
MATH 135 Algebra, Solutions to Assignment 9

1: Solve the following pairs of congruences.

(a) x ≡ 5 (mod 7)
x ≡ 8 (mod 15)

Solution: We have x ≡ 5 (mod 7) when x ∈ {· · · ,−2, 5, 12, 19, 26, 33, 40, 47, 54, 61, 68, · · ·}, and we have
x ≡ 8 (mod 15) when x ∈ {· · · ,−7, 8, 23, 38, 53, 68, · · ·}. Thus one solution is x = 68 and so, by the Chinese
Remainder Theorem, the general solution is x ≡ 68 (mod 105).

(b) x ≡ 45 (mod 84)
x ≡ 61 (mod 115)

Solution: For x to be a solution, we need x = 45 + 84r and x = 61 + 115s for some integers r and s, so we
need 45 + 8r = 61 + 115s, that is 84r − 115s = 16. The Euclidean Algorithm gives

115 = 1 · 84 + 31 , 84 = 2 · 31 + 22 , 31 = 1 · 22 + 9 , 22 = 2 · 9 + 4 , 9 = 2 · 4 + 1

so we have gcd(84, 115) = 1, and the Back-Substitution gives

1 , −2 , 5 , −7 , 19 , −26

and so we have (84)(−26)−(115)(−19) = 1. Multiply both sides by 16 to get (84)(−416)−(115)(−304) = 16.
Thus one solution to the equation 84r − 115s = 16 is given by (r, s) = (−416,−304), and by the Linear
Diophantine Equation Theorem, the general solution is (r, s) = (−416,−304) +k(115, 84), k ∈ Z, so we have
r ≡ −416 ≡ 44 (mod 115). Thus one solution to the given pair of congruences is x = 45+84r = 45+84 ·44 =
3741. Note that 84 · 115 = 9660, so by the Chinese Remainder Theorem, the general solution to the given
pair of congruences is

x ≡ 3741 (mod 9660) .



2: Solve the following pairs of congruences.

(a) 15x ≡ 4 (mod 26)
24x ≡ 6 (mod 63)

Solution: First we solve the linear congruence 15x = 4 (mod 26). By inspection, one solution is x = 2 and
we have gcd(15, 26) = 1, and so by the Linear Congruence Theorem, the general solution is x ≡ 2 (mod 26).
Next we solve 24x ≡ 6 (mod 63). We need 24x+ 63y = 6. The Euclidean Algorithm gives

63 = 2 · 24 + 15 , 24 = 1 · 15 + 9 , 15 = 1 · 9 + 6 , 9 = 1 · 6 + 3 , 6 = 2 · 3 + 0

so we have gcd(24, 63) = 3, and then Back-Substitution gives

1 , −1 , 2 , −3 , 8

so we have (24)(8) + (63)(−3) = 3. Multiply both sides by 2 to get (24)(16) + (63)(−6) = 6. Thus one
solution is x = 16. Note that 63

3 = 21, so by the Linear Congruence Theorem, the general solution to the
congruence 24x ≡ 6 (mod 63) is x ≡ 16 (mod 21). Thus the original pair of congruences is equivalent to the
pair of congruences

x ≡ 2 (mod 26)
x ≡ 16 (mod 21)

.

For x to be a solution we need x = 2 + 26r and x = 16 + 21s for some integers r and s, so we must have
2 + 26r = 16 + 21s, that is 26r − 21s = 14. The Euclidean Algorithm gives 26 = 1 · 21 + 5, 21 = 4 · 5 + 1
so we have gcd(26, 21) = 1, and then Back-Substitution gives 1, −4, 5, so we have (26)(−4)− (21)(−5) = 1.
Multiply both sides by 14 to get (26)(−56)− (21)(−70) = 14. Thus one solution is (r, s) = (−56,−70) and
the general solution is (r, s) = (−56,−70) + k(21, 26), k ∈ Z, so we have r ≡ −56 ≡ 7 (mod 21). Thus one
solution to the pair of congruences is x = 2+26r = 2+26 ·7 = 184, and by the Chinese Remainder Theorem,
the general solution is

x ≡ 184 (mod 546) .

(b) 2x3 ≡ 7 (mod 9)

x2 ≡ x+ 6 (mod 35)

Solution: First we solve the congruence 2x3 ≡ 7 (mod 9) by making a table of values modulo 9.

x 0 1 2 3 4 5 6 7 8
x2 0 1 4 0 7 7 0 4 1
x3 0 1 8 0 1 8 0 1 8
2x3 0 2 7 0 2 7 0 2 7

From the table, we see that 2x3 ≡ 7 (mod 9) when x ≡ 2 (mod 3).
Next we solve the congruence x2 ≡ x+6 (mod 35). By the Chinese Remainder Theorem, x satisfies this

single congruence if and only if x satisfies the pair of congruences x2 ≡ x+6 (mod 5) and x2 ≡ x+6 (mod 7).
We make a table of values modulo 5 and a table of values modulo 7.

x 0 1 2 3 4
x2 0 1 4 4 1
x+ 6 1 2 3 4 0

x 0 1 2 3 4 5 6
x2 0 1 4 2 2 4 1
x+ 6 6 0 1 2 3 4 5

From the first table we see that x2 ≡ x+6 (mod 5) when x = 3 (mod 5), and from the second table we see that
x2 ≡ x+ 6 (mod 7) when x = 3 or 5 (mod 7). By the Chinese Remainder Theorem, we have x ≡ 3 (mod 5)
and x ≡ 3 (mod 7) when x ≡ 3 (mod 35). Also, note that x = −2 is one solution to x ≡ 3 (mod 5) and
x ≡ 5 (mod 7), so by the Chinese Remainder Theorem, the general solution to this pair of congruences is
x ≡ −2 ≡ 33 (mod 35). Thus we have shown that x2 ≡ x+ 6 (mod 35) when x ≡ 3 or 33 (mod 35).

We have shown that the original pair of congruences is equivalent to

x ≡ 2 (mod 3) and x ≡ 3 or 33 (mod 35) .

Note that x = 38 is one solution to the pair of congruences x ≡ 2 (mod 3) and x ≡ 3 (mod 33), so by the
Chines Remainder Theorem, the general solution to this pair is x ≡ 38 (mod 105). Also, note that x = 68
is one solution to the pair of congruences x ≡ 2 (mod 3) and x ≡ 33 (mod 35), and so by the Chinese
Remainder Theorem, the general solution to this pair is x ≡ 68 (mod 105). Thus the complete solution to
the original pair of congruences is

x ≡ 38 or 68 (mod 105) .



3: Chinese generals used to count their troops by telling them to form groups of some size n, and then counting
the number of troops left over. Suppose there were 5000 troops before a battle, and after the battle it was
found that when the troops formed groups of 5 there was 1 left over, when they formed groups of 7 there
were none left over, when they formed groups of 11 there were 6 left over, and when they formed groups of
12 there were 5 left over. How many troops survived the battle?

Solution: We must solve the system of congruences

x ≡ 1 (mod 5)
x ≡ 0 (mod 7)
x ≡ 6 (mod 11)
x ≡ 5 (mod 12) .

Note that x = 21 is a solution to the first pair of congruences so by the Chinese Remainder Theorem, the
general solution to the first pair is x ≡ 21 (mod 35). Also note that x = 17 is a solution to the second pair
of congruences, so the general solution is x ≡ 17 (mod 132). Thus we must solve the pair of congruences

x ≡ 21 (mod 35)
x ≡ 17 (mod 132) .

For x to be a solution we need x = 21 + 35r and x = 17 + 132s for some integers r and s, so we must have
21 + 35r = 17 + 132s, that is 35r − 132s = −4. The Euclidean Algorithm gives

132 = 3 · 35 + 27 , 35 = 1 · 27 + 8 , 27 = 3 · 8 + 3 , 8 = 2 · 3 + 2 , 3 = 1 · 2 + 1

so we have gcd(35, 132) = 1, and then Back-Substitution gives

1 , −1 , 3 , −10 , 13 , −49

and so we have (35)(−49)− (132)(−13) = 1. Multiply both sides by −4 to get (35)(196)− (132)(52) = −4.
Thus one solution to the linear diophantine equation 35r − 132s = −4 is given by (r, s) = (196, 52), and by
the Linear Diophantine Equation Theorem, the general solution is (r, s) = (196, 52) + k(132, 35), k ∈ Z, so
we have r ≡ 196 ≡ 64 (mod 132). Thus one solution to the above pair of congruences is x = 21 + 35r =
21+(35)(64) = 2261. Note that 35 ·132 = 4620, so by the Chinese Remainder Theorem, the general solution
to the pair of congruneces is

x ≡ 2261 (mod 4620) .

Since 2261− 4620 < 0 and 2261 + 4620 > 5000, there must be 2261 troops remaining after the battle.



4: (a) Find φ(n) for all integers n with 20 ≤ n ≤ 30.

Solution: We have
φ(20) = φ(22 · 5) = φ(22)φ(5) = 21(2− 1) · 4 = 8
φ(21) = φ(3 · 7) = φ(3)φ(7) = 2 · 6 = 12
φ(22) = φ(2 · 11) = φ(2)φ(11) = 1 · 10 = 10
φ(23) = 22

φ(24) = φ(23 · 3) = φ(23)φ(3) = 22(2− 1) · 2 = 8

φ(25) = φ(52) = 51(5− 1) = 20
φ(26) = φ(2 · 13) = φ(2)φ(13) = 1 · 12 = 12

φ(27) = φ(33) = 32(3− 1) = 18

φ(28) = φ(22 · 7) = φ(22)φ(7) = 21(2− 1) · 6 = 12
φ(29) = 28
φ(30) = φ(2 · 3 · 5) = φ(2)φ(3)φ(5) = 1 · 2 · 4 = 8 .

(b) Find all positive integers n such that φ(n) = 60.

Solution: We begin by finding φ(pk) for all prime powers pk for which φ(pk) ≤ 60, and we list those for
which φ(pk)

∣∣60:

φ(2) = 1 φ(3) = 2 φ(5) = 4 φ(7) = 6 φ(11) = 10 φ(13) = 12 φ(31) = 30 φ(61) = 60
φ(4) = 2 φ(9) = 6 φ(25) = 20
φ(8) = 4

Note that except for φ(2), these are all even, and the only ways to factor 60 into two even integers are 60 =
2 · 30 and 60 = 6 · 10. When n has exactly one prime factor, say n = pk, so that we have 60 = φ(n) = φ(pk),
we must have n = pk = 61. When n has exactly two prime factors, say n = pkql with φ(pk) ≤ φ(ql), so that
60 = φ(n) = φ(pk)φ(ql), we must have one of the following situations:

φ(pk) = 1 and φ(ql) = 60 , in which case pk = 2 and ql = 61

φ(pk) = 2 and φ(ql) = 30 , in which case pk = 22 or 3 and ql = 31

φ(pk) = 6 and φ(ql) = 10 , in which case pk = 32 or 7 and ql = 11 .

When n has exactly three prime factors, say n = pkqlrm with φ(pk) ≤ φ(ql) ≤ φ(rm), so that we have
60 = φ(n) = φ(pk)φ(ql)φ(rm), we must have one of the following:

φ(pk) = 1, φ(ql) = 2 and φ(rm) = 30 , in which case pk = 2, ql = 3 and rm = 31

φ(pk) = 1, φ(ql) = 6 and φ(rm) = 10 , in which case pk = 2, ql = 32 or 7 and rm = 11 .

Thus the possible values of n are

61 , 2 · 61 , 22 · 31 , 3 · 31 , 32 · 11 , 7 · 11 , 2 · 3 · 31 , 2 · 32 · 11 , 2 · 7 · 11 .

From smallest to largest, the possible values for n are 61, 77, 93, 99, 122, 124, 154, 186 and 198.



5: (a) Show that 2340 ≡ 1 (mod 341).

Solution: Note that 341 = 11 · 31. By Fermat’s Little Theorem, we have 210 ≡ 1 (mod 11) and so we
have 2340 ≡ (210)34 ≡ 134 ≡ 1 (mod 11). Also, notice that 25 = 32 ≡ 1 (mod 31), and so we have
2340 ≡ (25)68 ≡ 168 ≡ 1 (mod 31). Thus by the Chinese Remainder Theorem, 2340 ≡ 1 (mod 341).
(We remark that this gives a counterexample to the conjecture we made in our solution to Problem 4(b) of
Assignment 1).

(b) Show that 21
∣∣(4n7 + 7n3 + 10n) for all integers n.

Solution: Note that 21 = 3 · 7, so we shall work modulo 3 and modulo 7. By Fermat’s Little Theorem, we
have n7 ≡ n5 ≡ n3 ≡ n (mod 3) for all n, and so

4n7 + 7n3 + 10n ≡ 4n+ 7n+ 10n ≡ 21n ≡ 0 (mod 3) .

Also, by Fermat’s Little Theorem again, we have n7 ≡ n (mod 7) for all n and so

4n7 + 7n3 + 10n ≡ 4n+ 7n3 + 10n ≡ 7n3 + 14n ≡ 0 (mod 7) .

By the Chinese Remainder Theorem, we have 4n7 + 7n3 + 10n ≡ 0 (mod 21), that is 21
∣∣(4n7 + 7n3 + 10n),

for all integers n.

(c) Find a positive integer k such that the number 3k ends with the digits 0001.

Solution: By the Euler Fermat Theorem, we have 3φ(10000) ≡ 1 (mod 10000), that is 3φ(10000) = 1 + 10000l
for some integer l. Thus 3φ(10000) ends with the digits 0001, so we can take

k = φ(10000) = φ(24)φ(54) = 23(2− 1) · 53(5− 1) = 8 · 500 = 4000 .

(In fact we can take k to be any multiple of 500 because we have 34 ≡ 81 ≡ 1 (mod 24) which implies that
3500 = (34)125 = 1125 ≡ 1 (mod 24), and we have 3500 ≡ 3φ(54) ≡ 1 (mod 54)).

(d) Let n = pk for some positive integer k where p is prime with p ≡ 3 (mod 4). Show that the congruence
x2 ≡ −1 (mod n) has no solution.

Solution: Since p ≡ 3 (mod 4) we have (p − 1) ≡ 2 (mod 4) and we have pk−1 ≡ 1 or 3 (mod 4) (1 if k is
odd and 3 if k is even), and so φ(n) = φ(pk) = pk−1(p − 1) ≡ 2 (mod 4). Thus φ(n) = 2 + 4l for some
integer l, so φ(n)/2 = 1 + 2l, which is an odd number. If we had x2 ≡ −1 (mod n) then we would have
xφ(n) ≡ (x2)φ(n)/2 ≡ (−1)φ(n)/2 ≡ −1 (mod n), which would contradict the Euler Fermat Theorem.


