

MATH 135 Algebra, Solutions to Assignment 9

1: Solve the following pairs of congruences.

(a) $x \equiv 5 \pmod{7}$

$$x \equiv 8 \pmod{15}$$

Solution: We have $x \equiv 5 \pmod{7}$ when $x \in \{\dots, -2, 5, 12, 19, 26, 33, 40, 47, 54, 61, 68, \dots\}$, and we have $x \equiv 8 \pmod{15}$ when $x \in \{\dots, -7, 8, 23, 38, 53, 68, \dots\}$. Thus one solution is $x = 68$ and so, by the Chinese Remainder Theorem, the general solution is $x \equiv 68 \pmod{105}$.

(b) $x \equiv 45 \pmod{84}$

$$x \equiv 61 \pmod{115}$$

Solution: For x to be a solution, we need $x = 45 + 84r$ and $x = 61 + 115s$ for some integers r and s , so we need $45 + 8r = 61 + 115s$, that is $84r - 115s = 16$. The Euclidean Algorithm gives

$$115 = 1 \cdot 84 + 31, \quad 84 = 2 \cdot 31 + 22, \quad 31 = 1 \cdot 22 + 9, \quad 22 = 2 \cdot 9 + 4, \quad 9 = 2 \cdot 4 + 1$$

so we have $\gcd(84, 115) = 1$, and the Back-Substitution gives

$$1, -2, 5, -7, 19, -26$$

and so we have $(84)(-26) - (115)(-19) = 1$. Multiply both sides by 16 to get $(84)(-416) - (115)(-304) = 16$. Thus one solution to the equation $84r - 115s = 16$ is given by $(r, s) = (-416, -304)$, and by the Linear Diophantine Equation Theorem, the general solution is $(r, s) = (-416, -304) + k(115, 84)$, $k \in \mathbf{Z}$, so we have $r \equiv -416 \equiv 44 \pmod{115}$. Thus one solution to the given pair of congruences is $x = 45 + 84r = 45 + 84 \cdot 44 = 3741$. Note that $84 \cdot 115 = 9660$, so by the Chinese Remainder Theorem, the general solution to the given pair of congruences is

$$x \equiv 3741 \pmod{9660}.$$

2: Solve the following pairs of congruences.

(a) $15x \equiv 4 \pmod{26}$

$24x \equiv 6 \pmod{63}$

Solution: First we solve the linear congruence $15x = 4 \pmod{26}$. By inspection, one solution is $x = 2$ and we have $\gcd(15, 26) = 1$, and so by the Linear Congruence Theorem, the general solution is $x \equiv 2 \pmod{26}$. Next we solve $24x \equiv 6 \pmod{63}$. We need $24x + 63y = 6$. The Euclidean Algorithm gives

$$63 = 2 \cdot 24 + 15, \quad 24 = 1 \cdot 15 + 9, \quad 15 = 1 \cdot 9 + 6, \quad 9 = 1 \cdot 6 + 3, \quad 6 = 2 \cdot 3 + 0$$

so we have $\gcd(24, 63) = 3$, and then Back-Substitution gives

$$1, -1, 2, -3, 8$$

so we have $(24)(8) + (63)(-3) = 3$. Multiply both sides by 2 to get $(24)(16) + (63)(-6) = 6$. Thus one solution is $x = 16$. Note that $\frac{63}{3} = 21$, so by the Linear Congruence Theorem, the general solution to the congruence $24x \equiv 6 \pmod{63}$ is $x \equiv 16 \pmod{21}$. Thus the original pair of congruences is equivalent to the pair of congruences

$$\begin{aligned} x &\equiv 2 \pmod{26} \\ x &\equiv 16 \pmod{21} \end{aligned}$$

For x to be a solution we need $x = 2 + 26r$ and $x = 16 + 21s$ for some integers r and s , so we must have $2 + 26r = 16 + 21s$, that is $26r - 21s = 14$. The Euclidean Algorithm gives $26 = 1 \cdot 21 + 5$, $21 = 4 \cdot 5 + 1$ so we have $\gcd(26, 21) = 1$, and then Back-Substitution gives $1, -4, 5$, so we have $(26)(-4) - (21)(-5) = 1$. Multiply both sides by 14 to get $(26)(-56) - (21)(-70) = 14$. Thus one solution is $(r, s) = (-56, -70)$ and the general solution is $(r, s) = (-56, -70) + k(21, 26)$, $k \in \mathbf{Z}$, so we have $r \equiv -56 \equiv 7 \pmod{21}$. Thus one solution to the pair of congruences is $x = 2 + 26r = 2 + 26 \cdot 7 = 184$, and by the Chinese Remainder Theorem, the general solution is

$$x \equiv 184 \pmod{546}.$$

(b) $2x^3 \equiv 7 \pmod{9}$

$x^2 \equiv x + 6 \pmod{35}$

Solution: First we solve the congruence $2x^3 \equiv 7 \pmod{9}$ by making a table of values modulo 9.

x	0	1	2	3	4	5	6	7	8
x^2	0	1	4	0	7	7	0	4	1
x^3	0	1	8	0	1	8	0	1	8
$2x^3$	0	2	7	0	2	7	0	2	7

From the table, we see that $2x^3 \equiv 7 \pmod{9}$ when $x \equiv 2 \pmod{3}$.

Next we solve the congruence $x^2 \equiv x + 6 \pmod{35}$. By the Chinese Remainder Theorem, x satisfies this single congruence if and only if x satisfies the pair of congruences $x^2 \equiv x + 6 \pmod{5}$ and $x^2 \equiv x + 6 \pmod{7}$. We make a table of values modulo 5 and a table of values modulo 7.

x	0	1	2	3	4	x	0	1	2	3	4	5	6
x^2	0	1	4	4	1	x^2	0	1	4	2	2	4	1
$x + 6$	1	2	3	4	0	$x + 6$	6	0	1	2	3	4	5

From the first table we see that $x^2 \equiv x + 6 \pmod{5}$ when $x = 3 \pmod{5}$, and from the second table we see that $x^2 \equiv x + 6 \pmod{7}$ when $x = 3$ or $5 \pmod{7}$. By the Chinese Remainder Theorem, we have $x \equiv 3 \pmod{5}$ and $x \equiv 3 \pmod{7}$ when $x \equiv 3 \pmod{35}$. Also, note that $x = -2$ is one solution to $x \equiv 3 \pmod{5}$ and $x \equiv 5 \pmod{7}$, so by the Chinese Remainder Theorem, the general solution to this pair of congruences is $x \equiv -2 \equiv 33 \pmod{35}$. Thus we have shown that $x^2 \equiv x + 6 \pmod{35}$ when $x \equiv 3$ or $33 \pmod{35}$.

We have shown that the original pair of congruences is equivalent to

$$x \equiv 2 \pmod{3} \quad \text{and} \quad x \equiv 3 \text{ or } 33 \pmod{35}.$$

Note that $x = 38$ is one solution to the pair of congruences $x \equiv 2 \pmod{3}$ and $x \equiv 3 \pmod{33}$, so by the Chinese Remainder Theorem, the general solution to this pair is $x \equiv 38 \pmod{105}$. Also, note that $x = 68$ is one solution to the pair of congruences $x \equiv 2 \pmod{3}$ and $x \equiv 33 \pmod{35}$, and so by the Chinese Remainder Theorem, the general solution to this pair is $x \equiv 68 \pmod{105}$. Thus the complete solution to the original pair of congruences is

$$x \equiv 38 \text{ or } 68 \pmod{105}.$$

3: Chinese generals used to count their troops by telling them to form groups of some size n , and then counting the number of troops left over. Suppose there were 5000 troops before a battle, and after the battle it was found that when the troops formed groups of 5 there was 1 left over, when they formed groups of 7 there were none left over, when they formed groups of 11 there were 6 left over, and when they formed groups of 12 there were 5 left over. How many troops survived the battle?

Solution: We must solve the system of congruences

$$\begin{aligned}x &\equiv 1 \pmod{5} \\x &\equiv 0 \pmod{7} \\x &\equiv 6 \pmod{11} \\x &\equiv 5 \pmod{12}.\end{aligned}$$

Note that $x = 21$ is a solution to the first pair of congruences so by the Chinese Remainder Theorem, the general solution to the first pair is $x \equiv 21 \pmod{35}$. Also note that $x = 17$ is a solution to the second pair of congruences, so the general solution is $x \equiv 17 \pmod{132}$. Thus we must solve the pair of congruences

$$\begin{aligned}x &\equiv 21 \pmod{35} \\x &\equiv 17 \pmod{132}.\end{aligned}$$

For x to be a solution we need $x = 21 + 35r$ and $x = 17 + 132s$ for some integers r and s , so we must have $21 + 35r = 17 + 132s$, that is $35r - 132s = -4$. The Euclidean Algorithm gives

$$132 = 3 \cdot 35 + 27, \quad 35 = 1 \cdot 27 + 8, \quad 27 = 3 \cdot 8 + 3, \quad 8 = 2 \cdot 3 + 2, \quad 3 = 1 \cdot 2 + 1$$

so we have $\gcd(35, 132) = 1$, and then Back-Substitution gives

$$1, -1, 3, -10, 13, -49$$

and so we have $(35)(-49) - (132)(-13) = 1$. Multiply both sides by -4 to get $(35)(196) - (132)(52) = -4$. Thus one solution to the linear diophantine equation $35r - 132s = -4$ is given by $(r, s) = (196, 52)$, and by the Linear Diophantine Equation Theorem, the general solution is $(r, s) = (196, 52) + k(132, 35)$, $k \in \mathbf{Z}$, so we have $r \equiv 196 \equiv 64 \pmod{132}$. Thus one solution to the above pair of congruences is $x = 21 + 35r = 21 + (35)(64) = 2261$. Note that $35 \cdot 132 = 4620$, so by the Chinese Remainder Theorem, the general solution to the pair of congruences is

$$x \equiv 2261 \pmod{4620}.$$

Since $2261 - 4620 < 0$ and $2261 + 4620 > 5000$, there must be 2261 troops remaining after the battle.

4: (a) Find $\phi(n)$ for all integers n with $20 \leq n \leq 30$.

Solution: We have

$$\begin{aligned}
 \phi(20) &= \phi(2^2 \cdot 5) = \phi(2^2)\phi(5) = 2^1(2-1) \cdot 4 = 8 \\
 \phi(21) &= \phi(3 \cdot 7) = \phi(3)\phi(7) = 2 \cdot 6 = 12 \\
 \phi(22) &= \phi(2 \cdot 11) = \phi(2)\phi(11) = 1 \cdot 10 = 10 \\
 \phi(23) &= 22 \\
 \phi(24) &= \phi(2^3 \cdot 3) = \phi(2^3)\phi(3) = 2^2(2-1) \cdot 2 = 8 \\
 \phi(25) &= \phi(5^2) = 5^1(5-1) = 20 \\
 \phi(26) &= \phi(2 \cdot 13) = \phi(2)\phi(13) = 1 \cdot 12 = 12 \\
 \phi(27) &= \phi(3^3) = 3^2(3-1) = 18 \\
 \phi(28) &= \phi(2^2 \cdot 7) = \phi(2^2)\phi(7) = 2^1(2-1) \cdot 6 = 12 \\
 \phi(29) &= 28 \\
 \phi(30) &= \phi(2 \cdot 3 \cdot 5) = \phi(2)\phi(3)\phi(5) = 1 \cdot 2 \cdot 4 = 8.
 \end{aligned}$$

(b) Find all positive integers n such that $\phi(n) = 60$.

Solution: We begin by finding $\phi(p^k)$ for all prime powers p^k for which $\phi(p^k) \leq 60$, and we list those for which $\phi(p^k) \mid 60$:

$$\begin{aligned}
 \phi(2) &= 1 & \phi(3) &= 2 & \phi(5) &= 4 & \phi(7) &= 6 & \phi(11) &= 10 & \phi(13) &= 12 & \phi(31) &= 30 & \phi(61) &= 60 \\
 \phi(4) &= 2 & \phi(9) &= 6 & \phi(25) &= 20 \\
 \phi(8) &= 4
 \end{aligned}$$

Note that except for $\phi(2)$, these are all even, and the only ways to factor 60 into two even integers are $60 = 2 \cdot 30$ and $60 = 6 \cdot 10$. When n has exactly one prime factor, say $n = p^k$, so that we have $60 = \phi(n) = \phi(p^k)$, we must have $n = p^k = 61$. When n has exactly two prime factors, say $n = p^k q^l$ with $\phi(p^k) \leq \phi(q^l)$, so that $60 = \phi(n) = \phi(p^k)\phi(q^l)$, we must have one of the following situations:

$$\begin{aligned}
 \phi(p^k) &= 1 \text{ and } \phi(q^l) = 60, \text{ in which case } p^k = 2 \text{ and } q^l = 61 \\
 \phi(p^k) &= 2 \text{ and } \phi(q^l) = 30, \text{ in which case } p^k = 2^2 \text{ or } 3 \text{ and } q^l = 31 \\
 \phi(p^k) &= 6 \text{ and } \phi(q^l) = 10, \text{ in which case } p^k = 3^2 \text{ or } 7 \text{ and } q^l = 11.
 \end{aligned}$$

When n has exactly three prime factors, say $n = p^k q^l r^m$ with $\phi(p^k) \leq \phi(q^l) \leq \phi(r^m)$, so that we have $60 = \phi(n) = \phi(p^k)\phi(q^l)\phi(r^m)$, we must have one of the following:

$$\begin{aligned}
 \phi(p^k) &= 1, \phi(q^l) = 2 \text{ and } \phi(r^m) = 30, \text{ in which case } p^k = 2, q^l = 3 \text{ and } r^m = 31 \\
 \phi(p^k) &= 1, \phi(q^l) = 6 \text{ and } \phi(r^m) = 10, \text{ in which case } p^k = 2, q^l = 3^2 \text{ or } 7 \text{ and } r^m = 11.
 \end{aligned}$$

Thus the possible values of n are

$$61, 2 \cdot 61, 2^2 \cdot 31, 3 \cdot 31, 3^2 \cdot 11, 7 \cdot 11, 2 \cdot 3 \cdot 31, 2 \cdot 3^2 \cdot 11, 2 \cdot 7 \cdot 11.$$

From smallest to largest, the possible values for n are 61, 77, 93, 99, 122, 124, 154, 186 and 198.

5: (a) Show that $2^{340} \equiv 1 \pmod{341}$.

Solution: Note that $341 = 11 \cdot 31$. By Fermat's Little Theorem, we have $2^{10} \equiv 1 \pmod{11}$ and so we have $2^{340} \equiv (2^{10})^{34} \equiv 1^{34} \equiv 1 \pmod{11}$. Also, notice that $2^5 = 32 \equiv 1 \pmod{31}$, and so we have $2^{340} \equiv (2^5)^{68} \equiv 1^{68} \equiv 1 \pmod{31}$. Thus by the Chinese Remainder Theorem, $2^{340} \equiv 1 \pmod{341}$.

(We remark that this gives a counterexample to the conjecture we made in our solution to Problem 4(b) of Assignment 1).

(b) Show that $21 \mid (4n^7 + 7n^3 + 10n)$ for all integers n .

Solution: Note that $21 = 3 \cdot 7$, so we shall work modulo 3 and modulo 7. By Fermat's Little Theorem, we have $n^7 \equiv n^5 \equiv n^3 \equiv n \pmod{3}$ for all n , and so

$$4n^7 + 7n^3 + 10n \equiv 4n + 7n + 10n \equiv 21n \equiv 0 \pmod{3}.$$

Also, by Fermat's Little Theorem again, we have $n^7 \equiv n \pmod{7}$ for all n and so

$$4n^7 + 7n^3 + 10n \equiv 4n + 7n^3 + 10n \equiv 7n^3 + 14n \equiv 0 \pmod{7}.$$

By the Chinese Remainder Theorem, we have $4n^7 + 7n^3 + 10n \equiv 0 \pmod{21}$, that is $21 \mid (4n^7 + 7n^3 + 10n)$, for all integers n .

(c) Find a positive integer k such that the number 3^k ends with the digits 0001.

Solution: By the Euler Fermat Theorem, we have $3^{\phi(10000)} \equiv 1 \pmod{10000}$, that is $3^{\phi(10000)} = 1 + 10000l$ for some integer l . Thus $3^{\phi(10000)}$ ends with the digits 0001, so we can take

$$k = \phi(10000) = \phi(2^4)\phi(5^4) = 2^3(2-1) \cdot 5^3(5-1) = 8 \cdot 500 = 4000.$$

(In fact we can take k to be any multiple of 500 because we have $3^4 \equiv 81 \equiv 1 \pmod{2^4}$ which implies that $3^{500} = (3^4)^{125} = 1^{125} \equiv 1 \pmod{2^4}$, and we have $3^{500} \equiv 3^{\phi(5^4)} \equiv 1 \pmod{5^4}$).

(d) Let $n = p^k$ for some positive integer k where p is prime with $p \equiv 3 \pmod{4}$. Show that the congruence $x^2 \equiv -1 \pmod{n}$ has no solution.

Solution: Since $p \equiv 3 \pmod{4}$ we have $(p-1) \equiv 2 \pmod{4}$ and we have $p^{k-1} \equiv 1$ or $3 \pmod{4}$ (1 if k is odd and 3 if k is even), and so $\phi(n) = \phi(p^k) = p^{k-1}(p-1) \equiv 2 \pmod{4}$. Thus $\phi(n) = 2 + 4l$ for some integer l , so $\phi(n)/2 = 1 + 2l$, which is an odd number. If we had $x^2 \equiv -1 \pmod{n}$ then we would have $x^{\phi(n)} \equiv (x^2)^{\phi(n)/2} \equiv (-1)^{\phi(n)/2} \equiv -1 \pmod{n}$, which would contradict the Euler Fermat Theorem.