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1: Recall that the symbols ¬, ∧, ∨, → and ↔ are alternate notations for the connectives
NOT, AND, OR, =⇒, and ⇐⇒, respectively.

[4] (a) Determine whether P ↔ (Q→ ¬P ) is equivalent to ¬(P → Q).

[3] (b) Express the statement “ x is the greatest integer such that 2x ≤ y ”, taking the universe
of discourse to be Z, and using only symbols from the following list:

¬ , ∧ , ∨ , → , ↔ , ( , ) , ∀ , ∃ , 0 , 1 , + , × , = , < , ≤ , x , y , z

[3] (c) Determine whether the statement “∀x x ≤ x×x ” is true when the universe of discourse
is Z and whether it is true when the universe of discourse is R.
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[5] 2: (a) Let a0 = 0 and a1 = 1, and for n ≥ 2 let an = 5an−1 − 6an−2. Show that an = 3n − 2n

for all n ≥ 0.
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[5] 2: (b) Show that
n∑

i=0

(−1)
i
i2 = (−1)n n (n + 1)

2
for all n ≥ 0.

4



[5] 3: (a) Find the term involving x1 in the expansion of
(
x2 + 1

2x

)8.

[5] (b) Evaluate the sum
n∑

i=0

(
2n + 1

i

)
for all n ≥ 0. (Prove that your answer is correct).
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[2] 4: (a) Define the statement “a divides b”, for integers a and b.

[3] (b) State the Division Algorithm.

[5] (c) Prove Proposition 2.21 from the text, which states that for all integers a, b, q and r,
if a = qb + r then gcd(a, b) = gcd(b, r).
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[5] 5: (a) Let a = 231 and b = 182. Find integers s and t such that as+bt = d, where d = gcd(a, b).

[5] (b) Prove that for all integers a, b and c, if a
∣∣c and b

∣∣c and gcd(a, b) = d then ab
∣∣cd.
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This page may be used for rough work. It will not be marked.
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