

1: (a) Let $f(x) = (x^2 - 3)\sqrt{x - 1}$. Find the tangent line to $y = f(x)$ at the point $(2, 1)$.

(b) Let $f(x) = \frac{\cos(\sqrt{\pi x})}{\sqrt{\sin x}}$. Find $f'(\frac{\pi}{4})$.

(c) Let $f(x) = \tan^{-1} \sqrt{5x^2 - 1}$. Find $f'(1)$ and $f''(1)$.

2: (a) Let $f(x) = \frac{x + \sqrt{x}}{\sqrt[3]{x}}$. Find the tangent line to $y = f(x)$ at the point where $x = 1$.

(b) Let $f(x) = \ln\left(\frac{x^2 - 3}{(x - 1)^3}\right)$. Find $f'(2)$ and $f''(2)$.

(c) $f(x) = x^{x^2}$. Find $f'(1)$ and $f''(1)$.

3: (a) Find the tangent line to the curve $y^3 + xy^2 + 1 = x(1 + xy)$ at the point $(3, 2)$.

(b) Find the tangent line to the curve $y + \ln(x^2y - 1) = 2x$ at the point $(1, 2)$.

(c) Let $f(x) = x^3 - 3x^2 + 6x - 2$ and let $g = f^{-1}$. Find $g'(6)$ and $g''(6)$.

4: (a) Find constants $a > 0$ and $r > 1$ so that f is differentiable at $x = 1$, where

$$f(x) = \begin{cases} \sqrt{r^2 - x^2} & \text{, if } -r < x \leq 1, \\ \frac{a}{x^2 + 1} & \text{, if } 1 < x. \end{cases}$$

(b) Find all points x at which f is differentiable, where

$$f(x) = \begin{cases} x & \text{, if } x \leq 0, \\ x \sin(1/x) & \text{, if } 0 < x \leq \frac{1}{\pi}, \\ \pi x - 1 & \text{, if } \frac{1}{\pi} < x. \end{cases}$$

5: Consider the curve $x^2 + y^2 = (x^2 + y^2 - 2x)^2$. Use MAPLE to help solve the following problems.

(a) Find the values of y' and y'' for the given curve at the point $(0, 1)$.

(b) Find the centre (a, b) and the radius r of the **osculating circle** at the point $(0, 1)$, that is the circle $(x - a)^2 + (y - b)^2 = r^2$ which passes through $(0, 1)$ and, at this point, and has the same values of y' and y'' as the given curve.

(c) On the same set of axes, in the rectangle $-2 \leq x \leq 4$, $-3 \leq y \leq 3$, plot the given curve in blue, the tangent line at $(0, 1)$ in grey, and the osculating circle at $(0, 1)$ in green.

Hints and Comments

1: (c) You should simplify $f'(x)$ before you attempt to find $f''(x)$.

2: (a),(b) You can simplify $f(x)$ before finding $f'(x)$.

(c) By definition, $x^{x^2} = e^{x^2 \ln x}$.

3: (a),(b) Use implicit differentiation.

(c) In this problem, it is implicitly assumed that the given function $f(x)$ is 1:1 so that $g = f^{-1}$ exists. Later (in Section 4.3) we shall prove the (intuitively clear) fact that, for any function f , if $f'(x) > 0$ for all x then $f(x)$ is increasing (and hence 1:1). For the given function $f(x) = x^3 - 3x^2 + 6x - 2$ we have $f'(x) = 3x^2 - 6x + 6 = 3(x^2 - 2x + 1) = 3((x-1)^2 + 1) \geq 3$ for all x and so $f(x)$ is increasing.

We can also prove directly (without using calculus) that the given function $f(x)$ is increasing as follows. Let $a < b$. Then

$$\begin{aligned} f(b) - f(a) &= (b^3 - 3b^2 + 6b - 2) - (a^3 - 3a^2 + 6a - 2) \\ &= (b^3 - a^3) - 3(b^2 - a^2) + 6(b - a) \\ &= (b - a)(b^2 + ab + a^2) - 3(b - a)(b + a) + 6(b - a) \\ &= (b - a)(a^2 + ab + b^2 - 3a - 3b + 6) \\ &= (b - a) \left(\left(a + \frac{b-3}{2}\right)^2 - \frac{(b^2-6b+9)^2}{4} + (b^2 - 3b + 6) \right) \\ &= (b - a) \left(\left(a + \frac{b-3}{2}\right)^2 + \frac{3}{4}(b^2 - 2b + 5) \right) \\ &= (b - a) \left(\left(a + \frac{b-3}{2}\right)^2 + \frac{3}{4}(b - 1)^2 + 3 \right) \geq 3(b - a) > 0. \end{aligned}$$

If we accept that the given function $f(x)$ is 1:1, so that $g = f^{-1}$ does exist, we can solve problem 3(c) as follows. Note that

$$y = g(x) \iff x = g(y) \iff x = y^3 - 3y^2 + 6y - 2.$$

To find $y = g(6)$, solve $6 = y^3 - 3y^2 + 6y - 2$ (by inspection). To find $y' = g'(6)$ and $y'' = g''(6)$, use implicit differentiation on the equation $x = y^3 - 3y^2 + 6y - 2$.

4: (a),(b) In order for f to be differentiable at $x = a$ it must be continuous at $x = a$. Note that f is continuous at $x = a$ when $\lim_{x \rightarrow a^-} f(x) = f(a) = \lim_{x \rightarrow a^+} f(x)$, and f is differentiable at $x = a$ when $\lim_{x \rightarrow a^-} \frac{f(x) - f(a)}{x - a} = \lim_{x \rightarrow a^+} \frac{f(x) - f(a)}{x - a}$ (both limits exist and are equal).

5: (a) You can use the MAPLE commands `implicitdiff` and `subs`.

(b) You do not need MAPLE for this part.

(c) You can use the MAPLE commands `with(plots)`, `implicitplot` and `display`. To make an implicit plot more accurate, you can use the plot option `gridrefine`.