

MATH 137 Calculus 1, Solutions to Assignment 3

1: Evaluate the following limits, if they exist.

$$(a) \lim_{x \rightarrow 2} \sqrt{\frac{x^2 + 5x - 14}{x^2 - 4}}$$

Solution: We have

$$\lim_{x \rightarrow 2} \frac{x^2 + 5x - 14}{x^2 - 4} = \lim_{x \rightarrow 2} \frac{(x-2)(x+7)}{(x-2)(x+2)} = \lim_{x \rightarrow 2} \frac{x+7}{x+2} = \frac{9}{4},$$

and so

$$\lim_{x \rightarrow 2} \sqrt{\frac{x^2 + 5x - 14}{x^2 - 4}} = \sqrt{\frac{9}{4}} = \frac{3}{2}.$$

$$(b) \lim_{x \rightarrow 1} \frac{\sqrt{x+3} - 2}{x-1}$$

Solution: We have

$$\begin{aligned} \lim_{x \rightarrow 1} \frac{\sqrt{x+3} - 2}{x-1} &= \lim_{x \rightarrow 1} \frac{\sqrt{x+3} - 2}{x-1} \cdot \frac{\sqrt{x+3} + 2}{\sqrt{x+3} + 2} = \lim_{x \rightarrow 1} \frac{(x+3) - 4}{(x-1)(\sqrt{x+3} + 2)} \\ &= \lim_{x \rightarrow 1} \frac{(x-1)}{(x-1)(\sqrt{x+3} + 2)} = \lim_{x \rightarrow 1} \frac{1}{\sqrt{x+3} + 2} = \frac{1}{4}. \end{aligned}$$

$$(c) \lim_{x \rightarrow 4} \frac{x - \sqrt{x} - 2}{x - 4}$$

Solution: We have

$$\begin{aligned} \lim_{x \rightarrow 4} \frac{x - \sqrt{x} - 2}{x - 4} &= \lim_{x \rightarrow 4} \frac{(x-2) - \sqrt{x}}{x-4} \cdot \frac{(x-2) + \sqrt{x}}{(x-2) + \sqrt{x}} = \lim_{x \rightarrow 4} \frac{(x-2)^2 - x}{(x-4)(x-2 + \sqrt{x})} \\ &= \lim_{x \rightarrow 4} \frac{x^2 - 5x + 4}{(x-4)(x-2 + \sqrt{x})} = \lim_{x \rightarrow 4} \frac{(x-4)(x-1)}{(x-4)(x-2 + \sqrt{x})} = \lim_{x \rightarrow 4} \frac{x-1}{x-2 + \sqrt{x}} = \frac{3}{4} \end{aligned}$$

2: Evaluate the following limits, if they exist.

$$(a) \lim_{x \rightarrow 1^-} \frac{x^2 - 3x + 2}{x^3 + x^2 - 5x + 3}$$

Solution: We have

$$\lim_{x \rightarrow 1^-} \frac{x^2 - 3x + 2}{x^3 + x^2 - 5x + 3} = \lim_{x \rightarrow 1^-} \frac{(x-1)(x-2)}{(x-1)^2(x+3)} = \lim_{x \rightarrow 1^-} \frac{(x-2)}{(x-1)(x+3)} = \infty$$

since as $x \rightarrow 1^-$ we have $x-2 \rightarrow -1$, $x+3 \rightarrow 4$ and $x-1 \rightarrow 0^-$.

$$(b) \lim_{x \rightarrow 2^-} \frac{x-2}{\sqrt{4-x^2}}$$

Solution: We have

$$\lim_{x \rightarrow 2^-} \frac{x-2}{\sqrt{4-x^2}} = \lim_{x \rightarrow 2^-} \frac{-(2-x)}{\sqrt{(2-x)(2+x)}} = \lim_{x \rightarrow 2^-} \frac{-\sqrt{2-x}}{\sqrt{2+x}} = -\frac{0}{4} = 0.$$

$$(c) \lim_{x \rightarrow 3^-} \frac{|6+x-x^2|}{1-|4-x|}$$

Solution: Note that for $-2 < x < 3$ we have $x-3 < 0$, $x+2 > 0$ and $x-4 < 0$ so that $|x-3| = (3-x)$, $|x+2| = (x+2)$ and $|x-4| = (4-x)$. Thus

$$\begin{aligned} \lim_{x \rightarrow 3^-} \frac{|6+x-x^2|}{1-|4-x|} &= \lim_{x \rightarrow 3^-} \frac{|x^2-x-6|}{1-|x-4|} = \lim_{x \rightarrow 3^-} \frac{|x-3||x+2|}{1-|x-4|} = \lim_{x \rightarrow 3^-} \frac{(3-x)(x+2)}{1-(4-x)} \\ &= \lim_{x \rightarrow 3^-} \frac{(3-x)(x+2)}{(x-3)} = \lim_{x \rightarrow 3^-} -(x+2) = -5. \end{aligned}$$

3: Evaluate the following limits, if they exist.

$$(a) \lim_{x \rightarrow 0^+} x \sqrt{1 + \frac{1}{x}}$$

Solution: For $x > 0$ we have $x = \sqrt{x^2}$ so

$$\lim_{x \rightarrow 0^+} x \sqrt{1 + \frac{1}{x}} = \lim_{x \rightarrow 0^+} \sqrt{x^2 \left(1 + \frac{1}{x}\right)} = \lim_{x \rightarrow 0^+} \sqrt{x^2 + x} = 0.$$

$$(b) \lim_{x \rightarrow 0} x^2 \left(1 + \sin \frac{1}{x}\right)$$

Solution: Since $-1 \leq \sin \frac{1}{x} \leq 1$ we have $0 \leq 1 + \sin \frac{1}{x} \leq 2$ and so $0 \leq x^2 \left(1 + \sin \frac{1}{x}\right) \leq 2x^2$. Thus, by the Squeeze Theorem, we have $\lim_{x \rightarrow 0} x^2 \left(1 + \sin \frac{1}{x}\right) = 0$.

$$(c) \lim_{x \rightarrow 0} (x^2 + 1) \cos \frac{1}{x}$$

Solution: We claim that the limit does not exist. When $x = \frac{2}{\pi}, \frac{2}{3\pi}, \frac{2}{5\pi}, \frac{2}{7\pi}, \dots$ we have $\cos \frac{1}{x} = 0$ and hence $(x^2 + 1) \cos \frac{1}{x} = 0$. It follows that if the limit existed then it would have to be 0. On the other hand, when $x = \frac{1}{2\pi}, \frac{1}{4\pi}, \frac{1}{6\pi}, \frac{1}{8\pi}, \dots$ we have $\cos \frac{1}{x} = 1$ and hence $(x^2 + 1) \cos \frac{1}{x} = x^2 + 1 \geq 1$. It follows that if the limit existed it would have to be ≥ 1 .

4: (a) Use the definition of the limit to show that $\lim_{x \rightarrow -2} (3x + 2) = -4$.

Solution: Note that $\left| (3x + 2) - (-4) \right| = |3x + 6| = 3|x + 2|$. Given $\epsilon > 0$ we choose $\delta = \frac{\epsilon}{3}$ and then

$$0 < |x + 2| < \delta \implies |x + 2| < \frac{\epsilon}{3} \implies \left| (3x + 2) - (-4) \right| = 3|x + 2| < 3 \cdot \frac{\epsilon}{3} = \epsilon.$$

(b) Use the definition of the limit to show that $\lim_{x \rightarrow -1} \frac{x+1}{x^2-1} = -\frac{1}{2}$.

Solution: Note that for $x \neq \pm 1$ we have

$$\left| \frac{x+1}{x^2-1} + \frac{1}{2} \right| = \left| \frac{x+1}{(x-1)(x+1)} + \frac{1}{2} \right| = \left| \frac{1}{x-1} + \frac{1}{2} \right| = \left| \frac{2 + (x-1)}{2(x-1)} \right| = \frac{|x+1|}{2|x-1|}.$$

Also note that

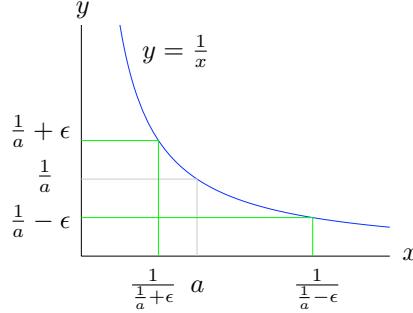
$$|x+1| < 1 \implies -2 < x < 0 \implies -3 < x-1 < -1 \implies 1 < |x-1| < 3 \implies \frac{1}{3} < \frac{1}{|x-1|} < 1.$$

Given $\epsilon > 0$ we choose $\delta = \min(1, 2\epsilon)$ and then we have

$$\begin{aligned} 0 < |x+1| < \delta &\implies (x \neq \pm 1 \text{ and } |x+1| < 1 \text{ and } x+1| < 2\epsilon) \\ &\implies (x \neq \pm 1 \text{ and } \frac{1}{|x-1|} < 1 \text{ and } |x+1| < 2\epsilon) \\ &\implies \left| \frac{x+1}{x^2-1} + \frac{1}{2} \right| = \frac{|x+1|}{2|x-1|} < \frac{2\epsilon}{2 \cdot 1} = \epsilon. \end{aligned}$$

(c) Let $a > 0$ and let $0 < \epsilon < \frac{1}{a}$. Find the largest value of $\delta > 0$ with the property that for all x with $0 < |x-a| < \delta$ we have $\left| \frac{1}{x} - \frac{1}{a} \right| < \epsilon$.

Solution: Careful consideration of the following graph



leads us to guess that the largest such value δ is $\delta = a - \frac{1}{\frac{1}{a} + \epsilon}$. To verify this algebraically, we first show that $a - \frac{1}{\frac{1}{a} + \epsilon} < \frac{1}{\frac{1}{a} - \epsilon} - a$ (as can be seen from the graph). Note that $a - \frac{1}{\frac{1}{a} + \epsilon} = a - \frac{a}{1+a\epsilon} = \frac{a+a^2\epsilon-a}{1+a\epsilon} = \frac{a^2\epsilon}{1+a\epsilon}$ and similarly $\frac{1}{\frac{1}{a} - \epsilon} - a = \frac{a^2\epsilon}{1-a\epsilon}$. Since a and ϵ are positive we have

$$-a\epsilon < a\epsilon \implies 1 - a\epsilon < 1 + a\epsilon \implies \frac{1}{1+a\epsilon} < \frac{1}{1-a\epsilon} \implies \frac{a^2\epsilon}{1+a\epsilon} < \frac{a^2\epsilon}{1-a\epsilon} \implies a - \frac{1}{\frac{1}{a} + \epsilon} < \frac{1}{\frac{1}{a} - \epsilon} - a,$$

as claimed. It follows that when $\delta = a - \frac{1}{\frac{1}{a} + \epsilon}$ we have

$$\begin{aligned} |x-a| < \delta &\implies a - \delta < x < a + \delta \implies a - \left(a - \frac{1}{\frac{1}{a} + \epsilon} \right) < x < a + \left(\frac{1}{\frac{1}{a} - \epsilon} - a \right) \\ &\implies \frac{1}{\frac{1}{a} + \epsilon} < x < \frac{1}{\frac{1}{a} - \epsilon} \implies \frac{1}{a} - \epsilon < \frac{1}{x} < \frac{1}{a} + \epsilon \implies \left| \frac{1}{x} - \frac{1}{a} \right| < \epsilon. \end{aligned}$$

On the other hand, when $\delta > a - \frac{1}{\frac{1}{a} + \epsilon}$ we can choose x with $a - \delta < x < \frac{1}{\frac{1}{a} + \epsilon} = \frac{a}{1+a\epsilon}$ but then we have $a - \delta < x < a$ so that $0 < |x-a| < \delta$, and we also have $\frac{1}{x} > \frac{1}{a} + \epsilon$ so that $\left| \frac{1}{x} - \frac{1}{a} \right| > \epsilon$.

5: (a) Use the definition of the limit to show that for all $a > 0$ we have $\lim_{x \rightarrow a} \sqrt{x} = \sqrt{a}$.

Solution: Note that for $x > 0$ we have

$$|\sqrt{x} - \sqrt{a}| = \frac{|x - a|}{\sqrt{x} + \sqrt{a}}.$$

Given $\epsilon > 0$ we can choose $\delta = \min(a, \sqrt{a} \epsilon)$ and then

$$\begin{aligned} 0 < |x - a| < \delta &\implies (|x - a| < a \text{ and } |x - a| < \sqrt{a} \epsilon) \\ &\implies (x > 0 \text{ and } |x - a| < \sqrt{a} \epsilon) \\ &\implies |\sqrt{x} - \sqrt{a}| = \frac{|x - a|}{\sqrt{x} + \sqrt{a}} < \frac{\sqrt{a} \epsilon}{\sqrt{a}} = \epsilon. \end{aligned}$$

(b) Use the definition of the limit to show that if the limit exists then it is unique, that is if $\lim_{x \rightarrow a} f(x) = L$ and $\lim_{x \rightarrow a} f(x) = M$ then $L = M$.

Solution: Suppose that $\lim_{x \rightarrow a} f(x) = L$ and $\lim_{x \rightarrow a} f(x) = M$. Suppose for a contradiction that $L \neq M$. Note that

$$|L - M| = |(L - f(x)) + (f(x) - M)| \leq |L - f(x)| + |f(x) - M|$$

by the triangle inequality. Let $\epsilon = \frac{1}{2}|L - M|$ and note that since $L \neq M$ we have $\epsilon > 0$. Choose $\delta_1 > 0$ so that $0 < |x - a| < \delta_1 \implies |f(x) - L| < \epsilon$ and choose $\delta_2 > 0$ so that $0 < |x - a| < \delta_2 \implies |f(x) - M| < \epsilon$. Let $\delta = \min(\delta_1, \delta_2)$. Choose x with $0 < |x - a| < \delta$. Then

$$\begin{aligned} 0 < |x - a| < \delta &\implies (0 < |x - a| < \delta_1 \text{ and } 0 < |x - a| < \delta_2) \\ &\implies (|f(x) - L| < \epsilon \text{ and } |f(x) - M| < \epsilon) \\ &\implies |L - M| \leq |L - f(x)| + |f(x) - M| < 2\epsilon = |L - M|. \end{aligned}$$

This gives the desired contradiction (since we cannot have $|L - M| < |L - M|$).