MATH 137 Calculus 1, Solutions to Assignment 3

: Evaluate the following limits, if they exist.
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2: Evaluate the following limits, if they exist.
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Solution: Note that for —2 < x < 3 we have x —3 < 0, 2+ 2 > 0 and z — 4 < 0 so that |z — 3| = (3 — z),
|z +2|=(r+2) and |z — 4| = (4 — z). Thus
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3: Evaluate the following limits, if they exist.

(a) lim z(/1+ 2
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Solution: For z > 0 we have x = V22 so
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Solution: Since —1 < sin% <1 wehave 0 <1+ sin% < 2 and so 0 < 22 (1 + sin %) < 222, Thus, by the
Squeeze Theorem, we have lirrb x2(1 + sin 1) =0.
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Solution: We claim that the limit does not exist. When x = %, %, %, %, .-+ we have COS% = 0 and hence
(z? + 1) cos = = 0. It follows that if the limit existed then it would have to be 0. On the other hand, when
=5, & &, - we have cos L =1 and hence (z 4+ 1)cos 2 =22 +1 > 1. It follows that if the limit

existed then it would have to be > 1.



4: (a) Use the definition of the limit to show that lim2(3x +2)=—-4.
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Solution: Note that |(3z 4 2) — (—=4)| = [3x + 6] = 3|z + 2|. Given € > 0 we choose § = § and then
O<|z+2[<d=|z+2[< 5= |Br+2)—(-4)|=3r+2[<3-5=¢.
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Given € > 0 we choose 6 = min (1, 26) and then we have
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Find the largest value of § > 0 with the property that for all z with
€.
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leads us to guess that the largest such value § is 6 = a — To verify this algebraically, we first show that
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as claimed. It follows that when § = a — %_Fe we have
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On the other hand, when § > a — fre we can choose x with a — 4§ < z < %ﬁ =
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5: (a) Use the definition of the limit to show that for all a > 0 we have lim vz = V/a.
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Solution: Note that for > 0 we have
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Given € > 0 we can choose § = min(a, v/a €) and then
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(b) Use the definition of the limit to show that if the limit exists then it is unique, that is if lim f(x) = L
and lim f(z) = M then L = M.

Solution: Suppose that lim f(z) = L and lim f(z) = M. Suppose for a contradiction that L # M. Note
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that

L= M| = |(L=f(@)+ (@) = M)| < | = f@)]| + |f(w) = M]

by the triangle inequality. Let e = 2|L — M| and note that since L # M we have ¢ > 0. Choose &; > 0 so
that 0 < |z —a| < 6 = | f(z) — L| < € and choose d; > 0 so that 0 < |z — a| < 6o = | f(z) — M| < . Let
d = min(dy, d2). Choose x with 0 < |x —a| < §. Then
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= |[L—M|<|L- f(z)|+|f(z) = M| <2e=|L - M|.

This gives the desired contradiction (since we cannot have |L — M| < |L — M]).



