MATH 135 Algebra, Solutions to Term Test 2

: (a) Find all pairs of integers = and y such that 72z — 51y = 24.

Solution: The Euclidean Algorithm gives
72=1-514+21, 51=2-214+9, 21=2-9+3, 3=3-3+0
so we have ged(72,51) = 3, then Back-Substitution gives
1, =2, 5, =7

so we have (72)(5) — (51)(7) = 3. Multiply both sides by 2! = 8 to get (72)(40) — (51)(56) = 24. Thus one
solution is (z,y) = (40,56). Note that Z2 = 24 and 3' = 17 and so by the Linear Diophantine Equation
Theorem, the general solution is

(z,y) = (40,56) + k(17,24) , k€ Z.

(b) Find all integers ¢ with 0 < ¢ < 30 for which there exist integers x and y such that 35z + 56y = c.

Solution: By the Linear Diophantine Equation Theorem, there exist integers x and y such that 35z +56y = ¢
if and only if ged(35, 56)|c. By inspection, ged(35,56) = 7, so the possible values of ¢ are 0, 7, 14, 21 and 28.

(¢) Find the number of pairs of positive integers x and y such that 12z + 18y = 300.

Solution: Divide both sides of the equation 12z + 18y = 300 by 6 to get 2z + 3y = 50. By inspection,
(x,y) = (25,0) is one solution, and by the Linear Diophantine Equation Theorem, the general solution is

(z,y) = (25,0) + k(3,-2), keZ.

Wehavex>0:>25+3k>0:>3k>725:>k>7%:>k278andy>0:>72k>0:>k§71.
Thus we need —8 < k < —1, so there are exactly 8 positive solutions.
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2: (a) Let a = 10! and b = 60°. Find the prime factorizations of gcd(a, b) and lem(a,b).
)

Solution: We have 10! = (10)(9)(8)(7)(6)(5)(4)(3)(2) = (2 - 5)(3%)(2%)(7)(2 - 3)(5)(22)(3)(2) = 2° - 3% . 52 . 7!
and 603 = (22-3-5)3 = 26.33 .53, and so

ged(10!,603) = 26 . 33 . 52
lem(10!,60%) = 28 .3%. 53 . 71,

(b) Determine the number of positive integers n such that n|36000 and 36000|n2.

Solution: Note that 36000 = 2° - 32 - 53. In order to have n|36000 we must have n = 2¢- 37 - 5% for some
1,7,k with 0 <7 <5, 0<j<2and 0 <k <3. Then we have n? =22 .3%. 52k, and so in order to have
36000’712 we need 5 < 2i, 2 < 25 and 3 < 2k, that is4 > 3, j > 1 and k > 2. Thus i € {3,4,5}, j € {1,2},
and k € {2,3}. Since there are 3 choices for ¢, 2 choices for j and 2 choices for k, there are 3-2-2 = 12 such
integers n.

(c) Show that for all positive integers a and b, if a®|b* then alb.

Solution: Let a and b be positive integers. Write a = pi*1po*2 - - p,,*» and b = p;lipy!2 -+ p,,'m where the
g

p; are distinct primes and k;,l; > 0 for all i. Suppose that a3|b2. Note that a® = p;3*1py3k2 ... p, 3Fm and

b2 = p12llp22l2 ~~-pm21"", so we must have 3k; < 2[; for all i, and hence k; < %li < [; for all 7. Thus alb.

(d) Show that there exist positive integers a and b such that a2’b3 but a /f b.
Solution: Let a = 8 and b = 4. Then a? = 64 = b> so a2’b3 but a/fb.
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3: (a) Find the smallest integer n with n > 100 such that n = 12 (mod 17).

Solution: We have n = 12 (mod 17) <= n € {---,-5,12,29,46,63,80,97,114, - - -}, so the smallest such
value is n = 114.

(b) If a clock now reads 7:00 pm, then what time did it read 500 hours ago?

Solution: Note that 500 = 20 -24 + 20 so —500 = —20 = 4 (mod 24). Thus 500 hours ago, the clock read the
same time that it read 20 hours ago, that is the same time that it will read in 4 hours, namely 11:00 pm.

(c) Let n = 4,001, 005,003,002. Find all primes p with 1 < p < 12 such that p|n.

Solution: Since the final digit is 2, we have 2’71 and 5/fn. Since the sum of the digitsis44+14+54+3+2 =15
we have 3}n. Since the alternating sum of blocks of 3 digits is 4 —1+5 — 3+ 2 = 7 we have 7|n and 11){n
(by the result of Problem 5(c) on Assignment 7).

(d) Show that if n =4 (mod 7) then n is not equal to the sum of two cubes.

Solution: We make a table of powers modulo 7.

x 0 1 2 3 4 5 6
22 01 4 2 2 41
22 01 1 6 1 6 6
We see that for all integers x, we have 2> = 0 or 4+ 1 (mod 7). Similarly, for every integer y, we have

y>=0or £1 (mod 7). Thus for all z and y we have
PP =040,041,0-1,140,1+1,1-1,-140,—1+1or —1—1 (mod7),

that is 3 +y% = 0,41 or 2 (mod 7). Thus if n is a sum of two cubes we must have n = 0, £1 or £2 (mod 7),
so we cannot have n = 4 (mod 7).



2] 4: (a) Define what it means for an integer p to be prime.
Solution: An integer p is prime when p > 1 and p has exactly two positive divisors (namely 1 and p).
3] (b) State Fermat’s Little Theorem.

Solution: Fermat’s Little Theorem states that for all integers p and a, if p is a prime which does not divide
a, then we have a?~1 =1 (mod p).

[5] (¢) Prove Euclid’s Theorem, which states that there are infinitely many primes.
Solution: Suppose, for a contradiction, that there are only finitely many primes. Let py,po,---,p; be a list
of all of the primes. Let n = pyps---p; + 1. Note that none of the primes p; is a factor of n, because when

n is divided by p; the remainder is 1, not 0. This contradicts the fact that every integer n > 1 is either a
prime or a product of primes (and hence must have a prime factor).
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5: (a) Find every element x € Zq75 such that [77]x = [84].

Solution: To solve the related congruence 77x = 84 (mod 175) for © € Z, we consider the diophantine
equation 77x + 175y = 84. The Euclidean Algorithm gives

175=2-77+21, TT=3-21+14, 21=1-14+7, 14=2-740
so we have ged(77,175) = 7. Then Back-Substitution gives

1, —1, 4, -9
so we have (77)(—9)+(175)(4) = 7. Multiply both sides by & = 12 to get (77)(—108)+(175)(48) = 84. Thus
one solution to the congruence is x = —108. Note that % = 25, so by the Linear Congruence Theorem, the
general solution to the congruence is z = —108 = 17 (mod 25). Thus for x € Z175 we have [77]x = [84] when

@ = [17], [42], [67], [92], [117], [142] or [167]

50
(b) Find the remainder when 50 is divided by 13.

Solution: We have 50 = 11 = —2 (mod 13), so 50%0% = (—2)5050 (mod 13). By Fermat’s Little Theorem,
the list of powers of (—2) modulo 13 repeats every 12 terms, so we wish to find 50°° (mod 12). We have
50 = 2 (mod 12), so 50°° = 2°0 (mod 12). We make a list of powers of 2 modulo 12.

E 01 2 3 4
2 1 2 4 8 4

We see that the list repeats every two terms beginning with 22. We have 50 = 0 = 2 (mod 2) and so
250 =22 = 4 (mod 12). Thus

250

500" = (—2)50" = (=2)2" = (-2)* = 16 = 3 (mod 13).



