
MATH 135 Algebra, Solutions to Term Test 2

[5] 1: (a) Find all pairs of integers x and y such that 72x− 51y = 24.

Solution: The Euclidean Algorithm gives

72 = 1 · 51 + 21 , 51 = 2 · 21 + 9 , 21 = 2 · 9 + 3 , 3 = 3 · 3 + 0

so we have gcd(72, 51) = 3, then Back-Substitution gives

1 , −2 , 5 , −7

so we have (72)(5)− (51)(7) = 3. Multiply both sides by 24
3 = 8 to get (72)(40)− (51)(56) = 24. Thus one

solution is (x, y) = (40, 56). Note that 72
3 = 24 and 51

3 = 17 and so by the Linear Diophantine Equation
Theorem, the general solution is

(x, y) = (40, 56) + k(17, 24) , k ∈ Z .

[2] (b) Find all integers c with 0 ≤ c ≤ 30 for which there exist integers x and y such that 35x + 56y = c.

Solution: By the Linear Diophantine Equation Theorem, there exist integers x and y such that 35x+56y = c
if and only if gcd(35, 56)

∣∣c. By inspection, gcd(35, 56) = 7, so the possible values of c are 0, 7, 14, 21 and 28.

[3] (c) Find the number of pairs of positive integers x and y such that 12x + 18y = 300.

Solution: Divide both sides of the equation 12x + 18y = 300 by 6 to get 2x + 3y = 50. By inspection,
(x, y) = (25, 0) is one solution, and by the Linear Diophantine Equation Theorem, the general solution is

(x, y) = (25, 0) + k(3,−2) , k ∈ Z .

We have x > 0 =⇒ 25 + 3k > 0 =⇒ 3k > −25 =⇒ k > − 25
3 =⇒ k ≥ −8 and y > 0 =⇒ −2k > 0 =⇒ k ≤ −1.

Thus we need −8 ≤ k ≤ −1, so there are exactly 8 positive solutions.
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[3] 2: (a) Let a = 10! and b = 603. Find the prime factorizations of gcd(a, b) and lcm(a, b).

Solution: We have 10! = (10)(9)(8)(7)(6)(5)(4)(3)(2) = (2 · 5)(32)(23)(7)(2 · 3)(5)(22)(3)(2) = 28 · 34 · 52 · 71

and 603 = (22 · 3 · 5)3 = 26 · 33 · 53, and so

gcd(10!, 603) = 26 · 33 · 52

lcm(10!, 603) = 28 · 34 · 53 · 71 .

[3] (b) Determine the number of positive integers n such that n
∣∣36000 and 36000

∣∣n2.

Solution: Note that 36000 = 25 · 32 · 53. In order to have n
∣∣36000 we must have n = 2i · 3j · 5k for some

i, j, k with 0 ≤ i ≤ 5, 0 ≤ j ≤ 2 and 0 ≤ k ≤ 3. Then we have n2 = 22i · 32j · 52k, and so in order to have
36000

∣∣n2 we need 5 ≤ 2i, 2 ≤ 2j and 3 ≤ 2k, that is i ≥ 3, j ≥ 1 and k ≥ 2. Thus i ∈ {3, 4, 5}, j ∈ {1, 2},
and k ∈ {2, 3}. Since there are 3 choices for i, 2 choices for j and 2 choices for k, there are 3 · 2 · 2 = 12 such
integers n.

[3] (c) Show that for all positive integers a and b, if a3
∣∣b2 then a

∣∣b.
Solution: Let a and b be positive integers. Write a = p1

k1p2
k2 · · · pm

km and b = p1
l1p2

l2 · · · pm
lm where the

pi are distinct primes and ki, li ≥ 0 for all i. Suppose that a3
∣∣b2. Note that a3 = p1

3k1p2
3k2 · · · pm

3km and
b2 = p1

2l1p2
2l2 · · · pm

2lm , so we must have 3ki ≤ 2li for all i, and hence ki ≤ 2
3 li ≤ li for all i. Thus a

∣∣b.
[1] (d) Show that there exist positive integers a and b such that a2

∣∣b3 but a6
∣∣ b.

Solution: Let a = 8 and b = 4. Then a2 = 64 = b3 so a2
∣∣b3 but a6

∣∣ b.
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[2] 3: (a) Find the smallest integer n with n ≥ 100 such that n ≡ 12 (mod 17).

Solution: We have n ≡ 12 (mod 17) ⇐⇒ n ∈ {· · · ,−5, 12, 29, 46, 63, 80, 97, 114, · · ·}, so the smallest such
value is n = 114.

[2] (b) If a clock now reads 7:00 pm, then what time did it read 500 hours ago?

Solution: Note that 500 = 20 · 24 + 20 so −500 ≡ −20 ≡ 4 (mod 24). Thus 500 hours ago, the clock read the
same time that it read 20 hours ago, that is the same time that it will read in 4 hours, namely 11:00 pm.

[3] (c) Let n = 4, 001, 005, 003, 002. Find all primes p with 1 < p < 12 such that p
∣∣n.

Solution: Since the final digit is 2, we have 2
∣∣n and 56

∣∣n. Since the sum of the digits is 4 + 1 + 5 + 3 + 2 = 15
we have 3

∣∣n. Since the alternating sum of blocks of 3 digits is 4− 1 + 5− 3 + 2 = 7 we have 7
∣∣n and 116

∣∣n
(by the result of Problem 5(c) on Assignment 7).

[3] (d) Show that if n ≡ 4 (mod 7) then n is not equal to the sum of two cubes.

Solution: We make a table of powers modulo 7.

x 0 1 2 3 4 5 6
x2 0 1 4 2 2 4 1
x3 0 1 1 6 1 6 6

We see that for all integers x, we have x3 ≡ 0 or ± 1 (mod 7). Similarly, for every integer y, we have
y3 ≡ 0 or ± 1 (mod 7). Thus for all x and y we have

x3 + y3 ≡ 0 + 0, 0 + 1, 0− 1, 1 + 0, 1 + 1, 1− 1,−1 + 0,−1 + 1 or − 1− 1 (mod 7) ,

that is x3+y3 ≡ 0,±1 or ±2 (mod 7). Thus if n is a sum of two cubes we must have n ≡ 0,±1 or ±2 (mod 7),
so we cannot have n ≡ 4 (mod 7).
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[2] 4: (a) Define what it means for an integer p to be prime.

Solution: An integer p is prime when p > 1 and p has exactly two positive divisors (namely 1 and p).

[3] (b) State Fermat’s Little Theorem.

Solution: Fermat’s Little Theorem states that for all integers p and a, if p is a prime which does not divide
a, then we have ap−1 ≡ 1 (mod p).

[5] (c) Prove Euclid’s Theorem, which states that there are infinitely many primes.

Solution: Suppose, for a contradiction, that there are only finitely many primes. Let p1, p2, · · · , pl be a list
of all of the primes. Let n = p1p2 · · · pl + 1. Note that none of the primes pi is a factor of n, because when
n is divided by pi the remainder is 1, not 0. This contradicts the fact that every integer n > 1 is either a
prime or a product of primes (and hence must have a prime factor).
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[5] 5: (a) Find every element x ∈ Z175 such that [77]x = [84].

Solution: To solve the related congruence 77x ≡ 84 (mod 175) for x ∈ Z, we consider the diophantine
equation 77x + 175y = 84. The Euclidean Algorithm gives

175 = 2 · 77 + 21 , 77 = 3 · 21 + 14 , 21 = 1 · 14 + 7 , 14 = 2 · 7 + 0

so we have gcd(77, 175) = 7. Then Back-Substitution gives

1 , −1 , 4 , −9

so we have (77)(−9)+(175)(4) = 7. Multiply both sides by 84
7 = 12 to get (77)(−108)+(175)(48) = 84. Thus

one solution to the congruence is x = −108. Note that 175
7 = 25, so by the Linear Congruence Theorem, the

general solution to the congruence is x ≡ −108 ≡ 17 (mod 25). Thus for x ∈ Z175 we have [77]x = [84] when

x = [17], [42], [67], [92], [117], [142] or [167]

[5] (b) Find the remainder when 5050
50

is divided by 13.

Solution: We have 50 ≡ 11 ≡ −2 (mod 13), so 505050 ≡ (−2)50
50

(mod 13). By Fermat’s Little Theorem,
the list of powers of (−2) modulo 13 repeats every 12 terms, so we wish to find 5050 (mod 12). We have
50 ≡ 2 (mod 12), so 5050 ≡ 250 (mod 12). We make a list of powers of 2 modulo 12.

k 0 1 2 3 4
2k 1 2 4 8 4

We see that the list repeats every two terms beginning with 22. We have 50 ≡ 0 ≡ 2 (mod 2) and so
250 ≡ 22 ≡ 4 (mod 12). Thus

505050
≡ (−2)50

50
≡ (−2)2

50
≡ (−2)4 ≡ 16 ≡ 3 (mod 13).
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