MATH 137 Calculus 1, Solutions to Assignment 4

: Evaluate the following limits, if they exist.
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Solution: Divide the numerator and denominator by x> to get
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Solution: Divide the numerator and denominator by z2 to get
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Solution: For z < 0, divide the numerator and the denominator by —a (which is positive), and note that
—x = |x| = V22 (so we divide by 22 inside the root sign), to get
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(d) lim (Va2 + 6z — z)
Solution: Rationalize the numerator then, for x > 0, divide top and bottom by z = V2 to get
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2: Evaluate the following limits if they exist.
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Solution: Since the function f(z) = " is continuous, lim ™" = eS(m/2) — ol — ¢,
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(b) lim tan~'(lnx)
Solution: Write u = Inz. Since lim u = lim Inz = coand lim tan™'u = 5, we have lim tan"!(Inz) = 5
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Solution: Note that —1 < cosxz < 1 and so 71 S ot S T Jm e
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i1 0 by the Squeeze Theorem (which also holds for limits at infinity).
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(d) mlin11+ (2log(z — 1) — log(z® — 1))

Solution: For x > 1 we have
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2log(x — 1) — log(z* — 1) = log

As & — 17 we have (2 — 1) — 0T and (z + 1) — 2 and so 225 — 0%, Thus, writing u = 2=, we have
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3: (a) Sketch the graph of y = f(z) and find all points where f is continuous, where

me® z<0
f@)=< 2cos™ 'z 0<z<1
Inx 1<x

Solution: Since each of the functions 7 e, 2 cos™! z and Inz is continuous in its domain, the function f(x)

is continuous everywhere except possibly at z = 0 and x = 1. Let us determine whether f is continuous at
z=0. Wehave lim f(z) = lim me* =nme’ =7 and lim f(z)= lim 2cos™ o =2cos™ ' (0)=2% =,
z—0~ z—0~ z—0+ z—0t
and so lirrb f(xz) =m = f(0). Thus f is continuous at z = 0. Now, let us determine whether f is continuous
xr—
at z = 1. We have lim f(z) = lim 2 cos 'z =2 cos™!(1) = 0 and lim+ flz) = lim+ Inz=1In1=0, and
rz—1- r—1- z—1 z—1
o lim1 f(z) =0 = f(1). Thus f is also continuous at z = 1, so f is continuous everywhere. The graph of
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y = f(x) is shown below. The y-intercept is at (0, 7).

(b) Find the values of a and b such that f(x) is continuous for all x, where
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Solution: Note that f is continuous for z < 1 (since %ﬁ"’b is continuous for x < 1) and f is continuous for

x > 1 (since ax + b is continuous for = > 1) so we only need to ensure that f is continuous at = 1. This
happens when lim f(z) and lim+ f(z) both exist and are both equal to f(1), which is equal to a +b. Note
r—1

that IILI% f(x)w:jg%(ax +b) = a+b, so it suffices to ensure that zlinl{ f(x) exists and is equal to a + b.

Consider xllnlL f(z), that is xllnff %. Note that as # — 1~ we have (22 +ax+b) > 1+a+b
and (z — 1) — 0~. It follows that if 1 + a + b < 0 then Zl_l)I{l_ % = oo while if 1 +a+ b > 0 then
lim gﬂLxl—l—b = —o0. Thus in order for lim f(z) to exist and be finite, we must have 1 +a+b=0. In
gtE};; case,x:v; + ax + b factors as 2% + ax + bw:Ex —1)(z+a+1), and so we have
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Thus
f is continuous for all x <= ( lir?i f(x) exists and liHl{ fx)=a+b >
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< b=2and a=—3.
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4: Let f(z) =
(a) Find lim g(z), lim g(z), lim g(z), lim g(z), lim g(z), lim g(z) and lim g(z).
Solution: Verify that $li’rzloof(:r) =0, xlirr_llf(x) = f(-1) =0, zlir{)l— flz) = zEIIO/l‘F f(z) = —o0, igml f(z) =
f(1) =0, mli%l— f(z) = +oo, zlinzl+ f(z) = —oo and Ilirrgof(x) = 0. So we have zgriloog(x) =& =1,
Jim g(z) = g(=1) = ¢’ =1, lim g(x) = lim e" =0, lim g(z) = g(1) = ¢’ =1, lim g(x) = lim " = oo,

lim g(z) = lim e“ =0, and lim g(z) =¢° = 1.
r—2+ U——00 — 00

(b) Sketch the graph of y = g(x).

Solution: The above limits give us almost all the information we need to sketch the graph of y = g(z). There
is a horizontal asymptote along y = 1 and a vertical asymptote along = = 2.
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(c) Sketch the graph of y = 1/g(x).

Solution: We can obtain the graph of y = 1/g(x) from the graph of y = g(x) (for each point (zo,yo) on
the graph of y = g(z), the point (z¢,1/yo) lies on the graph of y = 1/g(x)). We can also calculate various
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limits, for example lim —— =1, lim — =00, lim — =0, lim — =oco0 and lim — =1.
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5: (a) Show that there exist (at least) 3 distinct values of x such that 823 = 6z + 1.

Solution: Let f(z) = 823 — 62 — 1. Notice that f(z) is continuous and we have f(z) =0 <= 823 = 6z + 1.
By the Intermediate Value Theorem, since f(—1) = —3 < 0 and f( — %) = 1 > 0, there is a number
r1 € (f 1,75) such that f(z1) = 0. Similarly, since f( — %) =1>0and f(0) = —1 < 0, there is a
number zo € (— 1,0) with f(z2) = 0, and since f(0) = —1 < 0 and f(1) = 1 > 0, there is a number
z3 € (0,1) with f(z3) = 0. (In fact, the exact values of x1, 22 and x5 are z1 = — cos(40°), 2 = —sin(10°)
and x5 = cos(20°)).

(b) Let f(z) be continuous on [0,2] with f(0) = f(2). Show that f(x) = f(z + 1) for some x € [0, 1].
Solution: Let g(x) = f(x + 1) — f(x). Note that g is continuous and g¢(1) = f(2) — f(1) = f(0) — f(1) =
—(f(1) = f(0)) = —g(0). By the Intermediate Value Theorem, there is a number z € [0,1] with g(z) = 0

(indeed if g(0) # 0 then one of the numbers g(0) and g(1) is positive and the other is negative so there is a
number z € (0,1) with g(z) = 0). Then we have 0 = g(z) = f(z+ 1) — f(z) and so f(z) = f(z + 1).

(c) Let f(z) be 1:1 and continuous on the interval [a,b] with f(a) < f(b). Show that the range of f is the
interval [f(a), f(b)].

Solution: First we show that [f(a), f(b)] C Range(f). If y = f(a) then clearly y € Range(f), ify = f(b) then
clearly y € Range(f), and if y € ( fla), f (b)) then, by the Intermediate Value Theorem, there is a number
z € (a,b) such that y = f(z) and so again we have y € Range(f). This proves that [f(a), f(b)] C Range(f).

Next we show that Range(f) C [f(a), f(b)]. Let y € Range(f), say y = f(xz) where z € [a,b]. We must
show that y € [f(a), f(b)]. Suppose, for a contradiction, that y & [f(a), f(b)]. Then either y < f(a) or
y > f(b). In the case that y < f(a) we would have y = f(x) < f(a) < f(b) but then, by the Intermediate
Value Theorem, there would be a number ¢ € (z,b) with f(¢) = f(a), but this would contradict the fact
that f is 1: 1. Similarly, in the case that y > f(b) we would have f(a) < f(b) < f(x) = y but then, by the
Intermediate Value Theorem, there would be a number ¢ € (a,z) with f(c) = f(b), but this would contradict
the fact that fis 1:1.



