

1: Solve the following pairs of congruences.

(a) $x \equiv 5 \pmod{7}$

$$x \equiv 8 \pmod{15}$$

(b) $x \equiv 45 \pmod{84}$

$$x \equiv 61 \pmod{115}$$

2: Solve the following pairs of congruences.

(a) $15x \equiv 4 \pmod{26}$

$$24x \equiv 6 \pmod{63}$$

(b) $2x^3 \equiv 7 \pmod{9}$

$$x^2 \equiv x + 6 \pmod{35}$$

3: Chinese generals used to count their troops by telling them to form groups of some size n , and then counting the number of troops left over. Suppose there were 5000 troops before a battle, and after the battle it was found that when the troops formed groups of 5 there was 1 left over, when they formed groups of 7 there were none left over, when they formed groups of 11 there were 6 left over, and when they formed groups of 12 there were 5 left over. How many troops survived the battle?

4: (a) Find $\phi(n)$ for all integers n with $20 \leq n \leq 30$.

(b) Find all positive integers n such that $\phi(n) = 60$.

5: (a) Show that $2^{340} \equiv 1 \pmod{341}$.

(b) Show that $21 \mid (4n^7 + 7n^3 + 10n)$ for all integers n .

(c) Find a positive integer k such that the number 3^k ends with the digits 0001.

(d) Let $n = p^k$ for some positive integer k where p is prime with $p \equiv 3 \pmod{4}$. Show that the congruence $x^2 \equiv -1 \pmod{n}$ has no solution.