

MATH 137 Calculus 1, Solutions to Assignment 2

1: Solve each of the following equalities for x .

(a) $(\sqrt{2})^x = 8$

Solution: We have

$$(\sqrt{2})^x = 8 \iff (2^{1/2})^x = 8 \iff 2^{x/2} = 2^3 \iff x/2 = 3 \iff x = 6.$$

(b) $e^{2 \ln x} = 9$

Solution: We need $x > 0$ (so that $\ln x$ is defined). For $x > 0$ we have

$$e^{2 \ln x} = 9 \iff x^2 = 9 \iff x = \pm 3 \iff x = 3 \text{ (since } x > 0\text{).}$$

(c) $\ln(x+9) = \ln(x-1) + \ln(x+3)$

Solution: First note that we need $x+9 > 0$, $x-1 > 0$ and $x+3 > 0$, that is $x > 1$. For $x > 1$ we have

$$\begin{aligned} \ln(x+9) = \ln(x-1) + \ln(x+3) &\iff \ln(x+9) = \ln((x-1)(x+3)) \iff x+9 = (x-1)(x+3) \\ &\iff x+9 = x^2 + 2x - 3 \iff x^2 + x - 12 = 0 \iff (x+4)(x-3) = 0 \\ &\iff (x = -4 \text{ or } x = 3) \iff x = 3 \text{ (since } x > 1\text{).} \end{aligned}$$

(d) $e^x - e^{-x} = 2$

Solution: Write $u = e^x$. Note that $u > 0$. For $u > 0$ we have

$$\begin{aligned} e^x - e^{-x} = 2 &\iff u - \frac{1}{u} = 2 \iff u^2 - 1 = 2u \iff u^2 - 2u - 1 = 0 \iff u = \frac{2 \pm \sqrt{8}}{2} = 1 \pm \sqrt{2} \\ &\iff u = 1 + \sqrt{2} \text{ (since } u > 0\text{)} \iff e^x = 1 + \sqrt{2} \iff x = \ln(1 + \sqrt{2}). \end{aligned}$$

2: (a) Find the sine, cosine and tangent of the angle $\alpha = \frac{10\pi}{3}$.

Solution: We have

$$\begin{aligned}\sin \alpha &= -\sin(\alpha - 3\pi) = -\sin\left(\frac{\pi}{3}\right) = -\frac{\sqrt{3}}{2}, \\ \cos \alpha &= -\cos(\alpha - 3\pi) = -\cos\left(\frac{\pi}{3}\right) = -\frac{1}{2}, \text{ and} \\ \tan \alpha &= \frac{\sin \alpha}{\cos \alpha} = \frac{-\sqrt{3}/2}{-1/2} = \sqrt{3}.\end{aligned}$$

(b) Find the angle $\beta \in [\pi, 2\pi]$ with $\tan \beta = -\sqrt{3}$.

Solution: $\beta = \frac{5\pi}{3}$ since $\frac{5\pi}{3} \in [\pi, 2\pi]$ and $\tan \frac{5\pi}{3} = \tan\left(\frac{5\pi}{3} - 2\pi\right) = \tan\left(-\frac{\pi}{3}\right) = -\tan \frac{\pi}{3} = -\sqrt{3}$.

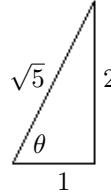
(c) Find the exact value of $\tan\left(\frac{\pi}{12}\right)$.

Solution: We have

$$\begin{aligned}\tan \frac{\pi}{12} &= \tan\left(\frac{\pi}{4} - \frac{\pi}{6}\right) = \frac{\sin\left(\frac{\pi}{4} - \frac{\pi}{6}\right)}{\cos\left(\frac{\pi}{4} - \frac{\pi}{6}\right)} = \frac{\sin \frac{\pi}{4} \cos \frac{\pi}{6} - \cos \frac{\pi}{4} \sin \frac{\pi}{6}}{\cos \frac{\pi}{4} \cos \frac{\pi}{6} + \sin \frac{\pi}{4} \sin \frac{\pi}{6}} = \frac{\frac{\sqrt{2}}{2} \frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2} \frac{1}{2}}{\frac{\sqrt{2}}{2} \frac{\sqrt{3}}{2} + \frac{\sqrt{2}}{2} \frac{1}{2}} \\ &= \frac{\sqrt{6} - \sqrt{2}}{\sqrt{6} + \sqrt{2}} = \frac{(\sqrt{6} - \sqrt{2})^2}{6 - 2} = \frac{6 - 2\sqrt{12} + 2}{4} = \frac{8 - 4\sqrt{3}}{4} = 2 - \sqrt{3}.\end{aligned}$$

(d) Find the exact value of $\sin(\tan^{-1} 2)$.

Solution: For θ as in the picture, we have $\theta = \tan^{-1} 2$ and $\sin \theta = \frac{2}{\sqrt{5}}$, so $\sin(\tan^{-1} 2) = \frac{2}{\sqrt{5}}$.



(e) Find the exact value of $\cos^{-1}(\sin(\frac{12\pi}{5}))$.

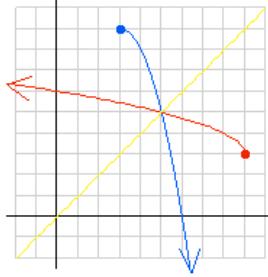
Solution: Note that $\sin \frac{12\pi}{5} = \sin\left(\frac{12\pi}{5} - 2\pi\right) = \sin \frac{2\pi}{5} = \sin\left(\frac{\pi}{2} - \frac{\pi}{10}\right) = \cos \frac{\pi}{10}$. It follows that

$$\cos^{-1}(\sin(\frac{12\pi}{5})) = \cos^{-1}(\cos \frac{\pi}{10}) = \frac{\pi}{10}.$$

3: For each of the following functions $f(x)$, sketch the graphs $y = f(x)$ and $y = f^{-1}(x)$ on the same grid, find a formula for f^{-1} , and find the domain and range of f^{-1} .

(a) $f(x) = x(6 - x)$ for $x \geq 3$.

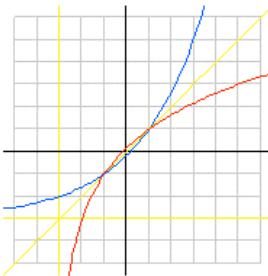
Solution: The graph of f is shown in blue and the graph of f^{-1} is shown in red.



For $x \geq 3$, we have $y = f(x) \iff y = x(6 - x) = 6x - x^2 \iff x^2 - 6x + y = 0 \iff x = \frac{6 \pm \sqrt{36 - 4y}}{2} \iff x = 3 \pm \sqrt{9 - y} \iff x = 3 + \sqrt{9 - y}$, since $x \geq 3$. Thus we have $x = f^{-1}(y) = 3 + \sqrt{9 - y}$. The domain of f^{-1} is $(-\infty, 9]$ and the range of f^{-1} is $[3, \infty)$.

(b) $f(x) = 2^{(x+3)/2} - 3$ for all x .

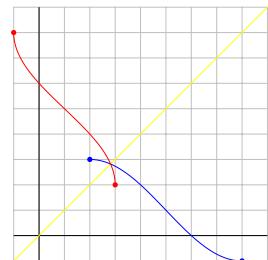
Solution: The graph of f is shown in blue and the graph of f^{-1} is shown in red.



We have $y = f(x) \iff y = 2^{(x+3)/2} - 3 \iff y + 3 = 2^{(x+3)/2} \iff \log_2(y + 3) = (x + 3)/2 \iff 2 \log_2(y + 3) = x + 3 \iff x = 2 \log_2(y + 3) - 3$. Thus we have $f^{-1}(y) = 2 \log_2(y + 3) - 3$. The domain of f^{-1} is $(-3, \infty)$ and the range is $(-\infty, \infty)$.

(c) $f(x) = 1 + 2 \sin\left(\frac{\pi}{6}(x + 1)\right)$ for $2 \leq x \leq 8$.

Solution: The graph of f is shown in blue and the graph of f^{-1} is shown in red.



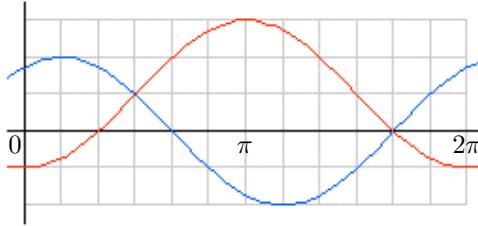
For $2 \leq x \leq 8$ we have $\frac{\pi}{2} \leq \frac{\pi}{6}(x + 1) \leq \frac{3\pi}{2}$ hence $-\frac{\pi}{2} \leq \pi - \frac{\pi}{6}(x + 1) \leq \frac{\pi}{2}$ and so

$$\begin{aligned} y = f(x) &\iff y = 1 + 2 \sin\left(\frac{\pi}{6}(x + 1)\right) \iff \frac{1}{2}(y - 1) = \sin\left(\frac{\pi}{6}(x + 1)\right) = \sin\left(\pi - \frac{\pi}{6}(x + 1)\right) \\ &\iff \sin^{-1}\left(\frac{1}{2}(y - 1)\right) = \pi - \frac{\pi}{6}(x + 1) = \frac{\pi}{6}(5 - x) \iff x = 5 - \frac{6}{\pi} \sin^{-1}\left(\frac{1}{2}(y - 1)\right). \end{aligned}$$

Thus we have $f^{-1}(y) = 5 - \frac{6}{\pi} \sin^{-1}\left(\frac{1}{2}(y - 1)\right)$. The domain of f^{-1} is $[-1, 3]$ and the range is $[2, 8]$.

4: (a) Sketch the graphs of $y = 2 \sin(x + \frac{\pi}{3})$ and $y = 1 - 2 \cos x$ on the same grid.

Solution: The graph of $y = 2 \sin(x + \frac{\pi}{3})$ is shown in blue; it can be obtained from the graph of $y = \sin x$ by translating $\frac{\pi}{3}$ units to the left (to get the graph of $y = \sin(x + \frac{\pi}{3})$), then scaling vertically by a factor of 2. The graph of $y = 1 - 2 \cos x$ is shown in red; it can be obtained from the graph of $y = \cos x$ by reflecting in the x -axis (to get the graph of $y = -\cos x$), scaling vertically by a factor of 2 (to get $y = -2 \cos x$), then translating 1 unit upwards.



(b) Use the sketch to solve the equality $\sin(x + \frac{\pi}{3}) + \cos x = \frac{1}{2}$, for $0 \leq x \leq 2\pi$.

Solution: Note that we have $\sin(x + \frac{\pi}{3}) + \cos x = \frac{1}{2}$ when $2 \sin(x + \frac{\pi}{3}) = 1 - 2 \cos x$, and this happens when the above two graphs intersect, that is when $x = \frac{\pi}{2}$ and $x = \frac{5\pi}{3}$.

(c) Solve the equality $\sin(x + \frac{\pi}{3}) + \cos x = \frac{1}{2}$ algebraically.

Solution: For $0 \leq x \leq 2\pi$, we have

$$\begin{aligned}
 \sin(x + \frac{\pi}{3}) + \cos x = \frac{1}{2} &\iff \sin x \cos \frac{\pi}{3} + \cos x \sin \frac{\pi}{3} + \cos x = \frac{1}{2} \\
 &\iff \frac{1}{2} \sin x + \frac{\sqrt{3}}{2} \cos x + \cos x = \frac{1}{2} \\
 &\iff \sin x + (\sqrt{3} + 2) \cos x = 1 \\
 &\iff (\sqrt{3} + 2) \cos x = 1 - \sin x \\
 &\implies (7 + 4\sqrt{3}) \cos^2 x = (1 - \sin x)^2 \\
 &\implies (7 + 4\sqrt{3})(1 - \sin^2 x) = 1 - 2 \sin x + \sin^2 x \\
 &\implies (8 + 4\sqrt{3}) \sin^2 x - 2 \sin x - (6 + 4\sqrt{3}) = 0 \\
 &\implies 2(2 + \sqrt{3}) \sin^2 x - \sin x - (3 + 2\sqrt{3}) = 0 \\
 &\implies 2(2 + \sqrt{3})(2 - \sqrt{3}) \sin^2 x - (2 - \sqrt{3}) \sin x - (3 + 2\sqrt{3})(2 - \sqrt{3}) = 0 \\
 &\implies 2 \sin^2 x - (2 - \sqrt{3}) \sin x - \sqrt{3} = 0 \\
 &\implies \sin x = \frac{(2 - \sqrt{3}) \pm \sqrt{(7 - 4\sqrt{3}) + 8\sqrt{3}}}{4} = \frac{(2 - \sqrt{3}) \pm \sqrt{7 + 4\sqrt{3}}}{4} = \frac{(2 - \sqrt{3}) \pm (2 + \sqrt{3})}{4} \\
 &\implies \sin x = 1 \text{ or } -\frac{\sqrt{3}}{2} \\
 &\implies x = \frac{\pi}{2}, \frac{4\pi}{3} \text{ or } \frac{5\pi}{3}
 \end{aligned}$$

These are the only possible solutions, but they need not all be solutions since at one point we squared both sides (note the line that begins with \implies instead of \iff). We check each of these three values of x and find that the only solutions are $x = \frac{\pi}{2}$ and $x = \frac{5\pi}{3}$.

5: Let $f(x) = x^3 + 3x$ for all $x \in \mathbf{R}$, let $g(t) = t - \frac{1}{t}$ for $t > 0$, and let $h(t) = f(g(t))$ for $t > 0$.

(a) Show that for every $x \in \mathbf{R}$ there exists a unique $t > 0$ such that $x = g(t)$.

Solution: Let $x \in \mathbf{R}$. For $t > 0$ we have

$$x = g(t) \iff x = t - \frac{1}{t} \iff tx = t^2 - 1 \iff t^2 - xt - 1 = 0 \iff t = \frac{x \pm \sqrt{x^2 + 4}}{2}.$$

Note that $\sqrt{x^2 + 4} > \sqrt{x^2} = |x|$ so that $x + \sqrt{x^2 + 4} > 0$ and $x - \sqrt{x^2 + 4} < 0$. Thus the unique number $t > 0$ with $x = g(t)$ is given by $t = g^{-1}(x) = \frac{x + \sqrt{x^2 + 4}}{2}$.

(b) Expand and simplify $h(t)$ then find a formula for h^{-1} .

Solution: We have

$$h(t) = f(g(t)) = f\left(t - \frac{1}{t}\right) = \left(t - \frac{1}{t}\right)^3 + 3\left(t - \frac{1}{t}\right) = \left(t^3 - 3t + \frac{3}{t} - \frac{1}{t^3}\right) + \left(3t - \frac{3}{t}\right) = t^3 - \frac{1}{t^3}.$$

For $t > 0$ we have

$$y = h(t) \iff y = t^3 - \frac{1}{t^3} \iff t^6 - yt^3 - 1 = 0 \iff t^3 = \frac{y \pm \sqrt{y^2 + 4}}{2} \iff t = \sqrt[3]{\frac{y + \sqrt{y^2 + 4}}{2}}$$

where we must use the + sign since $t > 0$. Thus $h^{-1}(y) = \sqrt[3]{\frac{y + \sqrt{y^2 + 4}}{2}}$.

(c) Use the results of parts (a) and (b) to find a formula for f^{-1} .

Solution: For $x = g(t)$ with $t > 0$ we have

$$\begin{aligned} y = f(x) \iff y = f(g(t)) = h(t) \iff t = h^{-1}(y) &= \sqrt[3]{\frac{y + \sqrt{y^2 + 4}}{2}} \\ \iff x = g(t) = t - \frac{1}{t} &= \sqrt[3]{\frac{y + \sqrt{y^2 + 4}}{2}} - \sqrt[3]{\frac{2}{y + \sqrt{y^2 + 4}}}. \end{aligned}$$

Thus we have $f^{-1}(y) = \sqrt[3]{\frac{y + \sqrt{y^2 + 4}}{2}} - \sqrt[3]{\frac{2}{y + \sqrt{y^2 + 4}}} = \sqrt[3]{\frac{y + \sqrt{y^2 + 4}}{2}} + \sqrt[3]{\frac{y - \sqrt{y^2 + 4}}{2}}$.