
MATH 135 Algebra, Solutions to Term Test 1

1: Recall that the symbols ¬, ∧, ∨, → and↔ are alternate notations for the connectives NOT, AND, OR, =⇒,
and ⇐⇒, respectively.

[4] (a) Determine whether P ↔ (Q→ ¬P ) is equivalent to ¬(P → Q).

Solution: We make a truth table.
P Q ¬P Q→ ¬P P ↔ (Q→ ¬P ) P → Q ¬(P → Q)
T T F F F T F
T F F T T F T
F T T T F T F
F F T T F T F

The given two statements are equivalent, because their truth table columns are identical.

[3] (b) Express the statement “ x is the greatest integer such that 2x ≤ y ”, taking the universe of discourse to
be Z, and using only symbols from the following list:

¬ , ∧ , ∨ , → , ↔ , ( , ) , ∀ , ∃ , 0 , 1 , + , × , = , < , ≤ , x , y , z

Solution: Here are two ways to express the given statement symbolically.

x + x ≤ y ∧ ∀z (z + z ≤ y → z ≤ x)
x + x = y ∨ x + x = y + 1

[3] (c) Determine whether the statement “ ∀x x ≤ x×x ” is true when the universe of discourse is Z and whether
it is true when the universe of discourse is R.

Solution: For all x ∈ R (and for all x ∈ Z) we have

x ≤ x2 ⇐⇒ x2 − x ≥ 0⇐⇒ x(x− 1) ≥ 0⇐⇒ x ≤ 0 or x ≥ 1 .

Thus the statement is true in Z (since for every x ∈ Z we have x ≤ 0 or x ≥ 1) but false in R (for example,
when x = 1

2 we have x > x2).
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[5] 2: (a) Let a0 = 0 and a1 = 1, and for n ≥ 2 let an = 5an−1 − 6an−2. Show that an = 3n − 2n for all n ≥ 0.

Solution: We claim that an = 3n − 2n for all n ≥ 0. When n = 0 we have an = a0 = 0 and 3n − 2n =
30 − 20 = 1− 1 = 0, and when n = 1 we have an = a1 = 1 and 3n − 2n = 31 − 21 = 3− 2 = 1, so the claim
is true when n = 0 and when n = 1. Let k ≥ 2 and suppose the claim is true when n = k − 1 and when
n = k − 2, that is suppose that

ak−1 = 3k−1 − 2k−1 and ak−2 = 3k−2 − 2k−2 .

Then when n = k we have

an = ak = 5ak−1 − 6ak−2

= 5
(
3k−1 − 2k−1

)
− 6
(
3k−2 − 2k−2

)
= 5 · 3k−1 − 6 · 3k−2 − 5 · 2k−1 + 6 · 2k−2

= 15 · 3k−2 − 6 · 3k−2 − 10 · 2k−2 + 6 · 2k−2

= 9 · 3k−2 − 4 · 2k−2

= 3k − 2k = 3n − 2n ,

so the claim is true when n = k. By Strong Mathematical Induction, the claim is true for all n ≥ 0.

[5] (b) Show that
n∑

i=0

(−1)
i
i2 = (−1)n n (n + 1)

2
for all n ≥ 0.

Solution: We claim that
n∑

i=0

(−1)
i
i2 = (−1)n n (n+1)

2 for all n ≥ 0. When n = 0 we have

n∑
i=0

(−1)i i2 =
0∑

i=0

(−1)i i2 = (−1)0 02 = 1 · 0 = 0 , and (−1)n n(n+1)
2 = (−1)0 0·1

2 = 1 · 0 = 0

so the claim is true when n = 0. Let k ≥ 0 and suppose the claim is true when n = k, that is suppose
k∑

i=0

(−1)i i2 = (−1)k k(k+1)
2 . Then when n = k + 1 we have

n∑
i=0

(−1)i i2 =
k+1∑
i=0

(−1)i i2 =
k∑

i=0

(−1)i i2 + (−1)k+1(k + 1)2

= (−1)k k(k+1)
2 + (−1)k+1(k + 1)2

= (−1)k+1
(

(k + 1)2 − k(k+1)
2

)
= (−1)k+1(k + 1)

(
k + 1− k

2

)
= (−1)k+1(k + 1)

(
2k+2−k

2

)
= (−1)k+1 (k+1)(k+2)

2 = (−1)n n(n+1)
2 ,

so the claim is true when n = k + 1. By Mathematical Induction, the claim is true for all n ≥ 0.
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[5] 3: (a) Find the term involving x1 in the expansion of
(
x2 + 1

2x

)8.

Solution: The ith term in the expansion (counting the term
(

8
0

)
(x2)8 as the 0th term) is(

8
i

)
(x2)8−i ( 1

2x

)i = 1
2i

(
8
i

)
x2(8−i)−i = 1

2i

(
8
i

)
x16−3i .

The term involving x1 occurs when 16− 3i = 1, that is when i = 5. The 5th term is

1
25

(
8
5

)
x1 = 1

25 · 8·7·6·5·4
5·4·3·2·1 x = 7

4 x .

[5] (b) Evaluate the sum
n∑

i=0

(
2n + 1

i

)
for all n ≥ 0. (Prove that your answer is correct).

Solution: Notice that the odd-numbered rows in Pascal’s Triangle (counting the top 1 as the 0th row) have
an even number of terms, and the given sum is the sum of the first half of the terms in row 2n + 1. By
symmetry, this is the same as one half of the sum of all the terms in row 2n + 1. By the Binomial Theorem,
the sum of all these terms is equal to (1 + 1)2n+1 = 22n+1. Thus the given sum is equal to 22n.

We repeat the above proof, formally. Write Sn =
n∑

i=0

(
2n+1

i

)
=
(

2n+1
0

)
+
(

2n+1
1

)
+
(

2n+1
2

)
+· · ·+

(
2n+1

n

)
.

Recall that
(

m
k

)
=
(

m
m−k

)
, so we also have Sn =

(
2n+1
2n+1

)
+
(

2n+1
2n

)
+
(

2n+1
2n−1

)
+ · · ·+

(
2n+1
n+1

)
. Adding these

two expressions for Sn then using the Binomial Theorem gives

2Sn =
(

2n+1
0

)
+
(

2n+1
1

)
+ · · ·+

(
2n+1

n

)
+
(

2n+1
n+1

)
+ · · ·+

(
2n+1
2n

)
+
(

2n+1
2n+1

)
= (1 + 1)2n+1 = 22n+1 .

Thus Sn = 22n. (It is also possible to prove this result using induction).
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[2] 4: (a) Define the statement “a divides b”, for integers a and b.

Solution: The statement “a divides b” means that b = ka for some integer k.

[3] (b) State the Division Algorithm.

Solution: The Division Algorithm states that for all integers a and b with b > 0, there exist unique integers
q and r with a = qb + r and 0 ≤ r < b.

[5] (c) Prove Proposition 2.21 from the text, which states that for all integers a, b, q and r,
if a = qb + r then gcd(a, b) = gcd(b, r).

Solution: Let a, b, q, r ∈ Z. Suppose that a = qb + r. Let d = gcd(a, b) and let e = gcd(b, r). We must show
that d = e. Note that since a = qb+ r we have a = b = 0⇐⇒ b = r = 0, and in this case d = 0 = e. Suppose
that a and b are not both zero (hence b and r are not both zero). We have

d = gcd(a, b) =⇒
(
d
∣∣a and d

∣∣b) =⇒ d
∣∣(ax + by) for all x, y =⇒ d

∣∣(a− qb) =⇒ d
∣∣r .

Since d is a common divisor of b and r (and e is the greatest common divisor of b and r) we must have d ≤ e.
On the other hand,

e = gcd(b, r) =⇒
(
e
∣∣b and e

∣∣r) =⇒ e
∣∣(bx + ry) for all x, y =⇒ e

∣∣(qb + r) =⇒ e
∣∣a .

Since e is a common divisor of a and b (and d is the greatest common divisor of a and b) we must have e ≤ d.
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[5] 5: (a) Let a = 231 and b = 182. Find integers s and t such that as + bt = d, where d = gcd(a, b).

Solution: The Euclidean Algorithm gives

231 = 1 · 182 + 49 , 182 = 3 · 49 + 35 , 49 = 1 · 35 + 14 , 35 = 2 · 14 + 7 , 14 = 2 · 7 + 0

so we have d = 7. Back-Substitution then gives rise to the sequence

1 , −2 , 3 , −11 , 14 ,

so we can take s = −11 and t = 14.
Alternatively, the Extended Euclidean Algorithm gives rise to the table

0 1 231
1 0 182
−1 1 49
4 −3 35
−5 4 14
14 −11 7

so we can take s = −11 and t = 14.

[5] (b) Prove that for all integers a, b and c, if a
∣∣c and b

∣∣c and gcd(a, b) = d then ab
∣∣cd.

Solution: Let a, b, c ∈ Z. Suppose that a
∣∣c and b

∣∣c and gcd(a, b) = d. Since a
∣∣c and b

∣∣c we can choose
integers k and l so that c = ak and c = bl. Since d = gcd(a, b) we can use the Euclidean Algorithm with
Back-Substitution to find integers s and t such that as + bt = d. Then we have

as + bt = d =⇒ cas + cbt = cd =⇒ blas + akbt = cd =⇒ ab(ls + kt) = cd =⇒ ab
∣∣cd .
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