MATH 135 Algebra, Solutions to the Final Exam, Fall 2009

: (a) Let ag = 1 and a1 = 3, and for n > 2 let a,, = 3a,,—1 — 2a,—2 — 1. Show that a, = 2" +n for all n > 0.

Solution: We claim that a, = 2" +n for all n > 0. When n = 0 we have a,, = ag = 1 and 2" +n =204+0 =1,
and when n = 1 we have a, = a1 = 3 and 2" +n = 2! + 1 = 3, so the claim is true when n = 0 and when
n = 1. Let kK > 3 and suppose the claim is true when n = k — 1 and when n = k — 2, that is suppose
ap—1 =214+ k—1and ag_o =22+ k — 2. Then when n = k we have

an =ap =3a_1—2ap_o—1=3(2" " +k-1)-2(2F2+k-2) -1
=3-2"143k—3-2"t 2k t4—1=2.2F1 =2tk =2"+n.
Thus the claim is true when n = k, and so by Mathematical Induction, the claim is true for all n > 0.
(b) Find the term containing #® in the binomial expansion of (1?8 - w—;) .

Solution: The *" term in the expansion is

() () o () (5) >

To get 3i — 7 = 8 we need 3i = 15, that is 4 = 5. The 5" term in the expansion is

5 (7 182 8 7-6 22.34 8 s
(*1) (5) <35>(£ :*T‘ 35 x® = —28zx°.

: (a) Let a = —215 and b = 17. Find the integers ¢ and r wth 0 < r < b such that a = ¢b + r.

Solution: Using long division, we have 215 = 1217+ 11, so —215 = —12-17—11 = —13- 17+ 6, so we take
qg=—13 and r = 6.

(b) List all pairs of integers (z,y) with |z| < 50 such that 245z + 189y = 84.
Solution: The Euclidean Algorithm gives
245=1-189+56, 189=3-56+21, 56=2-21+14, 21=1-1447, 14=2-T+0
so we have ged(245,189) = 7. Then Back-Substitution gives the sequence
1,1, 3, —-10, 13

so we have (245)(—10) + (189)(13) = 7. Multiplying by % = 12 gives (245)(—120) + (189)(156) = 84, so one
solution is (z,y) = (—120,156). Note that % = 35 and % = 27, so by the Linear Diophantine Equation
Theorem, the general solution is

(z,y) = (—120,156) + k(27,-35) , ke Z.

We have
|z] <50 <= —50 < 2 <50 <= —50 < —120 + 27k < 50 < 70 < 27k < 170

— [R]<k< || —=3<k<6,
Thus the solutions with |x| < 50 are (z,y) = (—120,156) + k(27, —35) with k € {3,4, 5,6}, that is
(z,y) = (—=39,51),(—12,16), (15, —19), (42, —54) .



[4]

3: (a) List all elements [x] € Z13 such that [5][z]? = [6].

Solution: We make a table of values modulo 13.

T 01234 5 6 7 8 9 10 11 12
2 01 4 9 3 12 10 10 12 3 9 4 1
522 0 7 6 2 8 11 11 8 2 6 7 5

)

From the table we see that 522 =
[5][x]* = [6] <= [z] = [3] or [10].

(b) Solve the pair of congruences = 5 (mod 9) and 10z = 6 (mod 28).

5
6 (mod 13) if and only if z = 3 or 10 (mod 13), and so in Z;3 we have

Solution: By dividing all terms by 2 then multiplying both sides by 3, we see that

10z =6 (mod 28) <= 5z = 3 (mod 14) <= z =9 (mod 14).
To get = 5 (mod 9) and z = 9 (mod 14) we must have x = 5+ 9r and @ = 9 + 14s for some integers
r and s, so we need 5+ 9r = 9 + 14s, that is 9r — 14s = 4. By inspection, one solution to this equation

is (r,8) = (2,1), and so one solution for the pair of congruences is z = 5+ 9r =5+ 9 -2 = 23. Note that
9 .14 = 126, so by the Chinese Remainder Theorem, the general solution is

x =23 (mod 126).

: (a) Use the Square and Multiply Algorithm to encrypt the message m = 4 using the RSA public key

(n,e) = (253,29).

Solution: We make a list of powers of m = 4 modulo n = 253.

k 4k
1 4
2 16
4 3
8 9
16 81

Note that 29 = 16 + 8 +4 4 1 so we have
c=m =42 =416.4% .41 . 41 =81.9.3.4 =146 (mod 253)
so the cyphertext is ¢ = 146.
(b) Determine the private key (n,d) which corresponds to the public key (n,e) = (253, 29).

Solution: Note that n = 253 = 11-23 so that ¢(n) = ¢(11)¢(23) = 10-22 = 220. The value of d in the public
key is given by d = e~} (mod ¢(n)), that is d = 297! (mod 220). We consider the equation 29z + 220y = 1.
The Euclidean Algorithm gives

220=7-29+17, 29=1-17T+12, 17=1-12+4+5, 12=2-5+2, 5=2-2+1
so we have ged(29,220) = 1, and then Back-Substitution gives
1, -2, 5, -7, 12, -91

so we have (29)(—91) + (220)(12) = 1. Thus 297! = 91 = 129 (mod 220) so we can take d = 129.
(Alternatively, we can use d = e (mod 1(n)), where ¢ (n) = lem(¢(1 23)) = lem(10,22) = 110). By
a calculation similar to the one above, we obtain d = 19).



5: (a) Define ¢(n), where n is a positive integer and ¢ is the Euler phi function.

Solution: For a positive integer n, ¢(n) is the number of integers a with 1 < a < n such that ged(a,n) = 1.
Equivalently, ¢(n) is the number of invertible elements in Z,,.

(b) State the Chinese Remainder Theorem.

Solution: The Chinese Remainder Theorem states that for all a,b,n,m € Z, if ged(n,m) = 1 then the pair
of congruences = a (mod n) and = b (mod m) has a solution, and that if £ = u is one solution then the
general solution is = u (mod nm).

(c) Let n = pq where p and ¢ are distinct primes, and let ¢ = ¢(n) = (p — 1)(¢ — 1). Prove that for all
integers a we have a®*! = a (mod n). (This is part of Proposition 7.41).

Solution: Let a € Z. If p{a then we have a = 0 = a®*! (mod p). If p*a then by Fermat’s Little Theorem we
have a?~! = 1 (mod p) so a? = o~ = (afﬂ*l)q_1 =19"" =1 (mod p) and hence a®*+! = a (mod p).
In both cases we have a®T! = a (mod p). Similarly, we have a®*! = a (mod ¢) and so by the Chinese
Remainder Theorem, a®*! = a (mod n).

: (a) Determine the number of positive integers a such that a’9! and ged(a, 3600) = 180.

Solution: Note that 9! =9-8-7-6-5-4-3-2=232.23.7.2.3.5.22.3.2=27-3%.5'.7% 50 to get a’9!, we
must have a = 2 - 37 - 5% . 7! for some integers i, j,k,l with 0 <i<7,0<j<4,0<k<land0<I[<1.
Then we have o o o .

ng(a, 3600) — gcd(Zl 3_] 5k7 7l’ 24 32 52) — 211]111(7,,4) . 31‘111!1(],2) . 5m1n(k:,2)
so to get ged(a, 3600) = 180 = 2232 5! we need min(i,4) = 2 so i = 2, and min(j,2) = 2 so j € {2,3,4}, and
min(k,2) = 1 so k = 1. Since there is 1 choice for 4, 3 choices for j, 1 choice for k and 2 choices for I, there
are 1-3-1-2 =6 such integers a.
(b) Prove that ged (5% + 3,5% + 1) = 14.
Solution: Recall that if a = gb+ r then ged(b,a) = ged(b, 7). Since (2% + 1) = (5)(2% + 3) — 14, we have

ged (5% +3,5% + 1) = ged (5”° + 3, —14) = ged (5% + 3,14) .

Note that 2’(598 + 3) since 5% is odd and 3 is odd. Also, by Fermat’s Little Theorem the list of powers of 5
repeats every 6 terms modulo 7, and we have 98 = 2 (mod 6), so 5?8 +3 =52 +3 =28 = 0 (mod 7), that is
7|(5% 4 3). Since 2|(5% + 3) and 7|(5% + 3), we have 14|(5% + 3), and hence ged (5% + 3,14) = 14.



i)? —1
[3] 7: (a) Simplify z = (1+30)°+ (5 )

(1+1)
14+3i)2+ (55— -84 6¢ 5—1 —34+5 1—7 248
Solution: Wehavez:( +30) +,( Z):( + Z>+( Z): +.Z- Z_: i l:1+4i.
(1+4) 1+ 1+i 1—1 2
148
[3] (b) Solvez:%&forzec.
Solution: Note that w? = —8i = 8¢7'™/2 = w = +2/2e7"™/* = +2/2 (% - %z) = +(2 — 2¢). Using
the Quadratic Formula, we have
148
z:2+8Z<:>z(27,z):1+8i<:>22722:1+8i<:>22722+(1+8i):0
—z
2+ 4—-4(1+8
== 2( ) L AT AFs) =14V Ei—14 (2 2)

<— z=3—2tor —1+2.

[4] () Solve 2% + 16z = 0 for z € C. Draw a picture showing all of the solutions.
Solution: Let z = re’?. Then we have
4162 =0 (re'?)’ +167¢7 = 15 4 16re 0 = 0
> (r=0or rel® = 16 = 16e"™)
<= (r:()or (r:Qand69zw+27rk,forsomekGZ))
— (r =0or (T =2and 0 = § + Tk for some k € {0,1,2,3,4,5}))

2 c {07261'#/67261'7#2’261’577/6,26i77r/6’26i37r/27eill-rr/ﬁ}

In cartesian coordinates, the solutions are z = 0, +-2i, /3 4 i. We omit the picture.



