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[6] 1: (a) Let a0 = 1 and a1 = 3, and for n ≥ 2 let an = 3an−1−2an−2−1. Show that an = 2n+n
for all n ≥ 0.

[4] (b) Find the term containing x8 in the binomial expansion of
(

18
x −

x2

3

)7

.
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[3] 2: (a) Let a = −215 and b = 17. Find the integers q and r wth 0 ≤ r < b such that a = qb+r.

[7] (b) List all pairs of integers (x, y) with |x| ≤ 50 such that 245x+ 189y = 84.
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[4] 3: (a) List all elements [x] ∈ Z13 such that [5][x]2 = [6].

[6] (b) Solve the pair of congruences x ≡ 5 (mod 9) and 10x ≡ 6 (mod 28).
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[5] 4: (a) Use the Square and Multiply Algorithm to encrypt the message m = 4 using the RSA
public key (n, e) = (253, 29).

[5] (b) Determine the private key (n, d) which corresponds to the public key (n, e) = (253, 29).
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[2] 5: (a) Define φ(n), where n is a positive integer and φ is the Euler phi function.

[3] (b) State the Chinese Remainder Theorem.

[5] (c) Let n = pq where p and q are distinct primes, and let φ = φ(n) = (p− 1)(q− 1). Prove
that for all integers a we have aφ+1 ≡ a (mod n). (This is part of Proposition 7.41).
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[5] 6: (a) Determine the number of positive integers a such that a
∣∣9! and gcd(a, 3600) = 180.

[5] (b) Prove that gcd
(
598 + 3, 599 + 1

)
= 14.
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[3] 7: (a) Simplify z =
(1 + 3i)2 + (5− i)

(1 + i)
.

[3] (b) Solve z =
1 + 8i
2− z

for z ∈ C.

[4] (c) Solve z5 + 16 z = 0 for z ∈ C. Draw a picture showing all of the solutions.
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This page may be used for rough work. It will not be marked.
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