

MATH 137 Calculus 1, Solutions to Assignment 5

1: (a) Let $f(x) = \sqrt{5 - x^2}$. Using the definition of the derivative as a limit, find $f'(2)$ and then find the equation of the tangent line to the curve $y = f(x)$ at the point where $x = 2$.

Solution: We have

$$\begin{aligned} f'(2) &= \lim_{x \rightarrow 2} \frac{f(x) - f(2)}{x - 2} = \lim_{x \rightarrow 2} \frac{\sqrt{5 - x^2} - 1}{x - 2} = \lim_{x \rightarrow 2} \frac{\sqrt{5 - x^2} - 1}{x - 2} \cdot \frac{\sqrt{5 - x^2} + 1}{\sqrt{5 - x^2} + 1} \\ &= \lim_{x \rightarrow 2} \frac{(5 - x^2) - 1}{(x - 2)(\sqrt{5 - x^2} + 1)} = \lim_{x \rightarrow 2} \frac{-(x - 2)(x + 2)}{(x - 2)(\sqrt{5 - x^2} + 1)} = \lim_{x \rightarrow 2} \frac{-(x + 2)}{\sqrt{5 - x^2} + 1} = -\frac{4}{2} = -2. \end{aligned}$$

Alternatively, we have

$$\begin{aligned} f'(2) &= \lim_{h \rightarrow 0} \frac{f(2 + h) - f(2)}{h} = \lim_{h \rightarrow 0} \frac{\sqrt{5 - (2 + h)^2} - 1}{h} = \lim_{h \rightarrow 0} \frac{\sqrt{5 - (2 + h)^2} - 1}{h} \cdot \frac{\sqrt{5 - (2 + h)^2} + 1}{\sqrt{5 - (2 + h)^2} + 1} \\ &= \lim_{h \rightarrow 0} \frac{(5 - (2 + h)^2) - 1}{h\sqrt{5 - (2 + h)^2} + 1} = \lim_{h \rightarrow 0} \frac{5 - (4 + 4h + h^2) - 1}{h\sqrt{5 - (4 + 4h + h^2)} + 1} = \lim_{h \rightarrow 0} \frac{-4h - h^2}{h\sqrt{1 - 4h - h^2} + 1} \\ &= \lim_{h \rightarrow 0} \frac{-4 - h}{\sqrt{1 - 4h - h^2} + 1} = -\frac{4}{2} = -2. \end{aligned}$$

Also $f(2) = 1$ and so the equation of the tangent line is $y - 1 = -2(x - 2)$, or equivalently $y = 5 - 2x$. (Incidentally, this curve is the top half of a circle).

(b) Let $f(x) = x^3 + x - 1$. Find $f'(1)$ using the definition of the derivative. and then find the equation of the tangent line to $y = f(x)$ at the point where $x = 1$.

Solution: We have

$$\begin{aligned} f'(1) &= \lim_{x \rightarrow 1} \frac{f(x) - f(1)}{x - 1} = \lim_{x \rightarrow 1} \frac{(x^3 + x - 1) - 1}{x - 1} = \lim_{x \rightarrow 1} \frac{x^3 + x - 2}{x - 1} \\ &= \lim_{x \rightarrow 1} \frac{(x - 1)(x^2 + x + 2)}{x - 1} = \lim_{x \rightarrow 1} (x^2 + x + 2) = 4. \end{aligned}$$

Alternatively,

$$\begin{aligned} f'(1) &= \lim_{h \rightarrow 0} \frac{f(1 + h) - f(1)}{h} = \lim_{h \rightarrow 0} \frac{((1 + h)^3 + (1 + h) - 1) - 1}{h} = \lim_{h \rightarrow 0} \frac{1 + 3h + 3h^2 + h^3 + 1 + h - 1}{h} \\ &= \lim_{h \rightarrow 0} \frac{4h + 3h^2 + h^3}{h} = \lim_{h \rightarrow 0} (4 + 3h + h^2) = 4. \end{aligned}$$

Since $f(1) = 1$ and $f'(1) = 4$, the equation of the tangent line is $y - 1 = 4(x - 1)$, or $y = 4x - 3$.

2: (a) Let $f(x) = \frac{1}{x}$. Find the derivative $f'(x)$ using the definition of the derivative.

Solution: We have

$$f'(x) = \lim_{u \rightarrow x} \frac{f(u) - f(x)}{u - x} = \lim_{u \rightarrow x} \frac{\frac{1}{u} - \frac{1}{x}}{u - x} = \lim_{u \rightarrow x} \frac{\frac{x-u}{ux}}{u - x} = \lim_{u \rightarrow x} \frac{-(u-x)}{ux(u-x)} = \lim_{u \rightarrow x} \frac{-1}{ux} = \frac{-1}{x^2}.$$

Alternatively,

$$\begin{aligned} f'(x) &= \lim_{h \rightarrow 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \rightarrow 0} \frac{\frac{1}{x+h} - \frac{1}{x}}{h} = \lim_{h \rightarrow 0} \frac{\frac{x-(x+h)}{(x+h)x}}{h} = \lim_{h \rightarrow 0} \frac{-h}{(x+h)(x)(h)} \\ &= \lim_{h \rightarrow 0} \frac{-1}{(x+h)(x)} = \frac{-1}{x^2}. \end{aligned}$$

(b) Let $f(x) = x^{1/3}$. Use the definition of the derivative to show that $f'(0)$ does not exist and to show that $f'(x) = \frac{1}{3}x^{-2/3}$ for $x \neq 0$.

Solution: We have

$$f'(0) = \lim_{x \rightarrow 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \rightarrow 0} \frac{x^{1/3} - 0}{x - 0} = \lim_{x \rightarrow 0} \frac{1}{x^{2/3}} = \infty,$$

or alternatively

$$f'(0) = \lim_{h \rightarrow 0} \frac{f(0+h) - f(0)}{h} = \lim_{h \rightarrow 0} \frac{h^{1/3} - 0}{h} = \lim_{h \rightarrow 0} \frac{1}{h^{2/3}} = \infty,$$

and so $f'(0)$ does not exist (as a real number). For $x \neq 0$ we use the formula $(a-b)(a^2 + ab + b^2) = a^3 - b^3$ with $a = u^{1/3}$ and $b = x^{1/3}$ to get

$$\begin{aligned} f'(x) &= \lim_{u \rightarrow x} \frac{f(u) - f(x)}{u - x} = \lim_{u \rightarrow x} \frac{u^{1/3} - x^{1/3}}{u - x} = \lim_{u \rightarrow x} \frac{u^{1/3} - x^{1/3}}{(u^{1/3} - x^{1/3})(u^{2/3} + u^{1/3}x^{1/3} + x^{2/3})} \\ &= \lim_{u \rightarrow x} \frac{1}{u^{2/3} + u^{1/3}x^{1/3} + x^{2/3}} = \frac{1}{3x^{2/3}}. \end{aligned}$$

Alternatively, we use the formula $(a-b)(a^2 + ab + b^2) = a^3 - b^3$ with $a = (x+h)^{1/3}$ and $b = x^{1/3}$ to get

$$\begin{aligned} f'(x) &= \lim_{h \rightarrow 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \rightarrow 0} \frac{(x+h)^{1/3} - x^{1/3}}{h} \\ &= \lim_{h \rightarrow 0} \frac{(x+h)^{1/3} - x^{1/3}}{h} \cdot \frac{(x+h)^{2/3} + (x+h)^{1/3}x^{1/3} + x^{2/3}}{(x+h)^{2/3} + (x+h)^{1/3}x^{1/3} + x^{2/3}} \\ &= \lim_{h \rightarrow 0} \frac{(x+h) - (x)}{h((x+h)^{2/3} + (x+h)^{1/3}x^{1/3} + x^{2/3})} = \lim_{h \rightarrow 0} \frac{h}{h((x+h)^{2/3} + (x+h)^{1/3}x^{1/3} + x^{2/3})} \\ &= \lim_{h \rightarrow 0} \frac{1}{(x+h)^{2/3} + (x+h)^{1/3}x^{1/3} + x^{2/3}} = \frac{1}{3x^{2/3}}. \end{aligned}$$

3: (a) Let $f(x) = \frac{x^2 - 5}{x - 2}$. Find the equation of the tangent line to $y = f(x)$ at $(3, 4)$.

Solution: We have

$$f'(x) = \frac{(x^2 - 5)'(x - 2) - (x^2 - 5)(x - 2)'}{(x - 2)^2} = \frac{(2x)(x - 2) - (x^2 - 5)(1)}{(x - 2)^2} = \frac{x^2 - 4x + 5}{(x - 2)^2}.$$

When $x = 3$ we have $f(3) = \frac{9 - 5}{3 - 2} = 4$ and $f'(3) = \frac{9 - 12 + 5}{(3 - 2)^2} = 2$ and so the equation of the tangent line is $y - 4 = 2(x - 3)$, or $y = 2x - 2$.

(b) Let $f(x) = \frac{\sqrt{x}}{e^x}$. Find all the values of x where the tangent line to $y = f(x)$ is horizontal.

Solution: We have

$$f'(x) = \frac{(\sqrt{x})' e^x - \sqrt{x} (e^x)'}{(e^x)^2} = \frac{\frac{1}{2\sqrt{x}} e^x - \sqrt{x} e^x}{(e^x)^2} = \frac{\frac{1}{2\sqrt{x}} - \sqrt{x}}{e^x} = \frac{1 - 2x}{2 e^x \sqrt{x}}.$$

The tangent line is horizontal when $f'(x) = 0$, that is when $x = \frac{1}{2}$.

(c) Find the equations of the two lines which are tangent to the curve $y = \frac{x^2}{x - 1}$ and which pass through the point $(2, 0)$.

Solution: Let $f(x) = \frac{x^2}{x - 1}$. Then

$$f'(x) = \frac{2x(x - 1) - x^2}{(x - 1)^2} = \frac{x(x - 2)}{(x - 1)^2}.$$

Thus $f(a) = \frac{a^2}{a - 1}$ and $f'(a) = \frac{a(a - 2)}{(a - 1)^2}$, and so the equation of the tangent line to $y = f(x)$ at $x = a$ is

$$y - \frac{a^2}{a - 1} = \frac{a(a - 2)}{(a - 1)^2} (x - a).$$

This line will pass through the point $(2, 0)$ provided that $0 - \frac{a^2}{a-1} = \frac{a(a-2)}{(a-1)^2}(2-a)$. Multiply both sides by $(a-1)^2$ to get $-a^2(a-1) = a(a-2)(2-a)$, that is $-a^3 + a^2 = -a^3 + 4a^2 - 4a$ or $3a^2 - 4a = 0$. Thus $a = 0$ or $a = \frac{4}{3}$. We have $f(0) = 0$ and $f'(0) = 0$, and so when $a = 0$, the equation of the tangent line is $y = 0$. We have $f(\frac{4}{3}) = \frac{16}{3}$ and $f'(\frac{4}{3}) = -8$ so when $a = \frac{4}{3}$ the equation of the tangent line is $y - \frac{16}{3} = -8(x - \frac{4}{3})$ or equivalently, $y = 16 - 8x$. (Incidentally, this curve is a hyperbola with asymptotes $x = 1$ and $y = x + 1$).

4: (a) Suppose that $f\left(\frac{1}{4}\right) = 8$ and that $f'(x) = \frac{1+x f(x)}{\sqrt{x}}$. Find $f''\left(\frac{1}{4}\right)$.

Solution: Since $f'(x) = \frac{1+x f(x)}{\sqrt{x}} = x^{-1/2} + x^{1/2} f(x)$, the Product Rule gives

$$\begin{aligned} f''(x) &= -\frac{1}{2} x^{-3/2} + \frac{1}{2} x^{-1/2} f(x) + x^{1/2} f'(x) \\ &= -\frac{1}{2} x^{-3/2} + \frac{1}{2} x^{-1/2} f(x) + x^{1/2} (x^{-1/2} + x^{1/2} f(x)) \\ &= -\frac{1}{2} x^{-3/2} + \frac{1}{2} x^{-1/2} f(x) + 1 + x f(x) \end{aligned}$$

and so

$$f''\left(\frac{1}{4}\right) = -\frac{1}{2} \left(\frac{1}{4}\right)^{-3/2} + \frac{1}{2} \left(\frac{1}{4}\right)^{-1/2} f\left(\frac{1}{4}\right) + 1 + \frac{1}{4} \cdot f\left(\frac{1}{4}\right) = -\frac{1}{2} \cdot 8 + \frac{1}{2} \cdot 2 \cdot 8 + 1 + \frac{1}{4} \cdot 8 = 7.$$

(b) Suppose that $f(1) = 4$, $f'(1) = 2$ and $f''(1) = 6$, and let $g(x) = \frac{x f(x)}{1+x}$. Find $g''(1)$.

Solution: We have

$$\begin{aligned} g'(x) &= \frac{(f(x) + x f'(x))(1+x) - x f(x)}{(1+x)^2} \\ &= \frac{f(x)(1+x) - x f(x)}{(1+x)^2} + \frac{x f'(x)(1+x)}{(1+x)^2} \\ &= \frac{f(x)}{(1+x)^2} + \frac{x f'(x)}{1+x} \end{aligned}$$

and so

$$g''(x) = \frac{f'(x)(1+x)^2 - 2 f(x)(1+x)}{(1+x)^4} + \frac{(f'(x) + x f''(x))(1+x) - x f'(x)}{(1+x)^2}.$$

Thus

$$g''(1) = \frac{f'(1) \cdot 4 - 2 \cdot f(1) \cdot 2}{16} + \frac{(f'(1) + f''(1)) \cdot 2 - f'(1)}{4} = \frac{2 \cdot 4 - 2 \cdot 4 \cdot 2}{16} + \frac{(2+6) \cdot 2 - 2}{4} = -\frac{1}{2} + \frac{7}{2} = 3.$$

(c) Let $f(x) = x^2 e^x$. Find the n^{th} derivative $f^{(n)}(x)$ in terms of n and x .

Solution: We have

$$\begin{aligned} f'(x) &= 2x e^x + x^2 e^x = (x^2 + 2x) e^x \\ f''(x) &= (2x+2)e^x + (x^2 + 2x)e^x = (x^2 + 4x + 2)e^x \\ f'''(x) &= (2x+4)e^x + (x^2 + 4x + 2)e^x = (x^2 + 6x + 6)e^x \\ f''''(x) &= (2x+6)e^x + (x^2 + 6x + 6)e^x = (x^2 + 8x + 12)e^x. \end{aligned}$$

It appears that the n^{th} derivative is given by the formula

$$f^{(n)}(x) = (x^2 + 2nx + n(n-1))e^x$$

for all $n \geq 1$. We prove this by induction. Fix $k \geq 1$ and suppose that the above formula holds when $n = k$, that is suppose $f^{(k)}(x) = (x^2 + 2kx + k(k-1))e^x$. Then when $n = k+1$ we have

$$\begin{aligned} f^{(n)}(x) &= f^{(k+1)}(x) = \frac{d}{dx} f^{(k)}(x) = \frac{d}{dx} ((x^2 + 2kx + k^2 - k)e^x) \\ &= (x^2 + 2k)e^x + (x^2 + 2kx + k^2 - k)e^x \\ &= (x^2 + (2k+2)x + k^2 + k)e^x \\ &= (x^2 + 2(k+1)x + (k+1)k)e^x \\ &= (x^2 + 2nx + n(n-1))e^x. \end{aligned}$$

Thus by induction, the formula holds for all $n \geq 1$.