
MATH 137 Calculus 1, Solutions to Assignment 4

1: Evaluate the following limits, if they exist.

(a) lim
x→−∞

(2x− 1)3

(4x+ 2)(x− 1)2

Solution: Divide the numerator and denominator by x3 to get

lim
x→−∞

(2x− 1)3

(4x+ 2)(x− 1)2
= lim
x→−∞

(
2− 1

x

)3(
4 + 2

x

)(
1− 1

x

)2 =
23

(4)(1)2
= 2 .

(b) lim
x→∞

x (
√
x+ 1)

x2 + 3x+ 2
Solution: Divide the numerator and denominator by x2 to get

lim
x→∞

x (
√
x+ 1)

x2 + 3x+ 1
= lim
x→∞

1√
x

+ 1
x

1 + 3
x + 2

x2

=
0
1

= 0 .

(c) lim
x→−∞

3x+ 2√
4x2 + x+ 1

Solution: For x < 0, divide the numerator and the denominator by −x (which is positive), and note that
−x = |x| =

√
x2 (so we divide by x2 inside the root sign), to get

lim
x→−∞

3x+ 2√
4x2 + x+ 1

= lim
x→−∞

−3− 2
x√

4 + 1
x + 1

x2

= − 3
2 .

(d) lim
x→∞

(√
x2 + 6x− x

)
Solution: Rationalize the numerator then, for x > 0, divide top and bottom by x =

√
x2 to get

lim
x→∞

(√
x2 + 6x− x

)
= lim
x→∞

(x2 + 6x)− (x2)√
x2 + 6x+ x

= lim
x→∞

6√
1 + 6

x + 1
= 6

2 = 3 .



2: Evaluate the following limits if they exist.

(a) lim
x→π

2

esin x

Solution: Since the function f(x) = esin x is continuous, lim
x→π

2

esin x = esin(π/2) = e1 = e.

(b) lim
x→∞

tan−1(lnx)

Solution: Write u = lnx. Since lim
x→∞

u = lim
x→∞

lnx =∞ and lim
u→∞

tan−1 u = π
2 , we have lim

x→∞
tan−1(lnx) = π

2 .

(c) lim
x→∞

cosx
x2 + 1

Solution: Note that −1 ≤ cosx ≤ 1 and so −1
x2+1 ≤

cos x
x2+1 ≤

1
x2+1 for all x. Since lim

x→∞

−1
x2 + 1

= 0 and

lim
x→∞

1
x2 + 1

= 0, we have lim
x→∞

cosx
x2 + 1

= 0 by the Squeeze Theorem (which also holds for limits at infinity).

(d) lim
x→1+

(
2 log(x− 1)− log(x2 − 1)

)
Solution: For x > 1 we have

2 log(x− 1)− log(x2 − 1) = log
(x− 1)2

x2 − 1
= log

(x− 1)2

(x− 1)(x+ 1)
= log

x− 1
x+ 1

.

As x→ 1+ we have (x− 1)→ 0+ and (x+ 1)→ 2 and so x−1
x+1 → 0+. Thus, writing u = x−1

x+1 , we have

lim
x→1+

(
2 log(x− 1)− log(x2 − 1)

)
= lim
x→1+

log
x− 1
x+ 1

= lim
u→0+

lnu = −∞ .



3: (a) Sketch the graph of y = f(x) and find all points where f is continuous, where

f(x) =


π ex x ≤ 0

2 cos−1 x 0 < x ≤ 1
lnx 1 < x

Solution: Since each of the functions π ex, 2 cos−1 x and lnx is continuous in its domain, the function f(x)
is continuous everywhere except possibly at x = 0 and x = 1. Let us determine whether f is continuous at
x = 0. We have lim

x→0−
f(x) = lim

x→0−
π ex = π e0 = π and lim

x→0+
f(x) = lim

x→0+
2 cos−1 x = 2 cos−1(0) = 2 π

2 = π,

and so lim
x→0

f(x) = π = f(0). Thus f is continuous at x = 0. Now, let us determine whether f is continuous

at x = 1. We have lim
x→1−

f(x) = lim
x→1−

2 cos−1 x = 2 cos−1(1) = 0 and lim
x→1+

f(x) = lim
x→1+

lnx = ln 1 = 0, and

so lim
x→1

f(x) = 0 = f(1). Thus f is also continuous at x = 1, so f is continuous everywhere. The graph of

y = f(x) is shown below. The y-intercept is at (0, π).

(b) Find the values of a and b such that f(x) is continuous for all x, where

f(x) =


x2 + ax+ b

x− 1
x < 1

ax+ b x ≥ 1

Solution: Note that f is continuous for x < 1 (since x2+ax+b
x−1 is continuous for x < 1) and f is continuous for

x > 1 (since ax + b is continuous for x > 1) so we only need to ensure that f is continuous at x = 1. This
happens when lim

x→1−
f(x) and lim

x→1+
f(x) both exist and are both equal to f(1), which is equal to a+ b. Note

that lim
x→1+

f(x) = lim
x→1+

(ax+ b) = a+ b, so it suffices to ensure that lim
x→1−

f(x) exists and is equal to a+ b.

Consider lim
x→1−

f(x), that is lim
x→1−

x2 + ax+ b

x− 1
. Note that as x→ 1− we have (x2 + ax+ b)→ 1 + a+ b

and (x − 1) → 0−. It follows that if 1 + a + b < 0 then lim
x→1−

x2 + ax+ b

x− 1
= ∞ while if 1 + a + b > 0 then

lim
x→1−

x2 + ax+ b

x− 1
= −∞. Thus in order for lim

x→1−
f(x) to exist and be finite, we must have 1 + a+ b = 0. In

this case, x2 + ax+ b factors as x2 + ax+ b = (x− 1)(x+ a+ 1), and so we have

lim
x→1−

f(x) = lim
x→1−

x2 + ax+ b

x− 1
= lim
x→1−

(x− 1)(x+ a+ 1)
x− 1

= lim
x→1−

(x+ a+ 1) = a+ 2 .

Thus
f is continuous for all x ⇐⇒

(
lim
x→1−

f(x) exists and lim
x→1−

f(x) = a+ b
)

⇐⇒
(
a+ b+ 1 = 0 and a+ 2 = a+ b

)
⇐⇒ b = 2 and a = −3 .



4: Let f(x) =
x2 − 1

2x2 − x3
and let g(x) = ef(x).

(a) Find lim
x→−∞

g(x), lim
x→−1

g(x), lim
x→0

g(x), lim
x→1

g(x), lim
x→2−

g(x), lim
x→2+

g(x) and lim
x→∞

g(x).

Solution: Verify that lim
x→−∞

f(x) = 0, lim
x→−1

f(x) = f(−1) = 0, lim
x→0−

f(x) = lim
x→0+

f(x) = −∞, lim
x→1

f(x) =

f(1) = 0, lim
x→2−

f(x) = +∞, lim
x→2+

f(x) = −∞ and lim
x→∞

f(x) = 0. So we have lim
x→−∞

g(x) = e0 = 1,

lim
x→−1

g(x) = g(−1) = e0 = 1, lim
x→0

g(x) = lim
u→−∞

eu = 0, lim
x→1

g(x) = g(1) = e0 = 1, lim
x→2−

g(x) = lim
u→∞

eu =∞,

lim
x→2+

g(x) = lim
u→−∞

eu = 0, and lim
x→∞

g(x) = e0 = 1.

(b) Sketch the graph of y = g(x).

Solution: The above limits give us almost all the information we need to sketch the graph of y = g(x). There
is a horizontal asymptote along y = 1 and a vertical asymptote along x = 2.

(c) Sketch the graph of y = 1/g(x).

Solution: We can obtain the graph of y = 1/g(x) from the graph of y = g(x)
(
for each point (x0, y0) on

the graph of y = g(x), the point (x0, 1/y0) lies on the graph of y = 1/g(x)
)
. We can also calculate various

limits, for example lim
x→−∞

1
g(x)

= 1, lim
x→0

1
g(x)

=∞, lim
x→2−

1
g(x)

= 0, lim
x→2+

1
g(x)

=∞ and lim
x→∞

1
g(x)

= 1.



5: (a) Show that there exist (at least) 3 distinct values of x such that 8x3 = 6x+ 1.

Solution: Let f(x) = 8x3− 6x− 1. Notice that f(x) is continuous and we have f(x) = 0 ⇐⇒ 8x3 = 6x+ 1.
By the Intermediate Value Theorem, since f(−1) = −3 < 0 and f

(
− 1

2

)
= 1 > 0, there is a number

x1 ∈
(
− 1,− 1

2

)
such that f(x1) = 0. Similarly, since f

(
− 1

2

)
= 1 > 0 and f(0) = −1 < 0, there is a

number x2 ∈
(
− 1

2 , 0
)

with f(x2) = 0, and since f(0) = −1 < 0 and f(1) = 1 > 0, there is a number
x3 ∈ (0, 1) with f(x3) = 0.

(
In fact, the exact values of x1, x2 and x3 are x1 = − cos(40◦), x2 = − sin(10◦)

and x3 = cos(20◦)
)
.

(b) Let f(x) be continuous on [0, 2] with f(0) = f(2). Show that f(x) = f(x+ 1) for some x ∈ [0, 1].

Solution: Let g(x) = f(x + 1) − f(x). Note that g is continuous and g(1) = f(2) − f(1) = f(0) − f(1) =
−
(
f(1) − f(0)

)
= −g(0). By the Intermediate Value Theorem, there is a number x ∈ [0, 1] with g(x) = 0(

indeed if g(0) 6= 0 then one of the numbers g(0) and g(1) is positive and the other is negative so there is a
number x ∈ (0, 1) with g(x) = 0

)
. Then we have 0 = g(x) = f(x+ 1)− f(x) and so f(x) = f(x+ 1).

(c) Let f(x) be 1 : 1 and continuous on the interval [a, b] with f(a) < f(b). Show that the range of f is the
interval

[
f(a), f(b)

]
.

Solution: First we show that
[
f(a), f(b)

]
⊆ Range(f). If y = f(a) then clearly y ∈ Range(f), if y = f(b) then

clearly y ∈ Range(f), and if y ∈
(
f(a), f(b)

)
then, by the Intermediate Value Theorem, there is a number

x ∈ (a, b) such that y = f(x) and so again we have y ∈ Range(f). This proves that
[
f(a), f(b)

]
⊆ Range(f).

Next we show that Range(f) ⊆
[
f(a), f(b)

]
. Let y ∈ Range(f), say y = f(x) where x ∈ [a, b]. We must

show that y ∈
[
f(a), f(b)

]
. Suppose, for a contradiction, that y /∈

[
f(a), f(b)

]
. Then either y < f(a) or

y > f(b). In the case that y < f(a) we would have y = f(x) < f(a) < f(b) but then, by the Intermediate
Value Theorem, there would be a number c ∈ (x, b) with f(c) = f(a), but this would contradict the fact
that f is 1 : 1. Similarly, in the case that y > f(b) we would have f(a) < f(b) < f(x) = y but then, by the
Intermediate Value Theorem, there would be a number c ∈ (a, x) with f(c) = f(b), but this would contradict
the fact that f is 1 : 1.


