
MATH 135 Algebra, Solutions to Assignment 8

1: Solve each of the following linear congruences.
(a) 5x ≡ 4 (mod 7)

Solution: We make a table of values modulo 7.
x 0 1 2 3 4 5 6
5x 0 5 3 1 6 4 2

From the table we see that 5x ≡ 4 (mod 7) when x ≡ 5 (mod 7).
(b) 40x ≡ 15 (mod 65)

Solution: We have 40x ≡ 15 (mod 65) when 40x = 15 + 65k for some integer k, or equivalently when
40x + 65y = 15 for some integer y. The Euclidean Algorithm gives

65 = 1 · 40 + 25 , 40 = 1 · 25 + 15 , 25 = 1 · 15 + 10 , 15 = 1 · 10 + 5 , 10 = 2 · 5 + 0

so we have gcd(40, 65) = 5. Then Back-Substitution gives the sequence

1 , −1 , , 2 − 3 , 5

so we have 40(5) + 65(−3) = 5. Multiply both sides by 15
5 = 3 to get 40(15) + 65(−9) = 15. Thus one

solution to the given congruence is x = 15. Note that 65
5 = 13, so by the Linear Congruence Theorem, the

general solution is x ≡ 15 ≡ 2 (mod 13). Equivalently, x ≡ 2, 15, 28, 41 or 54 (mod 65).
(c) 391x ≡ 119 (mod 1003)

Solution: We have 391x ≡ 119 (mod 1003) when 391x + 1003y = 119 for some integer y. The Euclidean
Algorithm gives

1003 = 2 · 391 + 21 , 391 = 1 · 221 + 170 , 221 = 1 · 170 + 51 , 170 = 3 · 51 + 17 , 51 = 3 · 17 + 0

so gcd(391, 1003) = 17. Back-Substitution then gives

1 , −3 , 4 , −7 , 18

so we have 391(18) + (1003)(−7) = 17. Multiply both sides by 119
17 = 7 to get 391(126) + 1003(−49) = 119.

Thus one solution to the given congruence is x = 126. Note that 1003
17 = 59, so by the Linear Congruence

Theorem, the general solution is x ≡ 126 ≡ 8 (mod 59).



2: (a) Find [12]−1 in Z29.

Solution: We must find x such that 12x ≡ 1 (mod 29), that is 12x + 29y = 1 for some integer y. The
Euclidean Algorithm gives

29 = 2 · 12 + 5 , 12 = 2 · 5 + 2 , 5 = 2 · 2 + 1 , 2 = 2 · 1 + 0

so gcd(12, 29) = 1, and then Back-Substitution gives

1 , −2 , 5 , −12

so we have 12(−12) + 29(5) = 1. One solution to the congruence is x = −12, so [12]−1 = [−12] = [17] in Z29.
(b) Solve [34]x = [18] in Z46.

Solution: For x ∈ Z, to get 34x ≡ 18 (mod 46), we need 34x + 46y = 18 for some integer y. The Euclidean
Algorithm gives

46 = 1 · 34 + 12 , 34 = 2 · 12 + 10 , 12 = 1 · 10 + 2 , 10 = 5 · 2 + 0

so gcd(10, 46) = 2, and then Back-Substitution then gives

1 , −1 , 3 , −4

so we have 34(−4) + 46(3) = 2. Multiply both sides by 18
2 = 9 to get 34(−36) + 46(27) = 18. Thus one

solution to the congruence is x = −36. Note that 46
2 = 23, so by the Linear Congruence Theorem, the

general solution to the congruence is x ≡ −36 ≡ 10 (mod 23). Equivalently, x ≡ 10 or 33 (mod 46). Thus
for x ∈ Z46, there are two solutions to the given equation, namely x = [10] and x = [33].
(c) In Z20, solve the pair of simultaneous equations

[7]x + [12]y = [6]
[6]x + [11]y = [13]

Solution: Note that [7] is invertible in Z20, indeed by inspection, we have [7]−1 = [3]. Multiply the first
equation by [3] to get x + [16]y = [18], that is

x = [18]− [16]y = [4]y − [2] .

Put this into the second equation to get [6]
(
[4]y − [2]

)
+ [11]y = [13], that is [4]y − [12] + [11]y = [13], or

equivalently [15]y = [5]. We have

[15]y = [5] in Z20 ⇐⇒ 15y ≡ 5 (mod 20)⇐⇒ 3y ≡ 1 (mod 4)⇐⇒ y ≡ 3 (mod 4)
⇐⇒ y = [3], [7], [11], [15] or [19] in Z20 .

Put each of these values for y back in the equation x = [4]y − [2] to get the solutions

(x, y) =
(
[10], [3]

)
,
(
[6], [7]

)
,
(
[2], [11]

)
,
(
[18], [15]

)
,
(
[14], [19]

)
.



3: (a) Find the inverse of every invertible element in Z15.

Solution: The invertible elements are the elements [a] with gcd(a, 15) = 1, that is

[a] = [1] , [2] , [4] , [7] , [8] , [11] , [13] , [14] .

Of course [1]−1 = [1]. We find a few multiples of [2]; we have [2][2] = [4], [2][4] = [8], [2][7] = [14] = [−1].
Since [2][7] = [−1], we have [2]−1 = [−7] = [8], [8]−1 = [2], [7]−1 = [−2] = [13] and [13]−1 = [7]. Also, we
have [4][4] = [16] = [1] so that [4]−1 = [4], and [11][11] = [−4][−4] = [4][4] = [1] so that [11]−1 = [11], and
[14][14] = [−1][−1] = [1] so that [14]−1 = [14]. We summarize in the following table of inverses.

x [1] [2] [4] [7] [8] [11] [13] [14]
x−1 [1] [8] [4] [13] [2] [11] [7] [14]

(b) With the help of the following list of powers of 5 mod 23, solve [11]x18 = [15] in Z23.

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
5k 1 5 2 10 4 20 8 17 16 11 9 22 18 21 13 19 3 15 6 7 12 14

Solution: Note that by Fermat’s Little Theorem, the list of powers of 5 modulo 23 repeats every 22 terms,
so for integers k and l we have [5]k = [5]l in Z23 ⇐⇒ k ≡ l (mod 22). Also notice, from the given list, that
every non-zero element in Z23 is of the form [5]m for some integer m. Clearly x = [0] is not a solution to the
equation [11]x18 = [15] in Z23. Let x be any non-zero element in Z23, and write x = [5]m. We have

[11]x18 = [15]⇐⇒ [5]9x18 = [5]17 ⇐⇒ x18 = [5]17−9 = [5]8 ⇐⇒
(
[5]m

)18 = [5]8

⇐⇒ [5]18m = [5]8 ⇐⇒ 18m ≡ 8 (mod 22)⇐⇒ 9m ≡ 4 (mod 11) .

By inspection, one solution to the congruence 9m ≡ 4 (mod 11) is given by m = −2, so the general solution
is m ≡ −2 ≡ 9 (mod 11), or equivalently m = 9 or 20 (mod 22). Thus the solutions to the given equation
are x = [5]m where m = 9 or 20, that is x = [11] or [12].



4: (a) Find 17458 (mod 13).

Solution: Since 17 ≡ 4 (mod 13) we have 17458 ≡ 4458 (mod 13). By Fermat’s Little Theorem, the list of
powers of 4 modulo 13 repeats every 12 terms, and we have 458 ≡ 2 (mod 12), and so

17458 ≡ 4458 ≡ 42 ≡ 16 ≡ 3 (mod 13) .

(b) Find 473854
(mod 11).

Solution: Since 47 ≡ 3 (mod 11) we have 473854 ≡ 33854
(mod 11). We make a list of powers of 3 modulo 11.

k 0 1 2 3 4 5

3k 1 3 9 5 4 1

We see that the list of powers of 3 modulo 11 repeats every 5 terms, so we calculate 3854 (mod 5). Since
38 ≡ 3 (mod 5) we have 3854 ≡ 354 (mod 5). We make a list of powers of 3 modulo 5.

k 0 1 2 3 4

3k 1 3 4 2 1

We see that the list repeats every 4 terms (this also follows from Fermat’s Little Theorem), and we have
54 ≡ 2 (mod 4), and so 354 ≡ 32 ≡ 4 (mod 5). Thus

473854
≡ 33854

≡ 3354
≡ 332

≡ 34 ≡ 4 (mod 11) .

(c) Find
300∑
k=1

kk (mod 7).

Solution: We begin by making a table of powers modulo 7.

k 0 1 2 3 4 5 6

2k 1 2 4 1 2 4 1
3k 1 3 2 6 4 5 1
4k 1 4 2 1 4 2 1
5k 1 5 4 6 2 3 1
6k 1 6 1 6 1 6 1

For a non-negative integer n, let S(n) ≡ n0 + n1 + n2 + n3 + n4 + n5 (mod 7). Using the above table, we
find that S(2) = S(3) = S(4) = S(5) = S(6) = 0. We have

300∑
k=1

kk = 11 + 22 + 33 + · · ·+ 300300

≡
(
11 + 22 + · · ·+ 66

)
+
(
07 + 18 + 29 + · · ·+ 613

)
+
(
014 + 115 + 216 + · · ·+ 620

)
+ · · ·+

(
0294 + 1295 + 2296 + · · ·+ 6300

)
(mod 7)

≡
(
07 + 014 + · · ·+ 0294

)
+
(
11 + 18 + 115 + · · ·+ 1295

)
+
(
22 + 29 + 216 + · · ·+ 2296

)
+ · · ·+

(
66 + 613 + 620 + · · ·+ 6300

)
(mod 7) .

The term
(
11 + 18 + 115 + · · ·+ 1295

)
is the sum of 43 copies of 1, so it is equal to 43 ≡ 1 (mod 7). Consider

the term
(
22 + 29 + 216 + · · ·+ 2296

)
. Since the list of powers of 2 repeats every 6 terms, we have(

22 + 29 + 216 + · · ·+ 2296
)

=
(
22 + (23 + 24 + 25 + 20 + 21 + 22) + (23 + 24 + 25 + 20 + 21 + 22)

+ · · ·+ (23 + 24 + 25 + 20 + 21 + 22)
)

= 22 + 7 S(2) = 22 + 7 · 0 = 22 .

Similarly,
(
33 + 310 + 317 + · · ·+ 3297

)
= 33 and

(
44 + 411 + 418 + · · ·+ 4298

)
= 44 and so on. Thus

300∑
k=1

kk = 0 + 1 + 22 + 33 + 44 + 55 + 66 ≡ 0 + 1 + 4 + 6 + 4 + 3 + 1 ≡ 5 (mod 7) .



5: For this problem, you may find it useful to read some of sections 9.1 and 9.9 in the text. In particular in
section 9.1, have a look at the example involving long division in Z5 on page 231, and see the Remainder
Theorem 9.12 and the Factor Theorem 9.14 on page 232, and in section 9.9, look at example 9.92 on page
260. It is also worth noticing that Theorem 9.17 in section 9.1 does not always hold for polynomials over
Zn.
(a) Solve x2 +3x+2 ≡ 0 (mod 6), then find two different ways to factor the polynomial f(x) = x2 +[3]x+[2]
over Z6.

Solution: We make a table of values modulo 6.
x 0 1 2 3 4 5
x2 0 1 4 3 4 1

x2 + 3x + 2 2 0 0 2 0 0

We see that x2 + 3x + 2 ≡ 0 (mod 6) when x ≡ 1, 2, 4 or 5 (mod 6). Thus the degree 2 polynomial
f(x) = x2 + [3]x + [2] has the four roots x = [1], [2], [4], [6] in Z6. Dividing f(x) by

(
x− [1]

)
gives

f(x) =
(
x− [1]

)(
x + [4]

)
=
(
x− [1]

)(
x− [2]

)
and dividing f(x) by

(
x− [4]

)
gives

f(x) =
(
x− [4]

)(
x + [1]

)
=
(
x− [4]

)(
x− [5]

)
.

(b) Solve x2 + 2x + 26 ≡ 0 (mod 125), then find two ways to factor f(x) = x2 + [2]x + [26] over Z125.

Solution: Note that if x2 + 2x + 26 ≡ 0 (mod 125) then we also have x2 + 2x + 26 ≡ 0 (mod 25) and
x2 +2x+26 ≡ 0 (mod 5). Let us begin by solving x2 +2x+26 ≡ 0 (mod 5), that is x2 +2x+1 ≡ 0 (mod 5).
We make a table of values modulo 5.

x 0 1 2 3 4
x2 0 1 4 4 1

x2 + 2x + 1 1 4 4 1 0

We see that x2 + 2x + 1 ≡ 0 (mod 5) when x = 4 (mod 5).
Next we solve x2+2x+26 ≡ 0 (mod 25), that is x2+2x+1 ≡ 0 (mod 25). To have x2+2x+1 ≡ 0 (mod 25)

we must have x2 + 2x + 1 ≡ 0 (mod 5), so we must have x ≡ 4 (mod 5), that is x = 4 + 5k for some integer
k. When x = 4 + 5k we have

x2 + 2x + 1 ≡ (4 + 5k)2 + 2(4 + 5k) + 1 ≡ 16 + 40k + 25k2 + 8 + 10k + 1 ≡ 25k2 + 50k + 25 ≡ 0 (mod 25) .

Thus x2 + 2x + 26 ≡ 0 (mod 25) whenever x ≡ 4 (mod 5).
Finally, we solve x2 + 2x + 26 ≡ 0 (mod 125). To have x2 + 2x + 26 ≡ 0 (mod 125), we must have

x2 + 2x + 26 ≡ 0 (mod 25), so we must have x ≡ 4 (mod 5). When x = 4 + 5k we have

x2 + 2x + 26 ≡ (4 + 5k)2 + 2(4 + 5k) + 26 ≡ 16 + 40k + 25k2 + 8 + 10k + 26 ≡ 25k2 + 50k + 50 (mod 125) .

Thus

x2 + 2x + 26 ≡ 0 (mod 125)⇐⇒ 25k2 + 50k + 50 ≡ 0 (mod 125)⇐⇒ k2 + 2k + 2 ≡ 0 (mod 5) .

We make a table of values modulo 5.
k 0 1 2 3 4

k2 + 2k + 2 2 0 0 2 1

We see that k2 + 2k + 2 ≡ 0 (mod 5) when k ≡ 1 or 2 (mod 5), that is k = 1 + 5l or k = 2 + 5l for some
integer l. When k = 1 + 5l we have x = 4 + 5k = 4 + 5(1 + 5l) = 9 + 25l, and when k = 2 + 5l we have
x = 4 + 5k = 4 + 5(2 + 5l) = 14 + 25l. Thus the solutions are x = 9 or 14 (mod 25), that is

x = 9 , 14 , 34 , 39 , 59 , 64 , 84 , 89 , 109 , 114 (mod 125) .

Thus the degree two polynomial f(x) = x2 + [2]x + [26] has 10 roots in Z125. We can factor f(x) in many
different ways, indeed we have

f(x)=
(
x−[9]

)(
x−[114]

)
=
(
x−[14]

)(
x−[109]

)
=
(
x−[34]

)(
x−[89]

)
=
(
x−[39]

)(
x−[84]

)
=
(
x−[59]

)(
x−[64]]

)
.


