

MATH 137 Calculus 1, Solutions to Assignment 10

1: (a) Find the function $f(x)$, defined for $x > 0$, such that $f'(x) = \frac{\sqrt{x} + 1}{x^2}$ with $f(1) = 0$.

Solution: We have $f'(x) = \frac{x^{1/2} + 1}{x^2} = x^{-3/2} + x^{-2}$, so

$$f(x) = \int x^{-3/2} + x^{-2} \, dx = -2x^{-1/2} - x^{-1} + c.$$

Since $f(1) = 0$ we have $-2 - 1 + c = 0$ so $c = 3$, and so $f(x) = 3 - 2x^{-1/2} - x^{-1}$.

(b) Find the function $f(x)$ such that $f''(x) = e^x - \sin x$ with $f(0) = 2$ and $f'(0) = 1$.

Solution: Since $f''(x) = e^x - \sin x$ we have

$$f'(x) = \int e^x - \sin x \, dx = e^x + \cos x + c_1.$$

Put in $f'(0) = 1$ to get $1 + 1 + c_1 = 1$ so $c_1 = -1$, and so $f'(x) = e^x + \cos x - 1$. Then we have

$$f(x) = \int e^x + \cos x - 1 \, dx = e^x + \sin x - x + c_2.$$

Put in $f(0) = 2$ to get $1 + c_2 = 2$ so $c_2 = 1$, and so $f(x) = e^x + \sin x - x + 1$.

(c) An object moves along the x -axis with $a(t) = |t - 1| - 1$. Given that $x(t)$ and $v(t)$ are both continuous and $x(0) = 0$ and $v(2) = 0$, find $x(2)$.

Solution: We have

$$a(t) = \begin{cases} -t, & \text{if } t \leq 1 \\ t - 2, & \text{if } t \geq 1 \end{cases}$$

and so

$$v(t) = \begin{cases} -\frac{1}{2}t^2 + b, & \text{if } t \leq 1 \\ \frac{1}{2}t^2 - 2t + c, & \text{if } t \geq 1 \end{cases}$$

for some constants b, c . Since $v(2) = 0$ we have $2 - 4 + c = 0$ and so $c = 2$. Also, since $v(t)$ is continuous at $t = 1$ we must have $-\frac{1}{2} + b = \frac{1}{2} - 2 + 2$ and so $b = 1$. Thus

$$v(t) = \begin{cases} -\frac{1}{2}t^2 + 1, & \text{if } t \leq 1 \\ \frac{1}{2}t^2 - 2t + 2, & \text{if } t \geq 1 \end{cases}$$

Find the antiderivative again to get

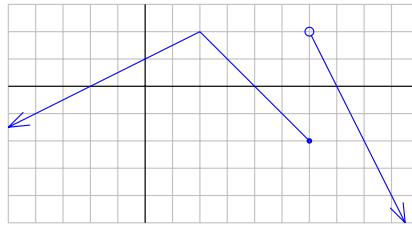
$$x(t) = \begin{cases} -\frac{1}{6}t^3 + t + d, & \text{if } t \leq 1 \\ \frac{1}{6}t^3 - t^2 + 2t + e, & \text{if } t \geq 1 \end{cases}$$

for some d, e . Since $x(0) = 0$ we must have $d = 0$. Also, since $x(t)$ is continuous at $t = 1$ we must have $-\frac{1}{6} + 1 = \frac{1}{6} - 1 + 2 + e$ and so $e = -\frac{1}{3}$. Thus

$$x(t) = \begin{cases} -\frac{1}{6}t^3 + t, & \text{if } t \leq 1 \\ \frac{1}{6}t^3 - t^2 + 2t - \frac{1}{3}, & \text{if } t \geq 1 \end{cases}$$

Finally, we have $x(2) = \frac{8}{6} - 4 + 4 - \frac{1}{3} = 1$.

2: Let $g(x) = \int_0^x f(t) dt$ where $f(t)$ is the function whose graph is shown below. Sketch the graph of $y = g(x)$ showing all intercepts, all local maxima and minima, and all points of inflection.



Solution: By the Fundamental Theorem of Calculus, we know that $g'(x) = f(x)$. When $f(x) > 0$ we have $g'(x) > 0$ so $g(x)$ is increasing and when $f(x) < 0$ we have $g'(x) < 0$ so $g(x)$ is decreasing, and each time $f(x)$ changes sign, $g(x)$ has a local maximum or minimum according to the First Derivative Test. Thus $g(x)$ is decreasing in $(-\infty, -2)$, increasing in $(-2, 4)$, decreasing in $(4, 6)$, increasing in $(6, 7)$, and decreasing in $(7, \infty)$, and $g(x)$ has a local minimum at $x = -2$, a local maximum at $x = 4$, a local minimum at $x = 6$, and a local maximum at $x = 7$. Also, when $f'(x) > 0$ we have $g''(x) > 0$ so $g(x)$ is concave up and when $f'(x) < 0$ we have $g''(x) < 0$ so $g(x)$ is concave down, and each time $f'(x)$ changes sign, $g(x)$ has a point of inflection. Thus $g(x)$ is concave up in $(-\infty, 2)$, concave down in $(2, 6)$, and again concave down in $(6, \infty)$, and $g(x)$ has a point of inflection at $x = 2$. We can find the exact value of $g(x)$ at each of the points of interest $x = -2, 0, 2, 4, 6, 7$ by interpreting the integral $\int_0^x f(t) dt$ as a signed area. For example, $g(2) = \int_0^2 f(t) dt$ is the area under $y = f(x)$ between $x = 0$ and $x = 2$, which is equal to 3, so $g(2) = 3$. As another example, $g(6) = \int_0^6 f(t) dt$ is the area under $y = f(x)$ with $0 \leq x \leq 4$ minus the area over $y = f(x)$ with $4 \leq x \leq 6$, so $g(6) = 5 - 2 = 3$. As a final example, $g(-2) = \int_0^{-2} f(t) dt = -\int_{-2}^0 f(t) dt$, which is the negative of the area under $y = f(x)$ with $-2 \leq x \leq 0$, so $g(-2) = -1$. Alternatively, we can find an explicit formula for $g(x)$ as follows. From the graph of $f(x)$ we can see that

$$f(x) = \begin{cases} 1 + \frac{1}{2}x, & \text{if } x \leq 2 \\ 4 - x, & \text{if } 2 \leq x \leq 6 \\ 14 - 2x, & \text{if } 6 < x. \end{cases}$$

For $x \leq 2$ we have

$$g(x) = \int_0^x f(t) dt = \int_0^x 1 + \frac{1}{2}t dt = \left[t + \frac{1}{4}t^2 \right]_0^x = x + \frac{1}{4}x^2,$$

for $2 \leq x \leq 6$ we have

$$\begin{aligned} g(x) &= \int_0^x f(t) dt = \int_0^2 f(t) dt + \int_2^x f(t) dt = g(2) + \int_2^x 4 - t dt \\ &= (2 + \frac{1}{4} \cdot 2^2) + \left[4t - \frac{1}{2}t^2 \right]_2^x = 3 + (4x - \frac{1}{2}x^2) - (8 - 2) = -3 + 4x - \frac{1}{2}x^2, \end{aligned}$$

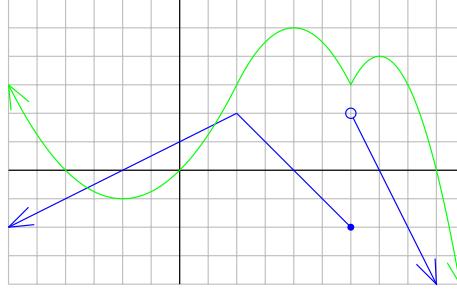
and for $6 \leq x$ we have

$$\begin{aligned} g(x) &= \int_0^x f(t) dt = \int_0^6 f(t) dt + \int_6^x f(t) dt = g(6) + \int_6^x 14 - 2x dx \\ &= (-3 + 4 \cdot 6 - \frac{1}{2} \cdot 6^2) + \left[14t - t^2 \right]_6^x = 3 + (14x - x^2) - (4 \cdot 6 - 6^2) = -45 + 14x - x^2. \end{aligned}$$

Thus we have

$$g(x) = \begin{cases} x + \frac{1}{4}x^2, & \text{if } x \leq 2 \\ -3 + 4x - \frac{1}{2}x^2, & \text{if } 2 \leq x \leq 6 \\ -45 + 14x - x^2, & \text{if } 6 \leq x \end{cases}$$

The graph of $y = g(x)$ is shown in green on the next page.



3: (a) Let $f(x) = \frac{8x}{2^{3x}}$. Approximate the integral $\int_0^2 f(x) dx$ using the Riemann sum for $f(x)$ which uses the right endpoints of 6 equal-sized subintervals.

Solution: The six intervals are of size $\Delta x = \frac{2-0}{6} = \frac{1}{3}$ and the right endpoints are the points $x_i = 0 + i \Delta x = \frac{i}{3}$, that is the points $\frac{1}{3}, \frac{2}{3}, 1, \frac{4}{3}, \frac{5}{3}$ and 2. We have

$$\begin{aligned}
 \sum_{i=1}^n f(x_i) \Delta x &= (f\left(\frac{1}{3}\right) + f\left(\frac{2}{3}\right) + f(1) + f\left(\frac{4}{3}\right) + f\left(\frac{5}{3}\right) + f(2)) \left(\frac{1}{3}\right) \\
 &= \left(\frac{8 \cdot 1}{3 \cdot 2} + \frac{8 \cdot 2}{3 \cdot 4} + \frac{8 \cdot 3}{3 \cdot 8} + \frac{8 \cdot 4}{3 \cdot 16} + \frac{8 \cdot 5}{3 \cdot 32} + \frac{8 \cdot 6}{3 \cdot 64}\right) \left(\frac{1}{3}\right) \\
 &= \left(\frac{4}{3} + \frac{4}{3} + \frac{3}{3} + \frac{2}{3} + \frac{5}{12} + \frac{3}{12}\right) \left(\frac{1}{3}\right) \\
 &= \left(\frac{15}{3}\right) \left(\frac{1}{3}\right) \\
 &= \frac{5}{3}.
 \end{aligned}$$

We remark that it can be shown, using methods that you will learn in Calculus II, that the exact value of the integral is

$$\int_0^2 f(x) dx = \frac{21-2 \ln 2}{24(\ln 2)^2}.$$

(b) Let $f(x) = \frac{1}{x}$. Approximate the integral $\int_{1/5}^{13/5} f(x) dx$ using the Riemann sum for $f(x)$ which uses the midpoints of 6 equal-sized subintervals.

Solution: Let $f(x) = \frac{1}{x}$. We divide $[\frac{1}{5}, \frac{13}{5}]$ into 6 equal intervals using $\Delta x = \frac{b-a}{n} = \frac{\frac{13}{5} - \frac{1}{5}}{6} = \frac{2}{5}$. The endpoints of these intervals are given by $x_i = a + \frac{b-a}{n} i = \frac{1}{5} + \frac{2}{5} i$ so that $x_0, x_1, x_2, \dots, x_6 = \frac{1}{5}, \frac{3}{5}, \frac{5}{5}, \dots, \frac{13}{5}$.

The midpoints are $c_i = \frac{x_i + x_{i-1}}{2}$ so that $c_1, c_2, c_3, \dots, c_6 = \frac{2}{5}, \frac{4}{5}, \frac{6}{5}, \dots, \frac{12}{5}$. We have

$$\begin{aligned}
 \int_{1/5}^{13/5} f(x) dx &\cong \sum_{i=1}^6 f(c_i) \Delta x = (f(c_1) + f(c_2) + \dots + f(c_6)) \left(\frac{2}{5}\right) = \frac{2}{5} (f\left(\frac{2}{5}\right) + f\left(\frac{4}{5}\right) + \dots + f\left(\frac{12}{5}\right)) \\
 &= \frac{2}{5} \left(\frac{5}{2} + \frac{5}{4} + \frac{5}{6} + \dots + \frac{5}{12}\right) = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} = \frac{60+30+20+15+12+10}{60} = \frac{147}{60}.
 \end{aligned}$$

We remark that, by the FTC, the exact value of this integral is

$$\int_{1/5}^{13/5} \frac{dx}{x} = \left[\ln x \right]_{1/5}^{13/5} = \ln \frac{13}{5} - \ln \frac{1}{5} = \ln 13,$$

so the above approximation shows that $\ln 13 \cong \frac{147}{60}$.

4: (a) Evaluate $\int_1^3 x^3 - 3x \, dx$ by finding a limit of Riemann sums.

Solution: Let $f(x) = x^3 - 3x$, $a = 1$, $b = 3$, $\Delta x = \frac{b-a}{n} = \frac{2}{n}$, and $x_i = a + \frac{b-a}{n} i = 1 + \frac{2}{n} i$. Then

$$\begin{aligned}
\int_1^3 x^3 - 3x \, dx &= \lim_{n \rightarrow \infty} \sum_{i=1}^n f(x_i) \Delta x \\
&= \lim_{n \rightarrow \infty} \sum_{i=1}^n f\left(1 + \frac{2}{n} i\right) \left(\frac{2}{n}\right) \\
&= \lim_{n \rightarrow \infty} \sum_{i=1}^n \left(\left(1 + \frac{2}{n} i\right)^3 - 3\left(1 + \frac{2}{n} i\right) \right) \left(\frac{2}{n}\right) \\
&= \lim_{n \rightarrow \infty} \sum_{i=1}^n \left(\left(1 + \frac{6}{n} i + \frac{12}{n^2} i^2 + \frac{8}{n^3} i^3\right) - 3\left(1 + \frac{2}{n} i\right) \right) \left(\frac{2}{n}\right) \\
&= \lim_{n \rightarrow \infty} \sum_{i=1}^n \left(-2 + \frac{12}{n^2} i^2 + \frac{8}{n^3} i^3 \right) \left(\frac{2}{n}\right) \\
&= \lim_{n \rightarrow \infty} \sum_{i=1}^n \left(-\frac{4}{n} + \frac{24}{n^3} i^2 + \frac{16}{n^4} i^3 \right) \\
&= \lim_{n \rightarrow \infty} \left(-\frac{4}{n} \sum_{i=1}^n 1 + \frac{24}{n^3} \sum_{i=1}^n i^2 + \frac{16}{n^4} \sum_{i=1}^n i^3 \right) \\
&= \lim_{n \rightarrow \infty} \left(-\frac{4}{n} n + \frac{24}{n^3} \frac{n(n+\frac{1}{2})(n+1)}{3} + \frac{16}{n^4} \frac{n^2(n+1)^2}{4} \right) \\
&= -4 + \frac{24}{3} + \frac{16}{4} \\
&= 8
\end{aligned}$$

(b) Evaluate $\int_0^1 e^x \, dx$ by finding a limit of Riemann sums.

Solution: Let $f(x) = e^x$ and use $a = 0$, $b = 1$, $\Delta x = \frac{b-a}{n} = \frac{1}{n}$ and $x_i = a + \frac{b-a}{n} i = \frac{i}{n}$. Then

$$\int_0^1 e^x \, dx = \lim_{n \rightarrow \infty} \sum_{i=1}^n f(x_i) \Delta x = \lim_{n \rightarrow \infty} \sum_{i=1}^n e^{i/n} \cdot \frac{1}{n} = \lim_{n \rightarrow \infty} \frac{1}{n} \cdot \sum_{i=1}^n (e^{1/n})^i = \lim_{n \rightarrow \infty} \frac{1}{n} \cdot \frac{(e^{1/n})^{n+1} - e^{1/n}}{e^{1/n} - 1}$$

where, at the last step, we used the formula $\sum_{i=1}^n r^i = \frac{r^{n+1} - r}{r - 1}$ for the sum of a geometric series. We have

$$\lim_{n \rightarrow \infty} (e^{1/n})^{n+1} = \lim_{n \rightarrow \infty} e^{(n+1)/n} = e^1, \text{ and } \lim_{n \rightarrow \infty} e^{1/n} = e^0 = 1$$

and by replacing $\frac{1}{n}$ by x and then using l'Hôpital's Rule, we have

$$\lim_{n \rightarrow \infty} n(e^{1/n} - 1) = \lim_{n \rightarrow \infty} \frac{e^{1/n} - 1}{1/n} = \lim_{x \rightarrow 0^+} \frac{e^x - 1}{x} = \lim_{x \rightarrow 0^+} \frac{e^x}{1} = e^0 = 1.$$

and so

$$\int_0^1 e^x \, dx = \lim_{n \rightarrow \infty} \frac{(e^{1/n})^{n+1} - e^{1/n}}{n(e^{1/n} - 1)} = \frac{e - 1}{1} = e - 1.$$

5: (a) Find $\lim_{n \rightarrow \infty} \sum_{k=1}^n \frac{1}{n+k}$.

Solution: Let $f(x) = \frac{1}{1+x}$ and let X_n be the partition of $[0, 1]$ into n equal-sized subintervals so $x_{n,i} = \frac{i}{n}$ and $\Delta_{n,i}x = \frac{1}{n}$. Then by the FTC we have

$$\lim_{n \rightarrow \infty} \sum_{i=1}^n \frac{1}{n+i} = \lim_{n \rightarrow \infty} \sum_{i=1}^n \frac{1}{1+\frac{i}{n}} \cdot \frac{1}{n} = \lim_{n \rightarrow \infty} \sum_{i=1}^n f(x_{n,i}) \Delta_{n,i}x = \int_0^1 \frac{dx}{1+x} = \left[\ln(1+x) \right]_0^1 = \ln 2.$$

(b) Find $g'(1)$ where $g(x) = \int_{3x-3}^{x^2+1} \sqrt{1+t^3} dt$.

Solution: Let $u(x) = x^2 + 1$ and let $v(x) = 3x - 3$. Also, let $f(t) = \sqrt{1+t^3}$ and let $F(u) = \int_0^u \sqrt{1+t^3} dt$ so that $F'(u) = f(u)$, by the FTC. Then

$$g(x) = \int_{3x-3}^{x^2+1} \sqrt{1+t^3} dt = \int_0^{x^2+1} \sqrt{1+t^3} dt - \int_0^{3x-3} \sqrt{1+t^3} dt = F(u(x)) - F(v(x))$$

and so $g'(x) = F'(u(x))u'(x) - F'(v(x))v'(x) = f(u(x))(2x) - f(v(x))(3) = 2x f(x^2 + 1) - 3 f(3x - 3)$. Put in $x = 1$ to get $g'(1) = 2f(2) - 3f(0) = 2\sqrt{1+8} - 3\sqrt{1+0} = 6 - 3 = 3$.