

MATH 135 Algebra, Solutions to Term Test 1

1: Recall that the symbols \neg , \wedge , \vee , \rightarrow and \leftrightarrow are alternate notations for the connectives NOT, AND, OR, \Rightarrow , and \Leftrightarrow , respectively.

[4] (a) Determine whether $P \leftrightarrow (Q \rightarrow \neg P)$ is equivalent to $\neg(P \rightarrow Q)$.

Solution: We make a truth table.

P	Q	$\neg P$	$Q \rightarrow \neg P$	$P \leftrightarrow (Q \rightarrow \neg P)$	$P \rightarrow Q$	$\neg(P \rightarrow Q)$
T	T	F	F	F	T	F
T	F	F	T	T	F	T
F	T	T	T	F	T	F
F	F	T	T	F	T	F

The given two statements are equivalent, because their truth table columns are identical.

[3] (b) Express the statement “ x is the greatest integer such that $2x \leq y$ ”, taking the universe of discourse to be \mathbf{Z} , and using only symbols from the following list:

$$\neg, \wedge, \vee, \rightarrow, \leftrightarrow, (,), \forall, \exists, 0, 1, +, \times, =, <, \leq, x, y, z$$

Solution: Here are two ways to express the given statement symbolically.

$$\begin{aligned} x + x \leq y \wedge \forall z (z + z \leq y \rightarrow z \leq x) \\ x + x = y \vee x + x = y + 1 \end{aligned}$$

[3] (c) Determine whether the statement “ $\forall x x \leq x \times x$ ” is true when the universe of discourse is \mathbf{Z} and whether it is true when the universe of discourse is \mathbf{R} .

Solution: For all $x \in \mathbf{R}$ (and for all $x \in \mathbf{Z}$) we have

$$x \leq x^2 \iff x^2 - x \geq 0 \iff x(x-1) \geq 0 \iff x \leq 0 \text{ or } x \geq 1.$$

Thus the statement is true in \mathbf{Z} (since for every $x \in \mathbf{Z}$ we have $x \leq 0$ or $x \geq 1$) but false in \mathbf{R} (for example, when $x = \frac{1}{2}$ we have $x > x^2$).

[5] **2:** (a) Let $a_0 = 0$ and $a_1 = 1$, and for $n \geq 2$ let $a_n = 5a_{n-1} - 6a_{n-2}$. Show that $a_n = 3^n - 2^n$ for all $n \geq 0$.

Solution: We claim that $a_n = 3^n - 2^n$ for all $n \geq 0$. When $n = 0$ we have $a_n = a_0 = 0$ and $3^n - 2^n = 3^0 - 2^0 = 1 - 1 = 0$, and when $n = 1$ we have $a_n = a_1 = 1$ and $3^n - 2^n = 3^1 - 2^1 = 3 - 2 = 1$, so the claim is true when $n = 0$ and when $n = 1$. Let $k \geq 2$ and suppose the claim is true when $n = k - 1$ and when $n = k - 2$, that is suppose that

$$a_{k-1} = 3^{k-1} - 2^{k-1} \text{ and } a_{k-2} = 3^{k-2} - 2^{k-2}.$$

Then when $n = k$ we have

$$\begin{aligned} a_n &= a_k = 5a_{k-1} - 6a_{k-2} \\ &= 5(3^{k-1} - 2^{k-1}) - 6(3^{k-2} - 2^{k-2}) \\ &= 5 \cdot 3^{k-1} - 6 \cdot 3^{k-2} - 5 \cdot 2^{k-1} + 6 \cdot 2^{k-2} \\ &= 15 \cdot 3^{k-2} - 6 \cdot 3^{k-2} - 10 \cdot 2^{k-2} + 6 \cdot 2^{k-2} \\ &= 9 \cdot 3^{k-2} - 4 \cdot 2^{k-2} \\ &= 3^k - 2^k = 3^n - 2^n, \end{aligned}$$

so the claim is true when $n = k$. By Strong Mathematical Induction, the claim is true for all $n \geq 0$.

[5] (b) Show that $\sum_{i=0}^n (-1)^i i^2 = (-1)^n \frac{n(n+1)}{2}$ for all $n \geq 0$.

Solution: We claim that $\sum_{i=0}^n (-1)^i i^2 = (-1)^n \frac{n(n+1)}{2}$ for all $n \geq 0$. When $n = 0$ we have

$$\sum_{i=0}^n (-1)^i i^2 = \sum_{i=0}^0 (-1)^i i^2 = (-1)^0 0^2 = 1 \cdot 0 = 0, \text{ and } (-1)^n \frac{n(n+1)}{2} = (-1)^0 \frac{0 \cdot 1}{2} = 1 \cdot 0 = 0$$

so the claim is true when $n = 0$. Let $k \geq 0$ and suppose the claim is true when $n = k$, that is suppose

$$\sum_{i=0}^k (-1)^i i^2 = (-1)^k \frac{k(k+1)}{2}. \text{ Then when } n = k + 1 \text{ we have}$$

$$\begin{aligned} \sum_{i=0}^n (-1)^i i^2 &= \sum_{i=0}^{k+1} (-1)^i i^2 = \sum_{i=0}^k (-1)^i i^2 + (-1)^{k+1}(k+1)^2 \\ &= (-1)^k \frac{k(k+1)}{2} + (-1)^{k+1}(k+1)^2 \\ &= (-1)^{k+1} \left((k+1)^2 - \frac{k(k+1)}{2} \right) \\ &= (-1)^{k+1}(k+1) \left(k+1 - \frac{k}{2} \right) \\ &= (-1)^{k+1}(k+1) \left(\frac{2k+2-k}{2} \right) \\ &= (-1)^{k+1} \frac{(k+1)(k+2)}{2} = (-1)^n \frac{n(n+1)}{2}, \end{aligned}$$

so the claim is true when $n = k + 1$. By Mathematical Induction, the claim is true for all $n \geq 0$.

[5] **3:** (a) Find the term involving x^1 in the expansion of $(x^2 + \frac{1}{2x})^8$.

Solution: The i^{th} term in the expansion (counting the term $\binom{8}{0} (x^2)^8$ as the 0^{th} term) is

$$\binom{8}{i} (x^2)^{8-i} \left(\frac{1}{2x}\right)^i = \frac{1}{2^i} \binom{8}{i} x^{2(8-i)-i} = \frac{1}{2^i} \binom{8}{i} x^{16-3i}.$$

The term involving x^1 occurs when $16 - 3i = 1$, that is when $i = 5$. The 5^{th} term is

$$\frac{1}{2^5} \binom{8}{5} x^1 = \frac{1}{2^5} \cdot \frac{8 \cdot 7 \cdot 6 \cdot 5 \cdot 4}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1} x = \frac{7}{4} x.$$

[5] (b) Evaluate the sum $\sum_{i=0}^n \binom{2n+1}{i}$ for all $n \geq 0$. (Prove that your answer is correct).

Solution: Notice that the odd-numbered rows in Pascal's Triangle (counting the top 1 as the 0^{th} row) have an even number of terms, and the given sum is the sum of the first half of the terms in row $2n+1$. By symmetry, this is the same as one half of the sum of all the terms in row $2n+1$. By the Binomial Theorem, the sum of all these terms is equal to $(1+1)^{2n+1} = 2^{2n+1}$. Thus the given sum is equal to 2^{2n} .

We repeat the above proof, formally. Write $S_n = \sum_{i=0}^n \binom{2n+1}{i} = \binom{2n+1}{0} + \binom{2n+1}{1} + \binom{2n+1}{2} + \cdots + \binom{2n+1}{n}$.

Recall that $\binom{m}{k} = \binom{m}{m-k}$, so we also have $S_n = \binom{2n+1}{2n+1} + \binom{2n+1}{2n} + \binom{2n+1}{2n-1} + \cdots + \binom{2n+1}{n+1}$. Adding these two expressions for S_n then using the Binomial Theorem gives

$$2S_n = \binom{2n+1}{0} + \binom{2n+1}{1} + \cdots + \binom{2n+1}{n} + \binom{2n+1}{n+1} + \cdots + \binom{2n+1}{2n} + \binom{2n+1}{2n+1} = (1+1)^{2n+1} = 2^{2n+1}.$$

Thus $S_n = 2^{2n}$. (It is also possible to prove this result using induction).

[2] **4:** (a) Define the statement “ a divides b ”, for integers a and b .

Solution: The statement “ a divides b ” means that $b = ka$ for some integer k .

[3] (b) State the Division Algorithm.

Solution: The Division Algorithm states that for all integers a and b with $b > 0$, there exist unique integers q and r with $a = qb + r$ and $0 \leq r < b$.

[5] (c) Prove Proposition 2.21 from the text, which states that for all integers a, b, q and r , if $a = qb + r$ then $\gcd(a, b) = \gcd(b, r)$.

Solution: Let $a, b, q, r \in \mathbf{Z}$. Suppose that $a = qb + r$. Let $d = \gcd(a, b)$ and let $e = \gcd(b, r)$. We must show that $d = e$. Note that since $a = qb + r$ we have $a = b = 0 \iff b = r = 0$, and in this case $d = 0 = e$. Suppose that a and b are not both zero (hence b and r are not both zero). We have

$$d = \gcd(a, b) \implies (d|a \text{ and } d|b) \implies d|(ax + by) \text{ for all } x, y \implies d|(a - qb) \implies d|r.$$

Since d is a common divisor of b and r (and e is the greatest common divisor of b and r) we must have $d \leq e$. On the other hand,

$$e = \gcd(b, r) \implies (e|b \text{ and } e|r) \implies e|(bx + ry) \text{ for all } x, y \implies e|(qb + r) \implies e|a.$$

Since e is a common divisor of a and b (and d is the greatest common divisor of a and b) we must have $e \leq d$.

[5] **5:** (a) Let $a = 231$ and $b = 182$. Find integers s and t such that $as + bt = d$, where $d = \gcd(a, b)$.

Solution: The Euclidean Algorithm gives

$$231 = 1 \cdot 182 + 49, \quad 182 = 3 \cdot 49 + 35, \quad 49 = 1 \cdot 35 + 14, \quad 35 = 2 \cdot 14 + 7, \quad 14 = 2 \cdot 7 + 0$$

so we have $d = 7$. Back-Substitution then gives rise to the sequence

$$1, -2, 3, -11, 14,$$

so we can take $s = -11$ and $t = 14$.

Alternatively, the Extended Euclidean Algorithm gives rise to the table

$$\begin{array}{rrr} 0 & 1 & 231 \\ 1 & 0 & 182 \\ -1 & 1 & 49 \\ 4 & -3 & 35 \\ -5 & 4 & 14 \\ 14 & -11 & 7 \end{array}$$

so we can take $s = -11$ and $t = 14$.

[5] (b) Prove that for all integers a, b and c , if $a|c$ and $b|c$ and $\gcd(a, b) = d$ then $ab|cd$.

Solution: Let $a, b, c \in \mathbf{Z}$. Suppose that $a|c$ and $b|c$ and $\gcd(a, b) = d$. Since $a|c$ and $b|c$ we can choose integers k and l so that $c = ak$ and $c = bl$. Since $d = \gcd(a, b)$ we can use the Euclidean Algorithm with Back-Substitution to find integers s and t such that $as + bt = d$. Then we have

$$as + bt = d \implies cas + cbt = cd \implies blas + akbt = cd \implies ab(ls + kt) = cd \implies ab|cd.$$