
MATH 137 Calculus 1, Solutions to Assignment 3

1: Evaluate the following limits, if they exist.

(a) lim
x→2

√
x2 + 5x− 14

x2 − 4
Solution: We have

lim
x→2

x2 + 5x− 14
x2 − 4

= lim
x→2

(x− 2)(x+ 7)
(x− 2)(x+ 2)

= lim
x→2

x+ 7
x+ 2

= 9
4 ,

and so

lim
x→2

√
x2 + 5x− 14

x2 − 4
=
√

9
4 = 3

2 .

(b) lim
x→1

√
x+ 3− 2
x− 1

Solution: We have

lim
x→1

√
x+ 3− 2
x− 1

= lim
x→1

√
x+ 3− 2
x− 1

·
√
x+ 3 + 2√
x+ 3 + 2

= lim
x→1

(x+ 3)− 4
(x− 1)(

√
x+ 3 + 2)

= lim
x→1

(x− 1)
(x− 1)(

√
x+ 3 + 2)

= lim
x→1

1√
x+ 3 + 2

= 1
4 .

(c) lim
x→4

x−
√
x− 2

x− 4
Solution: We have

lim
x→4

x−
√
x− 2

x− 4
= lim
x→4

(x− 2)−
√
x

x− 4
· (x− 2) +

√
x

(x− 2) +
√
x

= lim
x→4

(x− 2)2 − x
(x− 4)(x− 2 +

√
x)

= lim
x→4

x2 − 5x+ 4
(x− 4)(x− 2 +

√
x)

= lim
x→4

(x− 4)(x− 1)
(x− 4)(x− 2 +

√
x)

= lim
x→4

x− 1
x− 2 +

√
x

= 3
4



2: Evaluate the following limits, if they exist.

(a) lim
x→1−

x2 − 3x+ 2
x3 + x2 − 5x+ 3

Solution: We have

lim
x→1−

x2 − 3x+ 2
x3 + x2 − 5x+ 3

= lim
x→1−

(x− 1)(x− 2)
(x− 1)2(x+ 3)

= lim
x→1−

(x− 2)
(x− 1)(x+ 3)

=∞

since as x→ 1− we have x− 2→ −1, x+ 3→ 4 and x− 1→ 0−.

(b) lim
x→2−

x− 2√
4− x2

Solution: We have

lim
x→2−

x− 2√
4− x2

= lim
x→2−

−(2− x)√
(2− x)(2 + x)

= lim
x→2−

−
√

2− x√
2 + x

= − 0
4 = 0 .

(c) lim
x→3−

|6 + x− x2|
1− |4− x|

Solution: Note that for −2 < x < 3 we have x − 3 < 0, x + 2 > 0 and x − 4 < 0 so that |x − 3| = (3 − x),
|x+ 2| = (x+ 2) and |x− 4| = (4− x). Thus

lim
x→3−

|6 + x− x2|
1− |4− x|

= lim
x→3−

|x2 − x− 6|
1− |x− 4|

= lim
x→3−

|x− 3| |x+ 2|
1− |x− 4|

= lim
x→3−

(3− x)(x+ 2)
1− (4− x)

= lim
x→3−

(3− x)(x+ 2)
(x− 3)

= lim
x→3−

−(x+ 2) = −5 .

3: Evaluate the following limits, if they exist.

(a) lim
x→0+

x
√

1 + 1
x

Solution: For x > 0 we have x =
√
x2 so

lim
x→0+

x
√

1 + 1
x = lim

x→0+

√
x2
(
1 + 1

x

)
= lim
x→0+

√
x2 + x = 0 .

(b) lim
x→0

x2
(
1 + sin 1

x

)
Solution: Since −1 ≤ sin 1

x ≤ 1 we have 0 ≤ 1 + sin 1
x ≤ 2 and so 0 ≤ x2

(
1 + sin 1

x

)
≤ 2x2. Thus, by the

Squeeze Theorem, we have lim
x→0

x2
(
1 + sin 1

x

)
= 0.

(c) lim
x→0

(x2 + 1) cos 1
x

Solution: We claim that the limit does not exist. When x = 2
π ,

2
3π ,

2
5π ,

2
7π , · · · we have cos 1

x = 0 and hence
(x2 + 1) cos 1

x = 0. It follows that if the limit existed then it would have to be 0. On the other hand, when
x = 1

2π ,
1
4π ,

1
6π ,

1
8π , · · · we have cos 1

x = 1 and hence (x2 + 1) cos 1
x = x2 + 1 ≥ 1. It follows that if the limit

existed then it would have to be ≥ 1.



4: (a) Use the definition of the limit to show that lim
x→−2

(3x+ 2) = −4 .

Solution: Note that
∣∣∣(3x+ 2)− (−4)

∣∣∣ = |3x+ 6| = 3 |x+ 2| . Given ε > 0 we choose δ = ε
3 and then

0 < |x+ 2| < δ =⇒ |x+ 2| < ε
3 =⇒

∣∣∣(3x+ 2)− (−4)
∣∣∣ = 3 |x+ 2| < 3 · ε3 = ε .

(b) Use the definition of the limit to show that lim
x→−1

x+ 1
x2 − 1

= − 1
2 .

Solution: Note that for x 6= ±1 we have∣∣∣∣ x+ 1
x2 − 1

+
1
2

∣∣∣∣ =
∣∣∣∣ x+ 1
(x− 1)(x+ 1)

+
1
2

∣∣∣∣ =
∣∣∣∣ 1
x− 1

+
1
2

∣∣∣∣ =
∣∣∣∣2 + (x− 1)

2(x− 1)

∣∣∣∣ =
|x+ 1|
2|x− 1|

.

Also note that

|x+ 1| < 1 =⇒ −2 < x < 0 =⇒ −3 < x− 1 < −1 =⇒ 1 < |x− 1| < 3 =⇒ 1
3 <

1
|x− 1|

< 1 .

Given ε > 0 we choose δ = min
(
1, 2ε

)
and then we have

0 < |x+ 1| < δ =⇒
(
x 6= ±1 and |x+ 1| < 1 and x+ 1| < 2ε

)
=⇒

(
x 6= ±1 and

1
|x− 1|

< 1 and |x+ 1| < 2ε
)

=⇒
∣∣∣∣ x+ 1
x2 − 1

+
1
2

∣∣∣∣ =
|x+ 1|
2|x− 1|

<
2ε

2 · 1
= ε .

(c) Let a > 0 and let 0 < ε < 1
a . Find the largest value of δ > 0 with the property that for all x with

0 < |x− a| < δ we have
∣∣ 1
x −

1
a

∣∣ < ε.

Solution: Careful consideration of the following graph

y

y = 1
x

1
a + ε

1
a

1
a − ε

x
1

1
a +ε

a 1
1
a−ε

leads us to guess that the largest such value δ is δ = a− 1
1
a +ε

. To verify this algebraically, we first show that

a− 1
1
a +ε

< 1
1
a−ε
− a (as can be seen from the graph). Note that a− 1

1
a +ε

= a− a
1+aε = a+a2ε−a

1+aε = a2ε
1+aε and

similarly 1
1
a−ε
− a = a2ε

1−aε . Since a and ε are positive we have

−aε < aε =⇒ 1− aε < 1 + aε =⇒ 1
1+aε <

1
1−aε =⇒ a2ε

1+aε <
a2ε

1−aε =⇒ a− 1
1
a +ε

< 1
1
a−ε
− a ,

as claimed. It follows that when δ = a− 1
1
a +ε

we have

|x− a| < δ =⇒ a− δ < x < a+ δ =⇒ a−
(
a− 1

1
a +ε

)
< x < a+

(
1

1
a−ε
− a
)

=⇒ 1
1
a +ε

< x < 1
1
a−ε

=⇒ 1
a − ε <

1
x <

1
a + ε =⇒

∣∣∣ 1x − 1
a

∣∣∣ < ε .

On the other hand, when δ > a − 1
1
a +ε

we can choose x with a − δ < x < 1
1
a +ε

= a
1+aε but then we have

a− δ < x < a so that 0 < |x− a| < δ, and we also have 1
x >

1
a + ε so that

∣∣ 1
x −

1
a

∣∣ > ε.



5: (a) Use the definition of the limit to show that for all a > 0 we have lim
x→a

√
x =
√
a.

Solution: Note that for x > 0 we have ∣∣√x−√a∣∣ =
|x− a|√
x+
√
a
.

Given ε > 0 we can choose δ = min(a,
√
a ε) and then

0 < |x− a| < δ =⇒
(
|x− a| < a and |x− a| <

√
a ε
)

=⇒
(
x > 0 and |x− a| <

√
a ε
)

=⇒
∣∣√x−√a∣∣ =

|x− a|√
x+
√
a
<

√
a ε√
a

= ε .

(b) Use the definition of the limit to show that if the limit exists then it is unique, that is if lim
x→a

f(x) = L

and lim
x→a

f(x) = M then L = M .

Solution: Suppose that lim
x→a

f(x) = L and lim
x→a

f(x) = M . Suppose for a contradiction that L 6= M . Note
that

|L−M | =
∣∣∣(L− f(x)

)
+
(
f(x)−M

)∣∣∣ ≤ ∣∣L− f(x)
∣∣+
∣∣f(x)−M

∣∣
by the triangle inequality. Let ε = 1

2 |L −M | and note that since L 6= M we have ε > 0. Choose δ1 > 0 so
that 0 < |x− a| < δ1 =⇒

∣∣f(x)−L
∣∣ < ε and choose δ2 > 0 so that 0 < |x− a| < δ2 =⇒

∣∣f(x)−M
∣∣ < ε. Let

δ = min(δ1, δ2). Choose x with 0 < |x− a| < δ. Then

0 < |x− a| < δ =⇒
(

0 < |x− a| < δ1 and 0 < |x− a| < δ2

)
=⇒

(∣∣f(x)− L
∣∣ < ε and

∣∣f(x)−M
∣∣ < ε

)
=⇒ |L−M | ≤

∣∣L− f(x)
∣∣+
∣∣f(x)−M

∣∣ < 2ε = |L−M | .

This gives the desired contradiction (since we cannot have |L−M | < |L−M |).


