

MATH 137 Calculus 1, Solutions to Assignment 6

1: (a) Let $f(x) = (x^2 - 3)\sqrt{x-1}$. Find the tangent line to $y = f(x)$ at the point $(2, 1)$.

Solution: We have $f'(x) = 2x \cdot \sqrt{x-1} + (x^2 - 3) \cdot \frac{1}{2\sqrt{x-1}}$ and so $f'(2) = 4 + \frac{1}{2} = \frac{9}{2}$. The equation of the tangent line is $y = 1 + \frac{9}{2}(x - 2)$, or equivalently $9x - 2y = 16$.

(b) Let $f(x) = \frac{\cos(\sqrt{\pi x})}{\sqrt{\sin x}}$. Find $f'(\frac{\pi}{4})$.

Solution: We have $f'(x) = \frac{-\sin(\sqrt{\pi x}) \cdot \frac{1}{2\sqrt{\pi x}} \cdot \pi \cdot \sqrt{\sin x} - \cos(\sqrt{\pi x}) \cdot \frac{1}{2\sqrt{\sin x}} \cdot \cos x}{\sin x}$. Note that when $x = \frac{\pi}{4}$, we have $\sqrt{\pi x} = \sqrt{\frac{\pi^2}{4}} = \frac{\pi}{2}$, and so $f'(\frac{\pi}{4}) = \frac{-1 \cdot \frac{1}{\pi} \cdot \pi \cdot \frac{1}{\sqrt[4]{2}} - 0}{\frac{1}{\sqrt{2}}} = -\sqrt[4]{2}$

(c) Let $f(x) = \tan^{-1} \sqrt{5x^2 - 1}$. Find $f'(1)$ and $f''(1)$.

Solution: For $x > 0$ we have

$$f'(x) = \frac{1}{1 + (5x^2 - 1)} \cdot \frac{1}{2\sqrt{5x^2 - 1}} \cdot 10x = \frac{10x}{5x^2 \cdot 2\sqrt{5x^2 - 1}} = \frac{1}{x\sqrt{5x^2 - 1}} = (5x^4 - x^2)^{-1/2}$$

$$f''(x) = -\frac{1}{2}(5x^4 - x^2)^{-3/2} \cdot (20x^3 - 2x)$$

and so $f'(1) = 4^{-1/2} = \frac{1}{2}$ and $f''(1) = -\frac{1}{2} 4^{-3/2} \cdot 18 = -\frac{18}{16} = -\frac{9}{8}$.

2: (a) Let $f(x) = \frac{x + \sqrt{x}}{\sqrt[3]{x}}$. Find the tangent line to $y = f(x)$ at the point where $x = 1$.

Solution: Note that $f(x) = x^{2/3} + x^{1/6}$ so $f'(x) = \frac{2}{3}x^{-1/3} + \frac{1}{6}x^{-5/6}$. We have $f(1) = 2$ and $f'(1) = \frac{2}{3} + \frac{1}{6} = \frac{5}{6}$ and so the equation of the tangent line is $y = 2 + \frac{5}{6}(x - 1)$, or equivalently $5x - 6y + 7 = 0$.

(b) Let $f(x) = \ln\left(\frac{x^2 - 3}{(x - 1)^3}\right)$. Find $f'(2)$ and $f''(2)$.

Solution: Note that $f(x) = \ln(x^2 - 3) - 3\ln(x - 1)$ and so we have

$$f'(x) = \frac{2x}{x^2 - 3} - \frac{3}{x - 1}$$

$$f''(x) = \frac{2(x^2 - 3) - 4x^2}{(x^2 - 3)^2} + \frac{3}{(x - 1)^2}$$

and so $f'(2) = 4 - 3 = 1$ and $f''(2) = (2 - 16) + 3 = -11$.

(c) $f(x) = x^{x^2}$. Find $f'(1)$ and $f''(1)$.

Solution: Since $f(x) = e^{x^2 \ln x}$, we have

$$f'(x) = e^{x^2 \ln x} \cdot (2x \ln x + x^2 \cdot \frac{1}{x}) = x^{x^2} (2x \ln x + x)$$

$$f''(x) = x^{x^2} (2x \ln x + x)^2 + x^{x^2} (2 \ln x + 2x \cdot \frac{1}{x} + 1) = x^{x^2} ((2x \ln x + x)^2 + (2 \ln x + 3))$$

and so $f'(1) = 1 \cdot (0 + 1) = 1$ and $f''(1) = 1 \cdot ((0 + 1)^2 + 3) = 4$.

3: (a) Find the tangent line to the curve $y^3 + xy^2 + 1 = x(1 + xy)$ at the point $(3, 2)$.

Solution: Differentiate both sides of the formula $y^3 + xy^2 + 1 = x + x^2y$, remembering that y is a function of x , to get $3y^2y' + y^2 + 2xyy' = 1 + 2xy + x^2y'$. Put in $(x, y) = (3, 2)$ to get $12y' + 4 + 12y' = 1 + 12 + 9y'$, that is $15y' = 9$ so $y' = \frac{3}{5}$. The equation of the tangent line is $y = 2 + \frac{3}{5}(x - 3)$ or $3x - 5y + 1 = 0$.

(b) Find the tangent line to the curve $y + \ln(x^2y - 1) = 2x$ at the point $(1, 2)$.

Solution: Differentiate both sides to get $y' + \frac{2xy + x^2y'}{x^2y - 1} = 2$. Put in $(x, y) = (1, 2)$ to get $y' + \frac{4 + y'}{2 - 1} = 2$, that is $y' + 4 + y' = 2$, so $2y' = -2$ and hence $y' = -1$. The equation of the tangent line is $y - 2 = (-1)(x - 1)$, or equivalently $y = -x + 3$.

(c) Let $f(x) = x^3 - 3x^2 + 6x - 2$ and let $g = f^{-1}$. Find $g'(6)$ and $g''(6)$.

Solution: As mentioned in the hints, $y = g(x) \iff x = f(y) \iff x = y^3 - 3y^2 + 6y - 2$ and so the curve $y = g(x)$ is given implicitly by the equation

$$x = y^3 - 3y^2 + 6y - 2.$$

Note that $f(2) = 6$ so we have $g(6) = 2$, so we are interested in the point $(x, y) = (6, 2)$ on this curve. We differentiate both sides of the above equation (remembering that y is a function of x), then we solve for y' in terms of x and y , and then we differentiate again to get

$$\begin{aligned} 1 &= 3y^2y' - 6yy' + 6y' = 3y'(y^2 - 2y + 2), \\ y' &= \frac{1}{3(y^2 - 2y + 2)}, \\ y'' &= \frac{-(2yy' - 2y')}{3(y^2 - 2y + 2)^2} = \frac{-2(y-1)y'}{3(y^2 - 2y + 2)^2}. \end{aligned}$$

Put $x = 6$ and $y = 2$ into the formula for y' to get $g'(6) = y' = \frac{1}{3 \cdot 2} = \frac{1}{6}$, and then put $x = 6$, $y = 2$ and $y' = \frac{1}{6}$ into the formula for y'' to get $g''(6) = \frac{-2 \cdot 1 \cdot \frac{1}{6}}{3 \cdot 2^2} = -\frac{1}{36}$.

4: (a) Find constants $a > 0$ and $r > 1$ so that f is differentiable at $x = 1$, where

$$f(x) = \begin{cases} \sqrt{r^2 - x^2}, & \text{if } -r < x \leq 1, \\ \frac{a}{x^2 + 1}, & \text{if } 1 < x. \end{cases}$$

Solution: Let $g(x) = \sqrt{r^2 - x^2}$ and $h(x) = \frac{a}{x^2 + 1}$. Note that $g'(x) = \frac{-x}{\sqrt{r^2 - x^2}}$ and $h'(x) = \frac{-2ax}{(x^2 + 1)^2}$. In order for $f(x)$ to be differentiable at $x = 1$, it must be continuous at $x = 1$, so we must have

$$\lim_{x \rightarrow 1^-} f(x) = f(1) = \lim_{x \rightarrow 1^+} f(x).$$

Since $\lim_{x \rightarrow 1^-} f(x) = \lim_{x \rightarrow 1^-} g(x) = g(1)$, $\lim_{x \rightarrow 1^+} f(x) = \lim_{x \rightarrow 1^+} h(x) = h(1)$, and $f(1) = g(1)$, we need $g(1) = h(1)$, that is

$$\sqrt{r^2 - 1} = \frac{a}{2} \quad (1).$$

In order for f to be differentiable at $x = 1$ we need

$$\lim_{x \rightarrow 1^-} \frac{f(x) - f(1)}{x - 1} = \lim_{x \rightarrow 1^+} \frac{f(x) - f(1)}{x - 1}.$$

In the case that $f(1) = g(1) = h(1)$ we have $\lim_{x \rightarrow 1^-} \frac{f(x) - f(1)}{x - 1} = \lim_{x \rightarrow 1^-} \frac{g(x) - g(1)}{x - 1} = g'(1)$ and we have $\lim_{x \rightarrow 1^+} \frac{f(x) - f(1)}{x - 1} = \lim_{x \rightarrow 1^+} \frac{h(x) - h(1)}{x - 1} = h'(1)$, and so f is differentiable at $x = 1$ when we have $g'(1) = h'(1)$, that is when

$$\frac{-1}{\sqrt{r^2 - 1}} = \frac{-2a}{4} \quad (2).$$

Solve equations (1) and (2) to get $a = 2$ and $r = \sqrt{2}$.

(b) Find all points x at which f is differentiable, where

$$f(x) = \begin{cases} x, & \text{if } x \leq 0, \\ x \sin(1/x), & \text{if } 0 < x \leq \frac{1}{\pi}, \\ \pi x - 1, & \text{if } \frac{1}{\pi} < x. \end{cases}$$

Solution: The only points at which f might not be differentiable are $x = 0$ and $\frac{1}{\pi}$. Using the definition of the derivative, we see that f cannot be differentiable at $x = 0$ because

$$\lim_{x \rightarrow 0^+} \frac{f(x) - f(0)}{x - 0} = \lim_{x \rightarrow 0^+} \frac{x \sin(1/x)}{x} = \lim_{x \rightarrow 0^+} \sin(1/x),$$

which does not exist. On the other hand, we can see that f is differentiable at $x = \frac{1}{\pi}$ as follows. if we write $g(x) = x \sin(1/x)$ and $h(x) = \pi x - 1$ then $g(\frac{1}{\pi}) = 0$ and $h(\frac{1}{\pi}) = 0$ so the two curves $y = g(x)$ and $y = h(x)$ both pass through the point $(\frac{1}{\pi}, 0)$. Further more we have $g'(x) = \sin(1/x) - \frac{1}{x} \cos(1/x)$ so $g'(1/\pi) = \sin \pi - \pi \cos \pi = \pi$ and we have $h'(x) = \pi$ so $h'(1/\pi) = \pi$ so the two curves both have the same slope at $x = \frac{1}{\pi}$. Since $f(\frac{1}{\pi}) = g(\frac{1}{\pi}) = h(\frac{1}{\pi})$, we have

$$\begin{aligned} \lim_{x \rightarrow \frac{1}{\pi}^-} \frac{f(x) - f(\frac{1}{\pi})}{x - \frac{1}{\pi}} &= \lim_{x \rightarrow \frac{1}{\pi}^-} \frac{g(x) - g(\frac{1}{\pi})}{x - \frac{1}{\pi}} = g'(\frac{1}{\pi}) = \pi \\ \lim_{x \rightarrow \frac{1}{\pi}^+} \frac{f(x) - f(\frac{1}{\pi})}{x - \frac{1}{\pi}} &= \lim_{x \rightarrow \frac{1}{\pi}^+} \frac{h(x) - h(\frac{1}{\pi})}{x - \frac{1}{\pi}} = h'(\frac{1}{\pi}) = \pi. \end{aligned}$$

Since the two one-sided limits are equal, f is differentiable at $x = \frac{1}{\pi}$ with $f'(\frac{1}{\pi}) = \pi$.

5: Consider the curve $x^2 + y^2 = (x^2 + y^2 - 2x)^2$. Use MAPLE to help solve the following problems.

(a) Find the values of y' and y'' for the given curve at the point $(0, 1)$.

Solution: It is not difficult to calculate the value of y' by hand, but it is quite tedious to calculate y'' . We can find these values using the MAPLE commands

```
subs({x=0,y=1},implicitdiff(x^2+y^2=(x^2+y^2-2*x)^2,y,x));
subs({x=0,y=1},implicitdiff(x^2+y^2=(x^2+y^2-2*x)^2,y,x,x));
```

You should find that $y' = 2$ and $y'' = -9$.

(b) Find the centre (a, b) and the radius r of the **osculating circle** at the point $(0, 1)$, that is the circle $(x - a)^2 + (y - b)^2 = r^2$ which passes through $(0, 1)$ and, at this point, and has the same values of y' and y'' as the given curve.

Solution: Differentiate both sides of the equation $(x - a)^2 + (y - b)^2 = r^2$, solve for y' , and then differentiate again to get

$$\begin{aligned} 2(x - a) + 2(y - b)y' &= 0 \\ y' &= \frac{-(x - a)}{y - b} \\ y'' &= \frac{-(y - b) + (x - a)y'}{(y - b)^2}. \end{aligned}$$

In order for the point $(0, 1)$ to lie on the circle we must have $a^2 + (1 - b)^2 = r^2$ (1). The value of y' at the point $(0, 1)$ is $y' = \frac{a}{1-b}$, so we have $y' = 2$ when $a = 2(1 - b)$ (2). When $y' = 2$, the value of y'' at the point $(0, 1)$ is $y'' = \frac{-(1-b)-2a}{(1-b)^2}$, so we have $y'' = -9$ when $(1 - b + 2a) = 9(1 - b)^2$ (3). It is not difficult to solve equations (1), (2) and (3) by hand. Alternatively, we can use the MAPLE command

```
solve({a^2+(1-b)^2=r^2,a=2*(1-b),(1-b+2*a)=9*(1-b)^2},{a,b,r});
```

to get $a = \frac{10}{9}$, $b = \frac{4}{9}$ and $r = \frac{5\sqrt{5}}{9}$.

(c) On the same set of axes, in the rectangle $-2 \leq x \leq 4$, $-3 \leq y \leq 3$, plot the given curve in blue, the tangent line at $(0, 1)$ in grey, and the osculating circle at $(0, 1)$ in green.

Solution: Using the MAPLE commands

```
with(plots):
p[1]:=implicitplot(x^2+y^2=(x^2+y^2-2*x)^2,x=-2..4,y=-3..3,gridrefine=3,color=blue):
p[2]:=plot(1+2*x,x=-2..4,y=-3..3,color=grey):
p[3]:=implicitplot((x-(10/9))^2+(y-(4/9))^2=125/81,x=-2..4,y=-3..3,color=green):
display({p[1],p[2],p[3]});
```

we obtain the following graph.

