

MATH 137 Calculus 1, Solutions to Assignment 11

1: Evaluate the following definite integrals.

$$(a) \int_{-2}^4 x^3 - x^2 - 3x + 1 \, dx$$

Solution: We have

$$\int_{-2}^4 x^3 - x^2 - 3x + 1 \, dx = \left[\frac{1}{4} x^4 - \frac{1}{3} x^3 - \frac{3}{2} x^2 + x \right]_{-2}^4 = (64 - \frac{64}{3} - 24 + 4) - (4 + \frac{8}{3} - 6 - 2) = 24.$$

$$(b) \int_{\pi/6}^{\pi/2} \cos x - \sqrt{3} \sin x \, dx$$

Solution: We have

$$\int_{\pi/6}^{\pi/2} \cos x - \sqrt{3} \sin x \, dx = \left[\sin x + \sqrt{3} \cos x \right]_{\pi/6}^{\pi/2} = (1 + 0) - (\frac{1}{2} + \sqrt{3} \cdot \frac{\sqrt{3}}{2}) = -1.$$

$$(c) \int_1^4 \frac{(x-1)(x-2)}{\sqrt{x}} \, dx$$

Solution: We have

$$\begin{aligned} \int_1^4 \frac{(x-1)(x-2)}{\sqrt{x}} \, dx &= \int_1^4 \frac{x^2 - 3x + 2}{\sqrt{x}} \, dx = \int_1^4 x^{3/2} - 3x^{1/2} + 2x^{-1/2} \, dx \\ &= \left[\frac{2}{5} x^{5/2} - 2x^{3/2} + 4x^{1/2} \right]_1^4 = \left(\frac{64}{5} - 16 + 8 \right) - \left(\frac{2}{5} - 2 + 4 \right) = \frac{12}{5}. \end{aligned}$$

2: Evaluate the following definite integrals.

$$(a) \int_0^{\ln 3} \frac{e^x dx}{1 + e^x}$$

Solution: Let $u = 1 + e^x$ so $du = e^x dx$. Then

$$\int_{x=0}^{\ln 3} \frac{e^x dx}{1 + e^x} = \int_{u=2}^4 \frac{du}{u} = \left[\ln u \right]_2^4 = \ln 4 - \ln 2 = \ln 2.$$

$$(b) \int_0^3 \frac{x^2 dx}{(x+1)^{3/2}}$$

Solution: Let $u = x+1$ so that $x = u-1$ and $dx = du$. Then

$$\begin{aligned} \int_{x=0}^3 \frac{x^2 dx}{(x+1)^{3/2}} &= \int_{u=1}^4 \frac{(u-1)^2 du}{u^{3/2}} = \int_1^4 \frac{u^2 - 2u + 1}{u^{3/2}} du = \int_1^4 u^{1/2} - 2u^{-1/2} + u^{-3/2} du \\ &= \left[\frac{2}{3} u^{3/2} - 4u^{1/2} - 2u^{-1/2} \right]_1^4 = \left(\frac{16}{3} - 8 - 1 \right) - \left(\frac{2}{3} - 4 - 2 \right) = \frac{5}{3}. \end{aligned}$$

$$(c) \int_0^{\pi/3} \frac{\sin^3 x}{\cos^2 x} dx$$

Solution: Let $u = \cos x$ so that $du = -\sin x dx$. Then

$$\begin{aligned} \int_0^{\pi/3} \frac{\sin^3 x}{\cos^2 x} dx &= \int_{x=0}^{\pi/3} \frac{(1 - \cos^2 x) \sin x dx}{\cos^2 x} = \int_{u=1}^{1/2} \frac{-(1 - u^2) du}{u^2} = \int_1^{1/2} 1 - \frac{1}{u^2} du \\ &= \left[u + \frac{1}{u} \right]_1^{1/2} = \left(\frac{1}{2} + 2 \right) - (1 + 1) = \frac{1}{2}. \end{aligned}$$

3: Evaluate the following definite integrals.

$$(a) \int_0^2 \frac{x^3 dx}{\sqrt{2x^2 + 1}}$$

Solution: Let $u = 2x^2 + 1$ so $du = 4x dx$ and $x^2 = \frac{1}{2}(u - 1)$. Then

$$\begin{aligned} \int_0^2 \frac{x^3 dx}{\sqrt{2x^2 + 1}} &= \int_{x=0}^2 \frac{x^2 \cdot x dx}{\sqrt{2x^2 + 1}} = \int_{u=1}^9 \frac{\frac{1}{2}(u - 1) \cdot \frac{1}{4} du}{\sqrt{u}} = \frac{1}{8} \int_1^9 u^{1/2} - u^{-1/2} du \\ &= \frac{1}{8} \left[\frac{2}{3} u^{3/2} - 2 u^{1/2} \right]_1^9 = \frac{1}{8} \left[(18 - 6) - \left(\frac{2}{3} - 2 \right) \right] = \frac{1}{8} \cdot \frac{40}{3} = \frac{5}{3}. \end{aligned}$$

$$(b) \int_1^3 \frac{\sqrt{x} dx}{x + 1}$$

Solution: Let $u = \sqrt{x}$ so $u^2 = x$ and $2u du = dx$. Then

$$\begin{aligned} \int_{x=1}^3 \frac{\sqrt{x} dx}{x + 1} &= \int_{u=1}^{\sqrt{3}} \frac{u \cdot 2u du}{u^2 + 1} = \int_1^{\sqrt{3}} 2 - \frac{2}{u^2 + 1} du = \left[2u - 2 \tan^{-1} u \right]_1^{\sqrt{3}} \\ &= \left(2\sqrt{3} - 2 \frac{\pi}{3} \right) - \left(2 - 2 \frac{\pi}{4} \right) = 2\sqrt{3} - 2 - \frac{\pi}{6}. \end{aligned}$$

$$(c) \int_0^{\pi/4} \tan^3 x dx$$

Solution: Let $u = \tan x$ so $du = \sec^2 x dx$ and let $v = \cos x$ so $dv = -\sin x dx$. Then

$$\begin{aligned} \int_0^{\pi/4} \tan^3 x dx &= \int_0^{\pi/4} (\sec^2 x - 1) \tan x dx = \int_{x=0}^{\pi/4} \tan x \cdot \sec^2 x dx - \int_{x=0}^{\pi/4} \frac{\sin x dx}{\cos x} \\ &= \int_{u=0}^1 u du - \int_{v=1}^{1/\sqrt{2}} \frac{-dv}{v} = \left[\frac{1}{2} u^2 \right]_{u=0}^1 + \left[\ln v \right]_{v=1}^{1/\sqrt{2}} = \frac{1}{2} + \ln \frac{1}{\sqrt{2}} = \frac{1}{2} - \frac{\ln 2}{2}. \end{aligned}$$

4: (a) Find the area of the region which is bounded by the curves $y^2 = 2x$ and $y = \frac{x}{x-3}$.

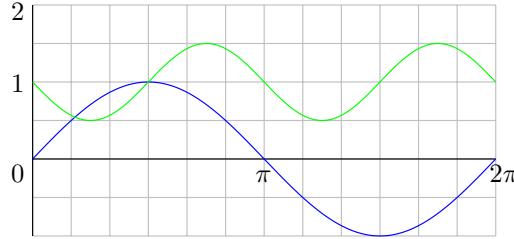
Solution: First sketch the two curves. The parabola $y^2 = 2x$ is shown in blue, and the hyperbola $y = \frac{x}{x-3}$ is shown in green.

We see that the region in question lies below the hyperbola and above the bottom half of the parabola, which is given by $y = -\sqrt{2x}$, with $0 \leq x \leq 2$. Thus the area is

$$\begin{aligned} A &= \int_0^2 \left(\frac{x}{x-3} \right) - \left(-\sqrt{2x} \right) dx = \int_0^2 \frac{x-3+3}{x-3} + \sqrt{2x} dx = \int_0^2 1 + \frac{3}{x-3} + (2x)^{1/2} dx \\ &= \left[x + 3 \ln|x-3| + \frac{1}{3}(2x)^{3/2} \right]_0^2 = \left(2 + 0 + \frac{8}{3} \right) - (3 \ln 3) = \frac{14}{3} - 3 \ln 3. \end{aligned}$$

(b) Find the area of the region bounded by $y = \sin x$ and $y = 1 - \frac{1}{\sqrt{3}} \sin 2x$ with $0 \leq x \leq 2\pi$.

Solution: First we sketch the two curves. The curve $y = \sin x$ is shown in blue and the curve $y = 1 - \frac{1}{\sqrt{3}} \sin 2x$ is shown in green.



The region lies below the curve $y = \sin x$ and above the curve $y = 1 - \frac{1}{\sqrt{3}} \sin 2x$ with $\frac{\pi}{6} \leq x \leq \frac{\pi}{2}$, so the area is given by

$$\begin{aligned} A &= \int_{\pi/6}^{\pi/2} \sin x - \left(1 - \frac{1}{\sqrt{3}} \sin 2x \right) dx = \int_{\pi/6}^{\pi/2} \sin x + \frac{\sqrt{3}}{3} \sin 2x - 1 dx = \left[-\cos x - \frac{\sqrt{3}}{6} \cos 2x - x \right]_{\pi/6}^{\pi/2} \\ &= \left(0 - \frac{\sqrt{3}}{6}(-1) - \frac{\pi}{2} \right) - \left(-\frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{6} \cdot \frac{1}{2} - \frac{\pi}{6} \right) = \sqrt{3} \left(\frac{1}{6} + \frac{1}{2} + \frac{1}{12} \right) - \pi \left(\frac{1}{2} - \frac{1}{6} \right) = \frac{3\sqrt{3}}{4} - \frac{\pi}{3}. \end{aligned}$$

5: (a) Find $\int \tan^{-1} x \, dx$

Solution: We use trial and error. Let $f(x) = x \tan^{-1} x$. Then $f'(x) = \tan^{-1} x + \frac{x}{1+x^2}$. Let $g(x) = \ln(1+x^2)$. Then $g'(x) = \frac{2x}{1+x^2}$. Thus if we let $F(x) = f(x) - \frac{1}{2}g(x)$ then we have $F'(x) = f'(x) - \frac{1}{2}g'(x) = \tan^{-1} x$. Thus

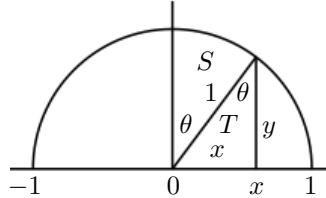
$$\int \tan^{-1} x \, dx = F(x) + c = x \tan^{-1} x - \frac{1}{2} \ln(1+x^2) + c.$$

(b) Find $\int \sqrt{1-x^2} \, dx$

Solution: We use geometry. Let $f(t) = \sqrt{1-t^2}$ and let

$$F(x) = \int_0^x \sqrt{1-t^2} \, dt.$$

By the FTC we know that $F'(x) = f(x) = \sqrt{1-x^2}$. For $0 \leq x \leq 1$, $F(x)$ is equal to the area of the region R which lies under the semicircle $y = \sqrt{1-t^2}$ with $0 \leq t \leq x$. Let θ , x and y be as shown below, note that $\sin \theta = x$ and $y = \sqrt{1-x^2}$, and divide the region R into two regions S and T as shown below.



The area of region S is equal to $\frac{\theta}{2\pi}$ times the area of the entire circle of radius 1, that is $|S| = \frac{1}{2}\theta$. The area of the region T is $|T| = \frac{1}{2}xy$. Thus, for $0 \leq x \leq 1$, we have

$$F(x) = \int_0^x \sqrt{1-t^2} \, dt = |S| + |T| = \frac{1}{2}\theta + \frac{1}{2}xy = \frac{1}{2}\sin^{-1} x + \frac{1}{2}x\sqrt{1-x^2}.$$

For $-1 < x < 1$ we have

$$\begin{aligned} \frac{d}{dx} \left(\frac{1}{2} (\sin^{-1} x + x\sqrt{1-x^2}) \right) &= \frac{1}{2} \left(\frac{1}{\sqrt{1-x^2}} + \sqrt{1-x^2} + x \cdot \frac{-x}{\sqrt{1-x^2}} \right) = \frac{1}{2} \left(\frac{1+(1-x^2)-x^2}{\sqrt{1-x^2}} \right) \\ &= \frac{1-x^2}{\sqrt{1-x^2}} = \sqrt{1-x^2}, \end{aligned}$$

and so

$$\int \sqrt{1-x^2} \, dx = \frac{1}{2} (\sin^{-1} x + x\sqrt{1-x^2}) + c.$$