
MATH 137 Calculus 1, Solutions to Assignment 8

1: Evaluate each of the following limits.

(a) lim
x→0

cosx− 1

ln(1− x2)
.

Solution: Since (cosx− 1)→ 0 and ln(1− x2)→ 0 as x→ 0, we can use l’Hôpital’s Rule. We obtain

lim
x→0

cosx− 1

ln(1− x2)
= lim
x→0

− sinx
−2x
1−x2

= lim
x→0

1− x2

2
· sinx

x
=

1

2
· 1 = 1

2 ,

since lim
x→0

sinx

x
= 1.

(b) lim
x→1−

√
1− x

cos−1 x
.

Solution: Since lim
x→1−

√
1− x = 0 and lim

x→1−
cos−1 = 0, we can apply l’Hôpital’s Rule. We obtain

lim
x→1−

√
1− x

cos−1 x
= lim
x→1−

−1
2
√
1−x
−1√
1−x2

= lim
x→1−

√
1− x2

2
√

1− x
= lim
x→1−

√
(1− x)(1 + x)

2
√

1− x
= lim
x→1−

√
1 + x

2
=

√
2

2
.

(c) lim
x→ 1

2
−

(2x)
tan(πx)

.

Solution: Note that (2x)
tan(πx)

= e
tan(πx) ln(2x)

, and we have

lim
x→ 1

2
−

tan(πx) ln(2x) = lim
x→ 1

2
−

sin(πx) ln(2x)

cos(πx)

= lim
x→ 1

2
−

ln(2x)

cos(πx)
, since lim

x→ 1
2
−

sinx = 1

= lim
x→ 1

2
−

2
2x

−π sin(πx)
by l’Hôpital’s Rule, since lim

x→ 1
2
−

ln(2x) = 0 = lim
x→ 1

2
−

cos(πx)

= − 2

π
,

and so lim
x→ 1

2
−

(2x)
tan(πx)

= lim
x→ 1

2
−
e
tan(πx) ln(2x)

= e−2/π.



2: (a) Let f(x) =
x+ 1

x2 + 3
. Find all the local maximum and minimum values of f for x ∈ R, and find the

absolute maximum and minimum values of f for x ∈ [0, 5].

Solution: We have

f ′(x) =
(x2 + 3)− (x+ 1)(2x)

(x2 + 3)2
=
−x2 − 2x+ 3

(x2 + 3)2
= − (x+ 3)(x− 1)

(x2 + 3)2
.

We indicate where f ′(x) is positive, negative and zero in the following a table.

x −3 1
f ′(x) − 0 + 0 −

From the above table together with the First Derivative Test, there is a local minimum at x = −3, where
we have f(−3) = − 1

6 , and a local maximum at x = 1 where f(1) = 1
2 . To find the absolute maximum

and minimum values on [0, 5], we find the values of f at the endpoints and the critical numbers: f(0) = 1
3 ,

f(1) = 1
2 and f(5) = 3

14 . Thus the absolute maximum value is f(1) = 1
2 , and the absolute minimum value

is f(5) = 3
14 .

(b) Let f(x) =
(2x− 1)

ex2 . Find all the local maximum and minimum values of f for x ∈ R, and find the

absolute maximum and minimum values of f for x ∈ [−1, 2].

Solution: We can also write f(x) = (2x− 1)e−x
2

, so we have

f ′(x) = 2 e−x
2

+ (2x− 1)(−2x)e−x
2

= (−4x2 + 2x+ 2)e−x
2

= −2(2x+ 1)(x− 1)e−x
2

.

Since e−x
2

is never zero, f ′(x) is positive, negative and zero as indicated in the following table.

x − 1
2 1

f ′(x) − 0 + 0 −
From the above table, together with the First Derivative Test, we see that f(x) has a local minimum value
at x = − 1

2 where we have f
(
− 1

2

)
= − 2

e1/4
and a local maximum value at x = 1 where we have f(1) = 1

e .
To find the absolute maximum and minimum values on [−1, 2], we find the values of f at the endpoints and
the critical numbers: f(−1) = − 3

e , f
(
− 1

2

)
= − 2

e1/4
, f(1) = 1

e and f(2) = 3
e4 . The absolute maximum value

is f(1) = 1
e and the absolute minimum value is f

(
− 1

2

)
= − 2

e1/4
.
(
We remark that a calculator is not needed

here, for example we know that f(−1) > f
(
− 1

2

)
because f is decreasing for x < − 1

2

)
.



3: (a) Let f(x) = 2 − 3

x
+

1

x3
. Sketch the graph y = f(x), showing all x-intercepts, all asymptotes, all local

maxima and minima, and all points of inflection.

Solution: We have

f(x) = 2− 3

x
+

1

x3
=

2x3 − 3x2 + 1

x3
=

(x− 1)(2x− x− 1)

x3
=

2(x− 1)2(2x+ 1)

x3

f ′(x) =
3

x2
− 3

x4
=

3x2 − 3

x4
=

3(x− 1)(x+ 1)

x4

f ′′(x) = − 6

x3
+

12

x5
=
−6x2 + 12

x5
=
−6(x−

√
2)(x+

√
2)

x5

.

We indicate where each of these is positive, negative, zero and undefined (indicated by #) in the following
table.

x −
√

2 −1 − 1
2 0 1

√
2

f(x) + + + + + 0 − # + 0 + + +
f ′(x) + + + 0 − − − # − 0 + + +
f ′′(x) + 0 − − − − − # + + + 0 −

The table gives a lot of information about the graph. The graph lies above that x-axis when f(x) > 0 and
below the x-axis when f(x) < 0, the graph is increasing when f ′(x) > 0 and decreasing when f ′(x) < 0, and
the graph is concave up when f ′′(x) > 0 and concave down when f ′′(x) < 0. The table also indicates that
the x-intercepts are at x = − 1

2 and x = 1, that there is a local maximum when x = −1 and a local minimum

when x = 1, and that there are points of inflection at x = ±
√

2. To help sketch the graph, we make a table
of values and limits. The limits in the table indicate that f has a vertical asymptote along x = 0 (the y-axis)
and horizontal asymptotes, both to the left and to the right, along y = 2.

x y

→ −∞ 2
−
√

2 2 + 3√
2
− 1

2
√
2

= 2 + 5
√
2

4
−1 4
− 1

2 0
→ 0− −∞
→ 0+ ∞

1 0√
2 2− 3√

2
+ 1

2
√
2

= 2− 5
√
2

4
→∞ 2



(b) Let f(x) =
x√

x4 + 1
. Sketch the graph y = f(x), showing all x-intercepts, all asymptotes, all local

maxima and minima, and all points of inflection.

Solution: We have

f ′(x) =

√
x4 + 1− 2x4/

√
x4 + 1

(x2 + 1)
=

(x4 + 1)− (2x4)

(x4 + 1)3/2
= − x4 − 1

(x4 + 1)3/2
= − (x+ 1)(x− 1)(x2 + 1)

(x4 + 1)3/2

f ′′(x) = −
(4x3)(x4 + 1)3/2 − (x4 − 1) 3

2 (x4 + 1)1/2(4x3)

(x4 + 1)5/2
= −4(x3)(x4 + 1)− 6(x4 − 1)(x3)

(x4 + 1)5/2

=
2x7 − 10x3

(x4 + 1)5/2
=

2x3(x+ 4
√

5)(x− 4
√

5)(x2 +
√

5)

(x4 + 1)5/2

We make a table indicating where f(x), f ′(x) and f ′′(x) are positive, negative and zero.

x − 4
√

5 −1 0 1 4
√

5

y − − − − − 0 + + + + +
y′ − − − 0 + + + 0 − − −
y′′ − 0 + + + 0 − − − 0 +

As in part (a), the table indicates where the graph lies above the x-axis and where it lies below, and where
the graph is increasing and where it is decreasing, and where the graph is concave up and where it is concave
down, and it indicates that the graph has an x-intercept at x = 0, it has a local maximum at x = 1 and a
local minimum at x = −1, and it has points of inflection when x = ± 4

√
5 and when x = 0. To help sketch the

curve, we make a table of values and limits. The limits indicate that the graph has horizontal asymptotes,
both to the left and to the right, along y = 0 (the x-axis).

x y significance

→ −∞ 0 assyptote
− 4
√

5 − 4
√

5/
√

6 inflection
−1 −1/

√
2 min

0 0 inflextion
1 1/

√
2 max

4
√

5 4
√

5/
√

6 inflection
→∞ 0 assymptote



4: (a) Let f(x) = 2 sinx+ sin2 x for 0 ≤ x ≤ 2π. Sketch the graph y = f(x) showing all x-intercepts, all local
maxima and minima, and all points of inflection.

Solution: We have f(x) = 2 sinx + sin2 x = sinx(sinx + 2), and we note that (sinx + 2) > 0 for all x, so
f(x) = 0 when x = 0 and π, and f(x) is positive when sinx is positive. Also, f ′(x) = 2 cosx+ 2 sinx cosx =
2 cosx(sinx + 1), and note that (sinx + 1) ≥ 0 for all x, so f ′(x) = 0 when x = π

2 and 3π
2 and f ′(x) is

positive when cosx is positive. Finally, f ′′(x) = −2 sinx + 2(cos2 x − sin2 x) = −2 sinx + 2(1 − 2 sin2 x) =
−2(2 sin2 x− sinx− 1) = 2(2 sinx− 1)(sinx+ 1), and note that (sinx+ 1) ≥ 0 for all x, so f ′′(x) = 0 when
x = π

6 , 5π
6 and 3π

2 , and f ′′(x) is positive when sinx < 1
2 . We summarize:

x 0 π
6

π
2

5π
6 π 3π

2 2π

f(x) 0 + + + + + + + 0 − − − 0
f ′(x) + + + + 0 − − − − − 0 + +
f ′′(x) + + 0 − − − 0 + + + 0 + +

The graph has x-intercepts at x = 0, x = π and x = 2π, it has a local maximum at x = π
2 and a local

minimum at x = 3π
2 , and the points of inflection are at x = π

6 and 5π
6 . We make a table of values and draw

the sketch:

x y significance

0 0 intercept
π
6 5/4 inflection
π
2 3 maximum
5π
6 5/4 inflection
π 0 intercept
3π
2 −1 minimum

2π 0 intercept

0 π
2 π 3π

2 2π



(b) Let f(x) = tan−1
(

(x− 1)2

(x+ 1)2

)
. Sketch the graph of y = f(x) showing all intercepts, all asymptotes, all

local maxima and minima, and find the x-value of each point of inflection.

Solution: We have

f ′(x) =
1

1 +
(x− 1

x+ 1

)4 · 2(x− 1

x+ 1

) (x+ 1)− (x− 1)

(x+ 1)2
=

4(x− 1)(x+ 1)

(x+ 1)4 + (x− 1)4
=

2(x− 1)(x+ 1)

x4 + 6x2 + 1

f ′′(x) = 2
(2x)(x4 + 6x2 + 1)− (x2 − 1)(4x3 + 12x)

(x4 + 6x2 + 1)2
= 4

(x5 + 6x3 + x)− (2x5 + 4x3 − 6x)

(x4 + 6x2 + 1)2

=
−4x (x4 − 2x2 − 7)

(x4 + 6x2 + 1)2
=
−4x

(
x−

√
1 +
√

8
)(
x+

√
1 +
√

8
)(
x2 + (

√
8− 1)

)
(x4 + 6x2 + 1)2

.

At the last step, we factored x4− 2x2− 7 as follows: using the Quadratic Formula, we have x4− 2x2− 7 = 0

when x = 2±
√
4+28
2 = 1±

√
8, and so x4− 2x2− 7 =

(
x2− (1 +

√
8)
)(
x2− (1−

√
8)
)
. Note that x4 + 6x2 + 1

has no real roots, since we would need x2 = −6±
√
36−4

2 = −3 ±
√

8, but −3 +
√

8 < 0. We indicate where
f(x), f ′(x) and f ′′(x) are positive, negative, zero and undefined in the following table.

x −
√

1 +
√

8 −1 0 1
√

1 +
√

8

f(x) + + + # + + + 0 + + +
f ′(x) + + + # − − − 0 + + +
f ′′(x) + 0 − # − 0 + + + 0 −

The graph always lies above the x-axis except at x = 1 where there is an x-intercept. The graph is increasing
on (−∞,−1) then decreasing on (−1, 1) then increasing again on (1,∞). The graph has a local minimum at

x = 1. The behaviour of the graph near x = −1 is a bit subtle. Note that as x→ −1 we have (x−1)2
(x+1)2 →∞

and so f(x) = tan−1 (x−1)2
(x+1)2 →

π
2 , so there is a hole in the graph at the point

(
− 1, π2

)
. Also note that as

x → −1 we have f ′(x) → 0, so the slope of the graph near the hole approaches zero. If we were to fill the
hole in the graph by adding the point

(
−1, π2

)
, then the new graph would have a local maximum at

(
−1, π2

)
.

Furthermore, writing a =
√

1 +
√

8, we note that the graph is concave up in (−∞,−a), then concave down
in (−a, 0) (except at the hole), then concave up in (0, a), then concave down in (a,∞). We make a table of
values and limits and sketch the curve.

x y

→ −∞ π
4 assymptote

−
√

1 +
√

8 ugly inflection
→ −1 π

2 hole

0 π
4 inflection

1 0 minimum√
1 +
√

8 ugly inflection
→∞ π

4 assymptote

π
2

π
4



5: (a) Prove that lnx ≥ − 1
2 (x− 1)(x− 3) for all x ≥ 1.

Solution: Let f(x) = lnx+ 1
2 (x− 1)(x− 3) and note that

f ′(x) =
1

x
+ 1

2

(
(x− 3) + (x− 1)

)
=

1

x
+ (x− 2) =

x2 − 2x+ 1

x
=

(x− 1)2

x
.

We must show that f(x) ≥ 0 for all x ≥ 1. When x = 1 we have f(x) = f(1) = 0. Suppose that x = a > 1.
Since f(x) is differentiable in (1, a) and continuous on [1, a], by the Mean Value Theorem, we can choose a

number c ∈ (1, a) such that f ′(c) = f(a)−f(1)
a−1 = f(a)

a−1 . Then we have f(a) = (a− 1)f ′(c) = (a− 1) (c−1)2
c > 0.

(b) Prove that
√
x
√
x+1

>
√
x+ 1

√
x

for all x > e2.

Solution: Note that for x > 0 we have
√
x
√
x+1

>
√
x+ 1

√
x ⇐⇒ ln

(√
x
√
x+1
)
> ln

(√
x+ 1

√
x
)

⇐⇒
√
x+ 1 · 12 lnx >

√
x · 12 ln(x+ 1)

⇐⇒ lnx√
x
>

ln(x+ 1)√
x+ 1

.

Let f(x) =
lnx√
x

for x > 0. Then

f ′(x) =

1
x ·
√
x− lnx · 1

2
√
x

x
=

2− lnx

2x3/2
.

We see that f ′(x) < 0 when lnx > 2, that is when x > e2, and so f(x) is decreasing for x > e2. In particular,

when x > e2 we have f(x) > f(x+ 1), that is ln x√
x
> ln(x+1)√

x+1
, as required.

(c) Let f(x) be differentiable for all x ∈ R with f(0) = 3. Suppose f ′(x) ≤ 1 for all x > 0. Prove that there
is a number a > 0 such that f(a) = 2a.

Solution: We claim that f(3) ≤ 6. Since f is differentiable in (0, 3) and continuous on [0, 3], by the Mean

Value Theorem we can choose a point c ∈ (0, 3) such that f ′(c) = f(3)−f(0)
3−0 = f(3)−3

3 . Since f ′(c) ≤ 1 we
have f(3) = 3f ′(c) + 3 ≤ 6, as claimed. If f(3) = 6 then we can take a = 3 to get f(a) = 2a. Suppose that
f(3) < 6. Let g(x) = f(x)− 2x. Then g(x) is continuous on [0, 3] and g(0) = 3 > 0 and g(3) = f(3)− 6 < 0,
and so by the Intermediate Value Theorem we can choose a number a ∈ (0, 3) such that g(a) = 0. Then we
have 0 = g(a) = f(a)− 2a and so f(a) = 2a, as required.


