MATH 135 Algebra, Solutions to Assignment 8

: Solve each of the following linear congruences.

(a) 5z =4 (mod 7)

Solution: We make a table of values modulo 7.
z 0

1 2 3 4 5
5z 0 5 3 1 6 4
(
(b) 40z = 15 (mod 65)

Solution: We have 40x = 15 (mod 65) when 40z = 15 + 65k for some integer k, or equivalently when
40z + 65y = 15 for some integer y. The Euclidean Algorithm gives

65=1-40+25, 40=1-25+15, 25=1-154+10, 15=1-10+5, 10=2-540
so we have ged(40,65) = 5. Then Back-Substitution gives the sequence
1, -1,, 2 =3, 5
so we have 40(5) 4+ 65(—3) = 5. Multiply both sides by 12 = 3 to get 40(15) + 65(—9) = 15. Thus one

solution to the given congruence is = 15. Note that 6—55 = 13, so by the Linear Congruence Theorem, the

general solution is = 15 = 2 (mod 13). Equivalently, = = 2,15,28,41 or 54 (mod 65).
(c) 391z = 119 (mod 1003)

Solution: We have 391z = 119 (mod 1003) when 391z + 1003y = 119 for some integer y. The Euclidean
Algorithm gives

1003=2-391+21, 391=1-221+170, 221=1-170+51, 170=3-51+17, 51=3-17+0
so ged(391,1003) = 17. Back-Substitution then gives
1, =3, 4, -7, 18

so we have 391(18) + (1003)(—7) = 17. Multiply both sides by 4 = 7 to get 391(126) + 1003(—49) = 119.
Thus one solution to the given congruence is x = 126. Note that %23 = 59, so by the Linear Congruence
Theorem, the general solution is = 126 = 8 (mod 59).



2: (a) Find [12]7! in Zagy.

Solution: We must find x such that 12z = 1 (mod 29), that is 12z + 29y = 1 for some integer y. The
Euclidean Algorithm gives

29=2.12+45, 12=2-5+2, 5=2-2+1, 2=2-140

so ged(12,29) = 1, and then Back-Substitution gives

1, -2, 5, —12
so we have 12(—12) +29(5) = 1. One solution to the congruence is z = —12, so [12]~! = [~12] = [17] in Zag.
(b) Solve [34]x = [18] in Zyg.
Solution: For = € Z, to get 34x = 18 (mod 46), we need 34z + 46y = 18 for some integer y. The Euclidean
Algorithm gives

46=1-34+12, 34=2-12410, 12=1-104+42, 10=5-240

so ged(10,46) = 2, and then Back-Substitution then gives

1, -1, 3, —4

so we have 34(—4) + 46(3) = 2. Multiply both sides by & = 9 to get 34(—36) + 46(27) = 18. Thus one
solution to the congruence is x = —36. Note that 46 = 23 so by the Linear Congruence Theorem, the
general solution to the congruence is x = —36 = 10 (mod 23) Equivalently, = 10 or 33 (mod 46). Thus
for « € Z4g, there are two solutions to the given equation, namely z = [10] and x = [33].

(¢) In Zyg, solve the pair of simultaneous equations

(7] + [12]y = [6]

(6] + [11]y = [13]
Solution: Note that [7] is invertible in Zgg, indeed by inspection, we have [7]~! = [3]. Multiply the first
equation by [3] to get x + [16]y = [18], that is

z=[18] - [16]y [4ly —[2].
Put this into the second equation to get [6]([4]y — [2]) + [11]y = [13], that is [4]y — [12] + [11]y = [13], or
equivalently [15]y = [5]. We have
[15]y = [5] in Zgy <= 15y = 5 (mod 20) <= 3y =1 (mod 4) <= y = 3 (mod 4)
< y = [3],[7],[11],[15] or [19] in Zsg .
Put each of these values for y back in the equation z = [4]y — [2] to get the solutions
8

(amy) = ([10]7 [3])’ ([6]7 [7])7 ([2]7 [11])’ ([1 ]7 [15])’ ([14]7 [19]) :



3: (a) Find the inverse of every invertible element in Z5.

Solution: The invertible elements are the elements [a] with ged(a,15) = 1, that is

[a] = (1], 21, [4], [7], [8], [11], [13], [14].
Of course [1]7! = [1]. We find a few multiples of [2]; we have [2 ][ 1 = 14], [2][4] = [8], [2 ][ | = [14] = [-1].
Since [2][7] = [~1], we have [2]7! = [-7] = [§], [8] 7! = [2], [7]7! = [-2] = [13] and [13]7! = [7] Also, we
have [4][4] = [16] = [1] so that [4]7! = [4], and [11][11] = [—4][—4] = [4][4] = [1] so that [11]7! = [11], and
[14][14] = [-1][-1] = [1] so that [14] ! = [14]. We summarize in the following table of inverses.

e[ 2] [ 7 8 (1] 13 [14]
et [ 8 [ 3] 2 ] (7] [14]

(b) With the help of the following list of powers of 5 mod 23, solve [11]z'® = [15] in Za3.

k 01 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 19 20 21
51 5 210 420 8 17 16 11 9 22 18 21 13 19 3 15 6 7 12 14

Solution: Note that by Fermat’s Little Theorem, the list of powers of 5 modulo 23 repeats every 22 terms,
so for integers k and [ we have [5]* = [5]! in Zos <= k =1 (mod 22). Also notice, from the given list, that
every non-zero element in Zos is of the form [5]™ for some integer m. Clearly z = [0] is not a solution to the
equation [11]x'® = [15] in Zs3. Let o be any non-zero element in Zsz, and write x = [5]". We have

[11]2"® = [15] ¢= [5]°2' = [5]'T <= 2" = [5]'"" = [5]° «= (i5]"™) " = [5"
= [5]"*" = [5]® <= 18m = 8 (mod 22) <= 9m =4 (mod 11).

By inspection, one solution to the congruence 9m = 4 (mod 11) is given by m = —2, so the general solution
ism = —-2=9 (mod 11), or equivalently m = 9 or 20 (mod 22). Thus the solutions to the given equation
are ¢ = [5]"™ where m = 9 or 20, that is = = [11] or [12].



4: (a) Find 17%® (mod 13).

Solution: Since 17 = 4 (mod 13) we have 174%8 = 4%%® (mod 13). By Fermat’s Little Theorem, the list of
powers of 4 modulo 13 repeats every 12 terms, and we have 458 = 2 (mod 12), and so

17458 = 4458 = 42 = 16 = 3 (mod 13).

(b) Find 473" (mod 11).

Solution: Since 47 = 3 (mod 11) we have 4738% = 338™ (mod 11). We make a list of powers of 3 modulo 11.
E 01 2 3 45
3 13 95 41

We see that the list of powers of 3 modulo 11 repeats every 5 terms, so we calculate 38°4 (mod 5). Since
38 = 3 (mod 5) we have 38°% = 35! (mod 5). We make a list of powers of 3 modulo 5.

k01 2 3 4

3 1 3 4 2 1
We see that the list repeats every 4 terms (this also follows from Fermat’s Little Theorem), and we have
54 = 2 (mod 4), and so 3°* = 32 =4 (mod 5). Thus

4738 = 3387 = 337 = 33" = 34 = 4 (mod 11).

300
(c) Find 3 k* (mod 7).
k=1

Solution: We begin by making a table of powers modulo 7.

k01 2 3 45 6

281 2 41 2 4 1

31326 4 5 1

k14021 4 201

5* 1 5 46 2 3 1

6F 1 6 1 6 1 6 1
For a non-negative integer n, let S(n) = n® + n! +n2 +n® + n* + n® (mod 7). Using the above table, we
find that S(2) = S(3) = S(4) = S(5) = S(6) = 0. We have

300
Zk:" 11422 433+ ... 430030

= (11422 1 65) 4 (07 415420 4o 61) (01 4 115 4216 4. 4 620)
b (0294 41295 49296 4 6390 (mod 7)
= (07 4 0M e 029) (18418 4 100 4 1299) (22 429 4216 4 ... 4 22%)
bt (65465 4620 4 -+ 6%%) (mod 7).
The term (1! + 18 + 1'% + ... 4+ 1295) is the sum of 43 copies of 1, so it is equal to 43 = 1 (mod 7). Consider
the term (22 + 29 + 26 + ... 4 229)_ Since the list of powers of 2 repeats every 6 terms, we have
(2242°+ 210 4 4 229) = (22 4 (20 + 20+ 25 420 421 +22) 4 (20 + 20 + 25 + 20+ 21 4 22)
o (22420 425 + 20 4 20 4 27))
=22479(12)=2+7-0=22
Similarly, (3% + 310 4 317 + ... 4+ 3297) = 3% and (4* 4 4! + 418 4 ... + 429%) = 4% and so on. Thus
300

Dk =04+14+2243° 44 +5°+6°=0+14+4+6+4+3+1=5 (mod 7).
k=1



5: For this problem, you may find it useful to read some of sections 9.1 and 9.9 in the text. In particular in
section 9.1, have a look at the example involving long division in Zs5 on page 231, and see the Remainder
Theorem 9.12 and the Factor Theorem 9.14 on page 232, and in section 9.9, look at example 9.92 on page
260. It is also worth noticing that Theorem 9.17 in section 9.1 does not always hold for polynomials over
Z,.

(a) Solve 22 +3x+2 = 0 (mod 6), then find two different ways to factor the polynomial f(z) = 22+ [3]z+[2]
over Zg.

Solution: We make a table of values modulo 6.

x 01 2 3 45
22 01 4 3 4 1
24+3x+2 2 0 0 2 0 0

We see that 22 + 32 +2 = 0 (mod 6) when # = 1,2,40r 5 (mod 6). Thus the degree 2 polynomial
f(z) = 2% + [3]z + [2] has the four roots = = [1], [2], [4], [6] in Z¢. Dividing f(z) by (z — [1]) gives

f@) = (z = 1) (= +[4]) = (z - [1]) (= — [2])
and dividing f(z) by (z — [4]) gives
f@) = (z—[4]) (= + 1)) = (= - [4]) (= - [5]) -
(b) Solve 22 + 2z + 26 = 0 (mod 125), then find two ways to factor f(z) = 2% + [2]z + [26] over Z25.

Solution: Note that if 22 + 22 + 26 = 0 (mod 125) then we also have 22 + 2z + 26 = 0 (mod 25) and
22 +2x+26 = 0 (mod 5). Let us begin by solving 22+ 22+ 26 = 0 (mod 5), that is 22 + 22 +1 = 0 (mod 5).
We make a table of values modulo 5.

x 01 2 3 4
z? 01 4 4 1
2 4+2x4+1 1 4 4 1 0

We see that 22 4+ 22 + 1 =0 (mod 5) when x = 4 (mod 5).

Next we solve 224-22+26 = 0 (mod 25), that is 22+2x+1 = 0 (mod 25). To have z2+2x+1 = 0 (mod 25)
we must have 2 + 2z + 1 = 0 (mod 5), so we must have = 4 (mod 5), that is = 4 + 5k for some integer
k. When z = 4 + 5k we have

2% 4+ 22+ 1 = (4 +5k)% + 2(4 + 5k) + 1 = 16 + 40k + 25k% + 8 + 10k + 1 = 25k* + 50k + 25 = 0 (mod 25).

Thus 22 + 2z + 26 = 0 (mod 25) whenever = = 4 (mod 5).
Finally, we solve 22 + 2z + 26 = 0 (mod 125). To have x? + 2z + 26 = 0 (mod 125), we must have
2% + 22 426 = 0 (mod 25), so we must have z = 4 (mod 5). When z = 4 + 5k we have

22 + 22+ 26 = (4 +5k)% + 2(4 + 5k) + 26 = 16 + 40k + 25k? + 8 + 10k + 26 = 25k* + 50k + 50 (mod 125) .
Thus
2% 4 22 4 26 = 0 (mod 125) <= 25k? + 50k + 50 = 0 (mod 125) <= k* + 2k +2 =0 (mod 5).

We make a table of values modulo 5.

k 0 1 2
K*+2k+2 2 0 0

We see that k? + 2k +2 = 0 (mod 5) when k£ = 1 or 2 (mod 5), that is k = 1+ 5] or k = 2 + 5[ for some
integer I. When k& = 1 + 5] we have x = 4 + 5k = 4 + 5(1 4+ 51) = 9 + 251, and when k = 2 + 5] we have
x =4+ 5k =4+5(2+ 5]) = 14 + 25]. Thus the solutions are z = 9 or 14 (mod 25), that is

r=9,14,34,39,59, 64, 84,89, 109, 114 (mod 125).

3 4
2 1

Thus the degree two polynomial f(x) = 22 + [2]z + [26] has 10 roots in Zj25. We can factor f(x) in many
different ways, indeed we have

f(@)=(z—[9]) (v —[114]) = (z—[14]) (2—[109]) = (v —[34]) (z—[89]) = (x—[39]) (2 — [84]) = (z—[59]) (= —[64])).



