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6] 1: (a) Let ap = 1 and ay = 3, and for n > 2 let a,, = 3a,,—1 —2a,,—2 — 1. Show that a,, = 2" +n
for all n > 0.

N
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4] (b) Find the term containing z® in the binomial expansion of (136—8 - %) .



3] 2: (a) Let a = —215 and b = 17. Find the integers ¢ and r wth 0 < r < b such that a = ¢gb+r.

(7] (b) List all pairs of integers (z,y) with |z| < 50 such that 245z + 189y = 84.



[4] 3: (a) List all elements [z] € Z13 such that [5][x]? = [6].

6] (b) Solve the pair of congruences x =5 (mod 9) and 10z = 6 (mod 28).



[5] 4: (a) Use the Square and Multiply Algorithm to encrypt the message m = 4 using the RSA
public key (n,e) = (253, 29).

[5] (b) Determine the private key (n,d) which corresponds to the public key (n,e) = (253, 29).



2] 5: (a) Define ¢(n), where n is a positive integer and ¢ is the Euler phi function.

3] (b) State the Chinese Remainder Theorem.

5] (c) Let n = pq where p and ¢ are distinct primes, and let ¢ = ¢(n) = (p—1)(¢ —1). Prove
that for all integers a we have a®™! = a (mod n). (This is part of Proposition 7.41).



[5] 6: (a) Determine the number of positive integers a such that a|9! and ged(a, 3600) = 180.

5] (b) Prove that ged (5% + 3,59 + 1) = 14.



3 7 (a) Simplify » = LTG0

(1+1)
1 .
3] (b) Solve z = + 8 for z € C.
2—2z
4] (c) Solve 2° + 16z = 0 for 2 € C. Draw a picture showing all of the solutions.



This page may be used for rough work. It will not be marked.



