

MATH 135 Algebra, Solutions to the Final Exam, Fall 2009

[6] **1:** (a) Let $a_0 = 1$ and $a_1 = 3$, and for $n \geq 2$ let $a_n = 3a_{n-1} - 2a_{n-2} - 1$. Show that $a_n = 2^n + n$ for all $n \geq 0$.

Solution: We claim that $a_n = 2^n + n$ for all $n \geq 0$. When $n = 0$ we have $a_n = a_0 = 1$ and $2^n + n = 2^0 + 0 = 1$, and when $n = 1$ we have $a_n = a_1 = 3$ and $2^n + n = 2^1 + 1 = 3$, so the claim is true when $n = 0$ and when $n = 1$. Let $k \geq 3$ and suppose the claim is true when $n = k - 1$ and when $n = k - 2$, that is suppose $a_{k-1} = 2^{k-1} + k - 1$ and $a_{k-2} = 2^{k-2} + k - 2$. Then when $n = k$ we have

$$\begin{aligned} a_n &= a_k = 3a_{k-1} - 2a_{k-2} - 1 = 3(2^{k-1} + k - 1) - 2(2^{k-2} + k - 2) - 1 \\ &= 3 \cdot 2^{k-1} + 3k - 3 - 2^{k-1} - 2k + 4 - 1 = 2 \cdot 2^{k-1} + k = 2^k + k = 2^n + n. \end{aligned}$$

Thus the claim is true when $n = k$, and so by Mathematical Induction, the claim is true for all $n \geq 0$.

[4] (b) Find the term containing x^8 in the binomial expansion of $\left(\frac{18}{x} - \frac{x^2}{3}\right)^7$.

Solution: The i^{th} term in the expansion is

$$\binom{7}{i} \left(\frac{18}{x}\right)^{7-i} \left(-\frac{x^2}{3}\right)^i = (-1)^i \binom{7}{i} \left(\frac{18^{7-i}}{3^i}\right) x^{3i-7}.$$

To get $3i - 7 = 8$ we need $3i = 15$, that is $i = 5$. The 5^{th} term in the expansion is

$$(-1)^5 \binom{7}{5} \left(\frac{18^2}{3^5}\right) x^8 = -\frac{7 \cdot 6}{2} \cdot \frac{2^2 \cdot 3^4}{3^5} x^8 = -28 x^8.$$

[3] **2:** (a) Let $a = -215$ and $b = 17$. Find the integers q and r wth $0 \leq r < b$ such that $a = qb + r$.

Solution: Using long division, we have $215 = 12 \cdot 17 + 11$, so $-215 = -12 \cdot 17 - 11 = -13 \cdot 17 + 6$, so we take $q = -13$ and $r = 6$.

[7] (b) List all pairs of integers (x, y) with $|x| \leq 50$ such that $245x + 189y = 84$.

Solution: The Euclidean Algorithm gives

$$245 = 1 \cdot 189 + 56, \quad 189 = 3 \cdot 56 + 21, \quad 56 = 2 \cdot 21 + 14, \quad 21 = 1 \cdot 14 + 7, \quad 14 = 2 \cdot 7 + 0$$

so we have $\gcd(245, 189) = 7$. Then Back-Substitution gives the sequence

$$1, 1, 3, -10, 13$$

so we have $(245)(-10) + (189)(13) = 7$. Multiplying by $\frac{84}{7} = 12$ gives $(245)(-120) + (189)(156) = 84$, so one solution is $(x, y) = (-120, 156)$. Note that $\frac{245}{7} = 35$ and $\frac{189}{7} = 27$, so by the Linear Diophantine Equation Theorem, the general solution is

$$(x, y) = (-120, 156) + k(27, -35), \quad k \in \mathbf{Z}.$$

We have

$$\begin{aligned} |x| \leq 50 &\iff -50 \leq x \leq 50 \iff -50 \leq -120 + 27k \leq 50 \iff 70 \leq 27k \leq 170 \\ &\iff \lceil \frac{70}{27} \rceil \leq k \leq \lfloor \frac{170}{27} \rfloor \iff 3 \leq k \leq 6, \end{aligned}$$

Thus the solutions with $|x| \leq 50$ are $(x, y) = (-120, 156) + k(27, -35)$ with $k \in \{3, 4, 5, 6\}$, that is

$$(x, y) = (-39, 51), (-12, 16), (15, -19), (42, -54).$$

[4] **3:** (a) List all elements $[x] \in \mathbf{Z}_{13}$ such that $[5][x]^2 = [6]$.

Solution: We make a table of values modulo 13.

x	0	1	2	3	4	5	6	7	8	9	10	11	12
x^2	0	1	4	9	3	12	10	10	12	3	9	4	1
$5x^2$	0	5	7	6	2	8	11	11	8	2	6	7	5

From the table we see that $5x^2 \equiv 6 \pmod{13}$ if and only if $x \equiv 3$ or $10 \pmod{13}$, and so in \mathbf{Z}_{13} we have $[5][x]^2 = [6] \iff [x] = [3] \text{ or } [10]$.

[6] (b) Solve the pair of congruences $x \equiv 5 \pmod{9}$ and $10x \equiv 6 \pmod{28}$.

Solution: By dividing all terms by 2 then multiplying both sides by 3, we see that

$$10x \equiv 6 \pmod{28} \iff 5x \equiv 3 \pmod{14} \iff x \equiv 9 \pmod{14}.$$

To get $x \equiv 5 \pmod{9}$ and $x \equiv 9 \pmod{14}$ we must have $x = 5 + 9r$ and $x = 9 + 14s$ for some integers r and s , so we need $5 + 9r = 9 + 14s$, that is $9r - 14s = 4$. By inspection, one solution to this equation is $(r, s) = (2, 1)$, and so one solution for the pair of congruences is $x = 5 + 9r = 5 + 9 \cdot 2 = 23$. Note that $9 \cdot 14 = 126$, so by the Chinese Remainder Theorem, the general solution is

$$x \equiv 23 \pmod{126}.$$

[5] **4:** (a) Use the Square and Multiply Algorithm to encrypt the message $m = 4$ using the RSA public key $(n, e) = (253, 29)$.

Solution: We make a list of powers of $m = 4$ modulo $n = 253$.

k	4^k
1	4
2	16
4	3
8	9
16	81

Note that $29 = 16 + 8 + 4 + 1$ so we have

$$c \equiv m^e \equiv 4^{29} \equiv 4^{16} \cdot 4^8 \cdot 4^4 \cdot 4^1 \equiv 81 \cdot 9 \cdot 3 \cdot 4 \equiv 146 \pmod{253}$$

so the ciphertext is $c = 146$.

[5] (b) Determine the private key (n, d) which corresponds to the public key $(n, e) = (253, 29)$.

Solution: Note that $n = 253 = 11 \cdot 23$ so that $\phi(n) = \phi(11)\phi(23) = 10 \cdot 22 = 220$. The value of d in the public key is given by $d = e^{-1} \pmod{\phi(n)}$, that is $d = 29^{-1} \pmod{220}$. We consider the equation $29x + 220y = 1$. The Euclidean Algorithm gives

$$220 = 7 \cdot 29 + 17, \quad 29 = 1 \cdot 17 + 12, \quad 17 = 1 \cdot 12 + 5, \quad 12 = 2 \cdot 5 + 2, \quad 5 = 2 \cdot 2 + 1$$

so we have $\gcd(29, 220) = 1$, and then Back-Substitution gives

$$1, -2, 5, -7, 12, -91$$

so we have $(29)(-91) + (220)(12) = 1$. Thus $29^{-1} \equiv -91 \equiv 129 \pmod{220}$, so we can take $d = 129$. (Alternatively, we can use $d = e^{-1} \pmod{\psi(n)}$, where $\psi(n) = \text{lcm}(\phi(11), \phi(23)) = \text{lcm}(10, 22) = 110$). By a calculation similar to the one above, we obtain $d = 19$.

[2] **5:** (a) Define $\phi(n)$, where n is a positive integer and ϕ is the Euler phi function.

Solution: For a positive integer n , $\phi(n)$ is the number of integers a with $1 \leq a \leq n$ such that $\gcd(a, n) = 1$. Equivalently, $\phi(n)$ is the number of invertible elements in \mathbf{Z}_n .

[3] (b) State the Chinese Remainder Theorem.

Solution: The Chinese Remainder Theorem states that for all $a, b, n, m \in \mathbf{Z}$, if $\gcd(n, m) = 1$ then the pair of congruences $x \equiv a \pmod{n}$ and $x \equiv b \pmod{m}$ has a solution, and that if $x = u$ is one solution then the general solution is $x \equiv u \pmod{nm}$.

[5] (c) Let $n = pq$ where p and q are distinct primes, and let $\phi = \phi(n) = (p-1)(q-1)$. Prove that for all integers a we have $a^{\phi+1} \equiv a \pmod{n}$. (This is part of Proposition 7.41).

Solution: Let $a \in \mathbf{Z}$. If $p|a$ then we have $a \equiv 0 \equiv a^{\phi+1} \pmod{p}$. If $p \nmid a$ then by Fermat's Little Theorem we have $a^{p-1} \equiv 1 \pmod{p}$ so $a^\phi \equiv a^{(p-1)(q-1)} \equiv (a^{p-1})^{q-1} \equiv 1^{q-1} \equiv 1 \pmod{p}$ and hence $a^{\phi+1} \equiv a \pmod{p}$. In both cases we have $a^{\phi+1} \equiv a \pmod{p}$. Similarly, we have $a^{\phi+1} \equiv a \pmod{q}$ and so by the Chinese Remainder Theorem, $a^{\phi+1} \equiv a \pmod{n}$.

[5] **6:** (a) Determine the number of positive integers a such that $a|9!$ and $\gcd(a, 3600) = 180$.

Solution: Note that $9! = 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 = 3^2 \cdot 2^3 \cdot 7 \cdot 2 \cdot 3 \cdot 5 \cdot 2^2 \cdot 3 \cdot 2 = 2^7 \cdot 3^4 \cdot 5^1 \cdot 7^1$, so to get $a|9!$, we must have $a = 2^i \cdot 3^j \cdot 5^k \cdot 7^l$ for some integers i, j, k, l with $0 \leq i \leq 7$, $0 \leq j \leq 4$, $0 \leq k \leq 1$ and $0 \leq l \leq 1$. Then we have

$$\gcd(a, 3600) = \gcd(2^i 3^j 5^k 7^l, 2^4 3^2 5^2) = 2^{\min(i, 4)} \cdot 3^{\min(j, 2)} \cdot 5^{\min(k, 2)}$$

so to get $\gcd(a, 3600) = 180 = 2^2 3^2 5^1$ we need $\min(i, 4) = 2$ so $i = 2$, and $\min(j, 2) = 2$ so $j \in \{2, 3, 4\}$, and $\min(k, 2) = 1$ so $k = 1$. Since there is 1 choice for i , 3 choices for j , 1 choice for k and 2 choices for l , there are $1 \cdot 3 \cdot 1 \cdot 2 = 6$ such integers a .

[5] (b) Prove that $\gcd(5^{98} + 3, 5^{99} + 1) = 14$.

Solution: Recall that if $a = qb + r$ then $\gcd(b, a) = \gcd(b, r)$. Since $(2^{99} + 1) = (5)(2^{98} + 3) - 14$, we have

$$\gcd(5^{98} + 3, 5^{99} + 1) = \gcd(5^{98} + 3, -14) = \gcd(5^{98} + 3, 14).$$

Note that $2|(5^{98} + 3)$ since 5^{98} is odd and 3 is odd. Also, by Fermat's Little Theorem the list of powers of 5 repeats every 6 terms modulo 7, and we have $98 \equiv 2 \pmod{6}$, so $5^{98} + 3 \equiv 5^2 + 3 \equiv 28 \equiv 0 \pmod{7}$, that is $7|(5^{98} + 3)$. Since $2|(5^{98} + 3)$ and $7|(5^{98} + 3)$, we have $14|(5^{98} + 3)$, and hence $\gcd(5^{98} + 3, 14) = 14$.

[3] **7:** (a) Simplify $z = \frac{(1+3i)^2 + (5-i)}{(1+i)}$.

Solution: We have $z = \frac{(1+3i)^2 + (5-i)}{(1+i)} = \frac{(-8+6i) + (5-i)}{1+i} = \frac{-3+5i}{1+i} \cdot \frac{1-i}{1-i} = \frac{2+8i}{2} = 1+4i$.

[3] (b) Solve $z = \frac{1+8i}{2-z}$ for $z \in \mathbf{C}$.

Solution: Note that $w^2 = -8i = 8e^{-i\pi/2} \iff w = \pm 2\sqrt{2}e^{-i\pi/4} = \pm 2\sqrt{2}\left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}i\right) = \pm(2-2i)$. Using the Quadratic Formula, we have

$$\begin{aligned} z = \frac{1+8i}{2-z} &\iff z(2-z) = 1+8i \iff 2z - z^2 = 1+8i \iff z^2 - 2z + (1+8i) = 0 \\ &\iff z = \frac{2 \pm \sqrt{4-4(1+8i)}}{2} = 1 \pm \sqrt{1-(1+8i)} = 1 \pm \sqrt{-8i} = 1 \pm (2-2i) \\ &\iff z = 3-2i \text{ or } -1+2i. \end{aligned}$$

[4] (c) Solve $z^5 + 16\bar{z} = 0$ for $z \in \mathbf{C}$. Draw a picture showing all of the solutions.

Solution: Let $z = re^{i\theta}$. Then we have

$$\begin{aligned} z^5 + 16\bar{z} = 0 &\iff (re^{i\theta})^5 + 16\overline{re^{i\theta}} \iff r^5e^{i5\theta} + 16re^{-i\theta} = 0 \\ &\iff (r=0 \text{ or } r^4e^{i6\theta} = -16 = 16e^{i\pi}) \\ &\iff (r=0 \text{ or } (r=2 \text{ and } 6\theta = \pi + 2\pi k, \text{ for some } k \in \mathbf{Z})) \\ &\iff (r=0 \text{ or } (r=2 \text{ and } \theta = \frac{\pi}{6} + \frac{\pi}{3}k \text{ for some } k \in \{0, 1, 2, 3, 4, 5\})) \\ &\iff z \in \{0, 2e^{i\pi/6}, 2e^{i\pi/2}, 2e^{i5\pi/6}, 2e^{i7\pi/6}, 2e^{i3\pi/2}, e^{i11\pi/6}\} \end{aligned}$$

In cartesian coordinates, the solutions are $z = 0, \pm 2i, \pm \sqrt{3} \pm i$. We omit the picture.