

1: Evaluate the following limits, if they exist.

(a) $\lim_{x \rightarrow -\infty} \frac{(2x-1)^3}{(4x+2)(x-1)^2}$

(b) $\lim_{x \rightarrow \infty} \frac{x(\sqrt{x}+1)}{x^2+3x+2}$

(c) $\lim_{x \rightarrow -\infty} \frac{3x+2}{\sqrt{4x^2+x+1}}$

(d) $\lim_{x \rightarrow \infty} (\sqrt{x^2+6x} - x)$

2: Evaluate the following limits if they exist.

(a) $\lim_{x \rightarrow \frac{\pi}{2}} e^{\sin x}$

(b) $\lim_{x \rightarrow \infty} \tan^{-1}(\ln x)$

(c) $\lim_{x \rightarrow \infty} \frac{\cos x}{x^2+1}$

(d) $\lim_{x \rightarrow 1^+} (2 \log(x-1) - \log(x^2-1))$

3: (a) Sketch the graph of $y = f(x)$ and find all points where f is continuous, where

$$f(x) = \begin{cases} \pi e^x & x \leq 0 \\ 2 \cos^{-1} x & 0 < x \leq 1 \\ \ln x & 1 < x \end{cases}$$

(b) Find the values of a and b such that $f(x)$ is continuous for all x , where

$$f(x) = \begin{cases} \frac{x^2 + ax + b}{x-1} & x < 1 \\ ax + b & x \geq 1 \end{cases}$$

4: Let $f(x) = \frac{x^2-1}{2x^2-x^3}$ and let $g(x) = e^{f(x)}$.

(a) Find $\lim_{x \rightarrow -\infty} g(x)$, $\lim_{x \rightarrow -1} g(x)$, $\lim_{x \rightarrow 0} g(x)$, $\lim_{x \rightarrow 1} g(x)$, $\lim_{x \rightarrow 2^-} g(x)$, $\lim_{x \rightarrow 2^+} g(x)$ and $\lim_{x \rightarrow \infty} g(x)$.

(b) Sketch the graph of $y = g(x)$.

(c) Sketch the graph of $y = 1/g(x)$.

5: (a) Show that there exist (at least) 3 distinct values of x such that $8x^3 = 6x + 1$.

(b) Let $f(x)$ be continuous on $[0, 2]$ with $f(0) = f(2)$. Show that $f(x) = f(x+1)$ for some $x \in [0, 1]$.

(c) Let $f(x)$ be 1 : 1 and continuous on the interval $[a, b]$ with $f(a) < f(b)$. Show that the range of f is the interval $[f(a), f(b)]$.

Hints and Comments

1: (c) When $x < 0$ we have $\sqrt{x^2} = |x| = -x$.

(d) Rationalize the numerator

3: (b) If $\lim_{x \rightarrow a} g(x) = 0$ then in order for $\lim_{x \rightarrow a} \frac{f(x)}{g(x)}$ to exist and be finite, we must have $\lim_{x \rightarrow a} f(x) = 0$.

4: (b) The limits that you have found in part (a) provide enough information to obtain a fairly accurate sketch of the graph of $y = g(x)$.

5: (a) Apply the Intermediate Value Theorem (3 times) to the function $f(x) = 8x^3 - 6x - 1$.

(b) Apply the Intermediate Value Theorem to a suitably chosen function.

(c) Use the Intermediate Value Theorem both to show that $[f(a), f(b)] \subseteq \text{Range}(f)$ and to show that $\text{Range}(f) \subseteq [f(a), f(b)]$.