
MATH 135 Algebra, Solutions to the Final Exam, Fall 2009

[6] 1: (a) Let a0 = 1 and a1 = 3, and for n ≥ 2 let an = 3an−1 − 2an−2 − 1. Show that an = 2n + n for all n ≥ 0.

Solution: We claim that an = 2n+n for all n ≥ 0. When n = 0 we have an = a0 = 1 and 2n+n = 20 +0 = 1,
and when n = 1 we have an = a1 = 3 and 2n + n = 21 + 1 = 3, so the claim is true when n = 0 and when
n = 1. Let k ≥ 3 and suppose the claim is true when n = k − 1 and when n = k − 2, that is suppose
ak−1 = 2k−1 + k − 1 and ak−2 = 2k−2 + k − 2. Then when n = k we have

an = ak = 3ak−1 − 2ak−2 − 1 = 3
(
2k−1 + k − 1

)
− 2

(
2k−2 + k − 2

)
− 1

= 3 · 2k−1 + 3k − 3− 2k−1 − 2k + 4− 1 = 2 · 2k−1 + k = 2k + k = 2n + n .

Thus the claim is true when n = k, and so by Mathematical Induction, the claim is true for all n ≥ 0.

[4] (b) Find the term containing x8 in the binomial expansion of
(

18
x −

x2

3

)7

.

Solution: The ith term in the expansion is(
7
i

)(
18
x

)7−i(
−x

2

3

)i
= (−1)i

(
7
i

)(
187−i

3i

)
x3i−7 .

To get 3i− 7 = 8 we need 3i = 15, that is i = 5. The 5th term in the expansion is

(−1)5
(

7
5

)(
182

35

)
x8 = − 7 · 6

2
· 22 · 34

35
x8 = −28x8 .

[3] 2: (a) Let a = −215 and b = 17. Find the integers q and r wth 0 ≤ r < b such that a = qb+ r.

Solution: Using long division, we have 215 = 12 · 17 + 11, so −215 = −12 · 17− 11 = −13 · 17 + 6, so we take
q = −13 and r = 6.

[7] (b) List all pairs of integers (x, y) with |x| ≤ 50 such that 245x+ 189y = 84.

Solution: The Euclidean Algorithm gives

245 = 1 · 189 + 56 , 189 = 3 · 56 + 21 , 56 = 2 · 21 + 14 , 21 = 1 · 14 + 7 , 14 = 2 · 7 + 0

so we have gcd(245, 189) = 7. Then Back-Substitution gives the sequence

1 , 1 , 3 , −10 , 13

so we have (245)(−10) + (189)(13) = 7. Multiplying by 84
7 = 12 gives (245)(−120) + (189)(156) = 84, so one

solution is (x, y) = (−120, 156). Note that 245
7 = 35 and 189

7 = 27, so by the Linear Diophantine Equation
Theorem, the general solution is

(x, y) = (−120, 156) + k(27,−35) , k ∈ Z .

We have
|x| ≤ 50⇐⇒ −50 ≤ x ≤ 50⇐⇒ −50 ≤ −120 + 27k ≤ 50⇐⇒ 70 ≤ 27k ≤ 170

⇐⇒
⌈

70
27

⌉
≤ k ≤

⌊
170
27

⌋
⇐⇒ 3 ≤ k ≤ 6 ,

Thus the solutions with |x| ≤ 50 are (x, y) = (−120, 156) + k(27,−35) with k ∈ {3, 4, 5, 6}, that is

(x, y) = (−39, 51), (−12, 16), (15,−19), (42,−54) .
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[4] 3: (a) List all elements [x] ∈ Z13 such that [5][x]2 = [6].

Solution: We make a table of values modulo 13.
x 0 1 2 3 4 5 6 7 8 9 10 11 12
x2 0 1 4 9 3 12 10 10 12 3 9 4 1
5x2 0 5 7 6 2 8 11 11 8 2 6 7 5

From the table we see that 5x2 ≡ 6 (mod 13) if and only if x ≡ 3 or 10 (mod 13), and so in Z13 we have
[5][x]2 = [6]⇐⇒ [x] = [3] or [10].

[6] (b) Solve the pair of congruences x ≡ 5 (mod 9) and 10x ≡ 6 (mod 28).

Solution: By dividing all terms by 2 then multiplying both sides by 3, we see that

10x ≡ 6 (mod 28)⇐⇒ 5x ≡ 3 (mod 14)⇐⇒ x ≡ 9 (mod 14) .

To get x ≡ 5 (mod 9) and x ≡ 9 (mod 14) we must have x = 5 + 9r and x = 9 + 14s for some integers
r and s, so we need 5 + 9r = 9 + 14s, that is 9r − 14s = 4. By inspection, one solution to this equation
is (r, s) = (2, 1), and so one solution for the pair of congruences is x = 5 + 9r = 5 + 9 · 2 = 23. Note that
9 · 14 = 126, so by the Chinese Remainder Theorem, the general solution is

x ≡ 23 (mod 126) .

[5] 4: (a) Use the Square and Multiply Algorithm to encrypt the message m = 4 using the RSA public key
(n, e) = (253, 29).

Solution: We make a list of powers of m = 4 modulo n = 253.

k 4k

1 4
2 16
4 3
8 9
16 81

Note that 29 = 16 + 8 + 4 + 1 so we have

c ≡ me ≡ 429 ≡ 416 · 48 · 44 · 41 ≡ 81 · 9 · 3 · 4 ≡ 146 (mod 253)

so the cyphertext is c = 146.

[5] (b) Determine the private key (n, d) which corresponds to the public key (n, e) = (253, 29).

Solution: Note that n = 253 = 11 ·23 so that φ(n) = φ(11)φ(23) = 10 ·22 = 220. The value of d in the public
key is given by d = e−1

(
mod φ(n)

)
, that is d = 29−1 (mod 220). We consider the equation 29x+ 220y = 1.

The Euclidean Algorithm gives

220 = 7 · 29 + 17 , 29 = 1 · 17 + 12 , 17 = 1 · 12 + 5 , 12 = 2 · 5 + 2 , 5 = 2 · 2 + 1

so we have gcd(29, 220) = 1, and then Back-Substitution gives

1 , −2 , 5 , −7 , 12 , −91

so we have (29)(−91) + (220)(12) = 1. Thus 29−1 ≡ −91 ≡ 129 (mod 220), so we can take d = 129.
(Alternatively, we can use d = e−1

(
mod ψ(n)

)
, where ψ(n) = lcm

(
φ(11), φ(23)

)
= lcm(10, 22) = 110). By

a calculation similar to the one above, we obtain d = 19).
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[2] 5: (a) Define φ(n), where n is a positive integer and φ is the Euler phi function.

Solution: For a positive integer n, φ(n) is the number of integers a with 1 ≤ a ≤ n such that gcd(a, n) = 1.
Equivalently, φ(n) is the number of invertible elements in Zn.

[3] (b) State the Chinese Remainder Theorem.

Solution: The Chinese Remainder Theorem states that for all a, b, n,m ∈ Z, if gcd(n,m) = 1 then the pair
of congruences x ≡ a (mod n) and x ≡ b (mod m) has a solution, and that if x = u is one solution then the
general solution is x ≡ u (mod nm).

[5] (c) Let n = pq where p and q are distinct primes, and let φ = φ(n) = (p − 1)(q − 1). Prove that for all
integers a we have aφ+1 ≡ a (mod n). (This is part of Proposition 7.41).

Solution: Let a ∈ Z. If p
∣∣a then we have a ≡ 0 ≡ aφ+1 (mod p). If p6

∣∣a then by Fermat’s Little Theorem we
have ap−1 ≡ 1 (mod p) so aφ ≡ a(p−1)(q−1) ≡

(
ap−1

)q−1 ≡ 1q−1 ≡ 1 (mod p) and hence aφ+1 ≡ a (mod p).
In both cases we have aφ+1 ≡ a (mod p). Similarly, we have aφ+1 ≡ a (mod q) and so by the Chinese
Remainder Theorem, aφ+1 ≡ a (mod n).

[5] 6: (a) Determine the number of positive integers a such that a
∣∣9! and gcd(a, 3600) = 180.

Solution: Note that 9! = 9 · 8 · 7 · 6 · 5 · 4 · 3 · 2 = 32 · 23 · 7 · 2 · 3 · 5 · 22 · 3 · 2 = 27 · 34 · 51 · 71, so to get a
∣∣9!, we

must have a = 2i · 3j · 5k · 7l for some integers i, j, k, l with 0 ≤ i ≤ 7, 0 ≤ j ≤ 4, 0 ≤ k ≤ 1 and 0 ≤ l ≤ 1.
Then we have

gcd(a, 3600) = gcd(2i 3j 5k 7l, 24 32 52) = 2min(i,4) · 3min(j,2) · 5min(k,2)

so to get gcd(a, 3600) = 180 = 22 32 51 we need min(i, 4) = 2 so i = 2, and min(j, 2) = 2 so j ∈ {2, 3, 4}, and
min(k, 2) = 1 so k = 1. Since there is 1 choice for i, 3 choices for j, 1 choice for k and 2 choices for l, there
are 1 · 3 · 1 · 2 = 6 such integers a.

[5] (b) Prove that gcd
(
598 + 3, 599 + 1

)
= 14.

Solution: Recall that if a = qb+ r then gcd(b, a) = gcd(b, r). Since (299 + 1) = (5)(298 + 3)− 14, we have

gcd
(
598 + 3, 599 + 1

)
= gcd

(
598 + 3,−14

)
= gcd

(
598 + 3, 14

)
.

Note that 2
∣∣(598 + 3) since 598 is odd and 3 is odd. Also, by Fermat’s Little Theorem the list of powers of 5

repeats every 6 terms modulo 7, and we have 98 ≡ 2 (mod 6), so 598 + 3 ≡ 52 + 3 ≡ 28 ≡ 0 (mod 7), that is
7
∣∣(598 + 3). Since 2

∣∣(598 + 3) and 7
∣∣(598 + 3), we have 14

∣∣(598 + 3), and hence gcd
(
598 + 3, 14

)
= 14.
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[3] 7: (a) Simplify z =
(1 + 3i)2 + (5− i)

(1 + i)
.

Solution: We have z =
(1 + 3i)2 + (5− i)

(1 + i)
=

(−8 + 6i) + (5− i)
1 + i

=
−3 + 5i

1 + i
· 1− i

1− i
=

2 + 8i
2

= 1 + 4i .

[3] (b) Solve z =
1 + 8i
2− z

for z ∈ C.

Solution: Note that w2 = −8i = 8e−i π/2 ⇐⇒ w = ±2
√

2 e−i π/4 = ±2
√

2
(

1√
2
− 1√

2
i
)

= ±(2 − 2i). Using
the Quadratic Formula, we have

z =
1 + 8i
2− z

⇐⇒ z(2− z) = 1 + 8i⇐⇒ 2z − z2 = 1 + 8i⇐⇒ z2 − 2z + (1 + 8i) = 0

⇐⇒ z =
2±

√
4− 4(1 + 8i)

2
= 1±

√
1− (1 + 8i) = 1±

√
−8i = 1± (2− 2i)

⇐⇒ z = 3− 2i or − 1 + 2i .

[4] (c) Solve z5 + 16 z = 0 for z ∈ C. Draw a picture showing all of the solutions.

Solution: Let z = rei θ. Then we have

z5 + 16z = 0⇐⇒
(
rei θ

)5
+ 16 rei θ ⇐⇒ r5ei 5θ + 16re−i θ = 0

⇐⇒
(
r = 0 or r4ei 6θ = −16 = 16ei π

)
⇐⇒

(
r = 0 or

(
r = 2 and 6θ = π + 2πk , for some k ∈ Z

))
⇐⇒

(
r = 0 or

(
r = 2 and θ = π

6 + π
3 k for some k ∈ {0, 1, 2, 3, 4, 5}

))
⇐⇒ z ∈

{
0, 2ei π/6, 2ei π/2, 2ei 5π/6, 2ei 7π/6, 2ei 3π/2, ei 11π/6

}
In cartesian coordinates, the solutions are z = 0,±2i,±

√
3± i. We omit the picture.
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