x_n - x_n^3 + 4x_n}{3x_n^2 - 4} = \frac{2x_n^3}{3x_n^2 - 4},$$

and so

$$x_{n+1} = -x_n \iff -x_n = \frac{2x_n^3}{3x_n^2 - 4} \iff -3x_n^3 + 4x_1 = 2x_n^3$$

$$\iff x_n(5x_n^2 - 4) = 0 \iff x_n = 0 \text{ or } x_n = \pm \frac{2}{\sqrt{5}}.$$

Thus we take $x_1 = \frac{2}{\sqrt{5}}$. Here is a picture showing the graph $y = f(x)$ together with the tangent lines at $x = \pm \frac{2}{\sqrt{5}}$. The sequence x_1, x_2, x_3, \dots follows the circuit indicated by the red parallelogram.



5: Use MAPLE to apply Newton's Method on a suitable function to find the approximate distance (accurate to about 10 decimal places) from the point $(1, 2)$ to the curve $y = \ln x$.

Solution: For $x > 0$, let $f(x)$ be the square of the distance from $(1, 2)$ to the point $(x, \ln x)$, that is

$$f(x) = (x - 1)^2 + (\ln x - 2)^2.$$

To find the point on the graph $y = \ln x$ which is nearest to $(1, 2)$, we need to minimize $f(x)$. Differentiate to get

$$f'(x) = 2(x - 1) + \frac{2(\ln x - 2)}{x} = \frac{2(x^2 - x + \ln x - 2)}{x}.$$

We see that $f'(x) = 0$ when x is a root of

$$g(x) = x^2 - x + \ln x - 2.$$

By the nature of the problem, we expect that there is only one root and that this root minimizes $f(x)$ (and indeed, if you want you can verify that $g'(x) > 0$ for all $x > 0$, so $g(x)$ is increasing). We apply Newton's Method, starting with $x_1 = 1$, to approximate the root of $g(x)$. We have $g'(x) = 2x - 1 + \frac{1}{x}$, so we use the recursion

$$x_{n+1} = x_n - \frac{g(x_n)}{g'(x_n)} = x_n - \frac{x_n^2 - x_n + \ln x_n - 2}{2x_n - 1 + \frac{1}{x_n}}.$$

We instruct MAPLE to perform the calculations using the following commands.

```
x[1]:=1.0;
for n from 1 to 10 do;
x[n+1]:=x[n]-(x[n]^2-x[n]+ln(x[n])-2)/(2*x[n]-1+1/x[n]);
end do;
```

We see that the values of x_n stabilize at $n = 6$ with $x_6 \cong 1.791173500$. Thus the distance from $(1, 2)$ to the curve $y = \ln x$ is approximately equal to $\sqrt{f(x_6)}$, which we can find with the following MAPLE command.

```
sqrt((x[6]-1)^2+(ln(x[6])-2)^2);
```

We find that the distance is approximately

$$\sqrt{f(x_5)} \cong 1.623024994.$$