MATH 135 Algebra, Solutions to Term Test 1

: Recall that the symbols =, A, V, — and « are alternate notations for the connectives NOT, AND, OR, =,

and <=, respectively.

(a) Determine whether P < (Q — —P) is equivalent to =(P — Q).
Solution: We make a truth table.

T T F F F T F
T F F T T F T
F T T T F T F
F F T T F T F

The given two statements are equivalent, because their truth table columns are identical.

(b) Express the statement “x is the greatest integer such that 2z < y”, taking the universe of discourse to
be Z, and using only symbols from the following list:

—|,/\,\/,—>,<—>,(,),v,3,0,1,+7X,:,<,§,.’E,y,z

Solution: Here are two ways to express the given statement symbolically.
r+r<yAVz(z+2z2<y — z<ux)
r+r=yVeoert+tr=y+1

(c) Determine whether the statement “Va 2 < 2 xz” is true when the universe of discourse is Z and whether
it is true when the universe of discourse is R.

Solution: For all z € R (and for all z € Z) we have
x§x2<:>$2—x20<:>x(x—l)20<:>x§00rx21.

Thus the statement is true in Z (since for every x € Z we have x < 0 or « > 1) but false in R (for example,
when 2 = 1 we have 2 > 2?).



[5] 2: (a) Let ag = 0 and a; = 1, and for n > 2 let a,, = 5a,,—1 — 6a,_o. Show that a, = 3™ — 2™ for all n > 0.
Solution: We claim that a,, = 3™ — 2™ for all n > 0. When n = 0 we have a,, = ¢y = 0 and 3™ — 2" =
30 -20=1-1=0, and when n = 1 we have a, = a; = 1 and 3" — 2" = 3! —2! =3 — 2 =1, so the claim
is true when n = 0 and when n = 1. Let k£ > 2 and suppose the claim is true when n = k — 1 and when
n = k — 2, that is suppose that
ap—1 = 3F1 —2F 1 and a_o = 3F"2 — 2F2,
Then when n = k we have
ap = ap = Sa_1 — 6ag_o
— 5(3k71 _ 2/(771) _ 6(3]@72 _ 2k72)
=15-3"2-6.32 10282 + 6. 22
=9.3"% 4.2
:3k_2]€:377/_277,7
so the claim is true when n = k. By Strong Mathematical Induction, the claim is true for all n > 0.

n(n+1)

[5] (b) Show that zn:(—ui 2 = (=1)" for all n > 0.

=0

Solution: We claim that Z(fl)i i =(-1)" % for all n > 0. When n = 0 we have

i=0
S = (-1 = (-1)°0*=1-0=0, and (—1)" 25D = (—1)0 %L = 1.0 =0
i=0 i=0
so the claim is true when n = 0. Let k£ > 0 and suppose the claim is true when n = k, that is suppose
k
z:(—l)Z 2= (-1 MEED | Then when n = k + 1 we have
=0
n . k+1 ) k .
D (-1 = Z(—w 2= (1) + (=) (kR + 1)
i=0 =0 i=0

+1)

+ (=1)* (k4 1)?
1)kt ((k+ 1) M)

1)k k
)
DFA (k1) (k41— &)
)
)

k+2—k
1+ 1) (i)
1 k+1 k+1)(k+2) _ (_l)n n(n+1)

)

= (=
(=
(=
(=
(=
y

so the claim is true when n = k + 1. By Mathematical Induction, the claim is true for all n > 0.



[5]

3: (a) Find the term involving #* in the expansion of (22 + ﬁ)g.

Solution: The ' term in the expansion (counting the term () (%)% as the 0" term) is

(e @y = (§) iz g (§) s
1 ) 7

The term involving 2! occurs when 16 — 3i = 1, that is when ¢ = 5. The 5" term is

1 (8 pl— 1 87654, _
2 \5 — 25 "54321v T

x.

IS

n

2 1
(b) Evaluate the sum Z ( n+ ) for all n > 0. (Prove that your answer is correct).
i
i=0
Solution: Notice that the odd-numbered rows in Pascal’s Triangle (counting the top 1 as the 0" row) have
an even number of terms, and the given sum is the sum of the first half of the terms in row 2n 4+ 1. By
symmetry, this is the same as one half of the sum of all the terms in row 2n + 1. By the Binomial Theorem,
the sum of all these terms is equal to (1 + 1)2"+! = 2271 Thus the given sum is equal to 227,
n

We repeat the above proof, formally. Write S,, = Z (D) = () () () e (P

K2 n

2n

i=0
Recall that (’Z) = (mrfk>, so we also have S,, = @ZE) + <2n+1) + (321%) +oot (%:ff) . Adding these
two expressions for .S, then using the Binomial Theorem gives

290 = () + () 4k (2ot () 4 (350) + (Both) = (ke = e

n

Thus S, = 22". (It is also possible to prove this result using induction).
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[3]

4: (a) Define the statement “a divides b”, for integers a and b.

Solution: The statement “a divides b” means that b = ka for some integer k.

(b) State the Division Algorithm.

Solution: The Division Algorithm states that for all integers ¢ and b with b > 0, there exist unique integers
qand r with a =¢gb+rand 0 <r <b.

(¢) Prove Proposition 2.21 from the text, which states that for all integers a, b, ¢ and r,

if a = gb + r then ged(a, b) = ged(b, ).

Solution: Let a,b,q,r € Z. Suppose that a = ¢b + r. Let d = ged(a, b) and let e = ged(b, 7). We must show
that d = e. Note that since a = ¢gb+r we havea = b =0 <= b =r = 0, and in this case d = 0 = e. Suppose
that a and b are not both zero (hence b and r are not both zero). We have

d = ged(a,b) = (d|a and d|b) = d|(ax + by) for all z,y = d|(a — gb) => d|r.

Since d is a common divisor of b and r (and e is the greatest common divisor of b and r) we must have d < e.
On the other hand,

e = ged(b,r) = (e|b and e|r) = e|(bz + ry) for all z,y = e|(gb+ 1) => ela.

Since e is a common divisor of a and b (and d is the greatest common divisor of @ and b) we must have e < d.



[5]

5: (a) Let a =231 and b = 182. Find integers s and ¢ such that as + bt = d, where d = ged(a, b).

Solution: The Euclidean Algorithm gives
231=1-182+49, 182=3-49+35, 49=1-35+14, 35=2-14+7, 14=2-7T+0

so we have d = 7. Back-Substitution then gives rise to the sequence

1, =2, 3, —11, 14,
so we can take s = —11 and t = 14.
Alternatively, the Extended Euclidean Algorithm gives rise to the table
0 1 231
1 0 182
-1 1 49
4 -3 35
-5 4 14
14 -11 7
so we can take s = —11 and t = 14.

(b) Prove that for all integers a, b and ¢, if a|c and b|c and gcd(a, b) = d then abcd.

Solution: Let a,b,c € Z. Suppose that a’c and b|c and ged(a,b) = d. Since a|c and b‘c we can choose
integers k and [ so that ¢ = ak and ¢ = bl. Since d = ged(a,b) we can use the Euclidean Algorithm with
Back-Substitution to find integers s and ¢ such that as + bt = d. Then we have

as + bt = d = cas + cbt = cd = blas + akbt = cd = ab(ls + kt) = cd = ab|cd .



