MATH 137 Calculus 1, Solutions to Assignment 5

: (a) Let f(z) = v/5 — 22. Using the definition of the derivative as a limit, find f’(2) and then find the equation
of the tangent line to the curve y = f(x) at the point where x = 2.

Solution: We have
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Alternatively, we have
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Also f(2) = 1 and so the equation of the tangent line is y — 1 = —2(x — 2), or equivalently y = 5 — 2.
(Incidentally, this curve is the top half of a circle).

(b) Let f(z) = 2®> + 2 — 1. Find f/(1) using the definition of the derivative. and then find the equation of
the tangent line to y = f(x) at the point where z = 1.

Solution: We have
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Since f(1) =1 and f’(1) = 4, the equation of the tangent line is y — 1 = 4(x — 1), or y = 4z — 3.
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2: (a) Let f(z) = —. Find the derivative f’(z) using the definition of the derivative.
x

Solution: We have
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(b) Let f(x) = x'/3. Use the definition of the derivative to show that f’(0) does not exists and to show that

f(z) = 2272/3 for « £ 0.

Solution: We have

or alternatively
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and so f/(0) does not exist (as a real number). For z # 0 we use the formula (a — b)(a® + ab+ b?) = a® — b3
with @ = u'/3 and b = z'/3 to get
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Alternatively, we use the formula (a — b)(a® + ab + b?) = a® — b with a = (z + h)Y/3 and b = 2/3 to get
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3: (a) Let f(z) = :;_

Solution: We have
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5 Find the equation of the tangent line to y = f(z) at (3,4).
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When = = 3 we have f(3) = 35 = 4 and f'(3) = ﬁ = 2 and so the equation of the tangent line
isy—4=2(z—3),ory=2z—2.
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(b) Let f(x) = ~. Find all the values of & where the tangent line to y = f(z) is horizontal.
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Solution: We have
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The tangent line is horizontal when f’(x) = 0, that is when z = 3.

2
’ 1 and which pass through

(¢) Find the equations of the two lines which are tangent to the curve y =

the point (2,0).
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Solution: Let f(z) = — T Then
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Thus f(a) = o] and f'(a) = [TEEER and so the equation of the tangent line to y = f(x) at x = a is
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This line will pass through the point (2,0) provided that 0 — < _ alaz2) (2 — a). Multiply both sides by
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(a—1)% to get —a?(a—1) = a(a—2)(2—a), that is —a® +a? = —a® +4a® —4a or 3a®> —4a = 0. Thus a = 0
or a = 3. We have f(0) =0 and f/(0) = 0, and so when a = 0, the equation of the tangent line is y = 0.
We have f(5) =20 and f/(3) = —8 so when a = 3 the equation of the tangent line is y — 3 = —8(z — 3)

or equivalently, y = 16 — 8. (Incidentally, this curve is a hyperbola with asymptotes = 1 and y = = + 1).
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4: (a) Suppose that f(3) =8 and that f/(z) = . Find f"(%).
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Solution: Since f(x) =

and so
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(b) Suppose that f(1) =4, f(1) =2 and (1) =6, and let g(z) = . Find ¢"(1).

Solution: We have
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(c) Let f(z) = 2%¢®. Find the n** derivative f(™(x) in terms of n and .

Solution: We have

f(x) =2z e* + x%e* = (2% + 22)e”

() = (22 + 2)e” + (2% + 2x)e” = (2® + 4x + 2)e”
() = 2z +4)e” + (2 + 4z + 2)e” = (2° 4 62 + 6)e”
" (x) = 2z 4+ 6)e” + (2% + 6z + 6)e” = (z° + 8z + 12)e”.

It appears that the n'" derivative is given by the formula
™ (z) = (z® + 2nz +n(n —1))e”

for all n > 1. We prove this by induction. Fix & > 1 and suppose that the above formula holds when n = k,
that is suppose f*¥)(z) = (22 + 2kx + k(k — 1))e®. Then when n =k + 1 we have
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Thus by induction, the formula holds for all n > 1.



