
MATH 135 Algebra, Solutions to Assignment 6

1: Find the prime factorization of each of the following integers.
(a) 30!

Solution: First, let us describe a method for finding the exponent of a prime p in the prime factorization of
n! for any positive integer n. Note that n! is the product of the numbers 1, 2, 3, · · · , n. The multiples of p

that occur in this list are p, 2p, 3p, · · · ,
⌊
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⌋
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multiples of p in the list. Similarly, there are⌊
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⌋
multiples of p2 in the list and
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⌋
multiples of p3 and so on. Thus the exponent of the prime p in the

prime factorization of n! is equal to
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⌋
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+ · · ·.

Using the above rule, the exponent of 2 in 30! is
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= 15 + 7 + 3 + 1 = 26, the

exponent of 3 is
⌊
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⌋
= 10 + 3 + 1 = 14, the exponent of 5 is

⌊
30
5

⌋
+
⌊

30
25

⌋
= 6 + 1 = 7, the

exponent of 7 is
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7

⌋
= 4, the exponent of 11 is
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⌋
= 2, the exponent of 13 is

⌊
30
13

⌋
= 3, and the exponents

of 17, 19, 23 and 29 are all equal to 1. Thus we have

30! = 226 · 314 · 57 · 74 · 112 · 132 · 17 · 19 · 23 · 29 .

(b)
(

30
10

)
Solution: Using our rule from part (a) we find that

10! = 25+2+1 · 33+1 · 52 · 7 , and

20! = 210+5+2+1 · 36+2 · 54 · 72 · 11 · 13 · 17 · 19

and so (
30
10

)
=

30!
10!20!

=
226 · 314 · 57 · 74 · 112 · 132 · 17 · 19 · 23 · 29

(28 · 34 · 52 · 7)(218 · 38 · 54 · 72 · 11 · 13 · 17 · 19)

= 32 · 5 · 7 · 11 · 13 · 23 · 29 .

(c) 236 − 1

Solution: Recall that a2−b2 = (a−b)(a+b), a3−b3 = (a−b)(a2 +ab+b2) and a3 +b3 = (a+b)(a2−ab+b2).
Use these rules repeatedly to get

236 − 1 = (218 − 1)(218 + 1)

= (29 − 1)(29 + 1)(26 + 1)(212 − 26 + 1)

= (23 − 1)(26 + 23 + 1)(23 + 1)(26 − 23 + 1)(22 + 1)(24 − 22 + 1)(212 − 26 + 1)
= 7 · 73 · 9 · 57 · 5 · 13 · 4033

= 7 · 73 · 32 · 3 · 19 · 5 · 13 · 4033 .

Note that 73 is prime, since b
√

73c = 8, and none of the primes 2, 3, 5, 7 is a factor of 73. To determine
whether 4033 is prime, we test every prime p with p ≤ b

√
4033c = 63 to see if it is a factor. Using the Sieve

of Eratosthenes, we find that the primes we need to check are

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61 ,

and when we test these we find that 37 is a factor, indeed 4033 = 37 · 109. Note that 109 is prime, since
b
√

109c = 10 and none of the primes 2, 3, 5, 7 is a factor of 109. Thus we obtain the prime factorization

236 − 1 = 33 · 5 · 7 · 13 · 19 · 37 · 73 · 109 .



2: (a) Let a = 8400. Find the number of positive factors of a.

Solution: First let us find a formula for the number of positive factors of a given positive integer n in terms
of its prime factorization. Suppose that a positive integer n has prime factorization n = p1

k1p2
k2 · · · pl

kl .
The positive divisors of n are the integers of the form p1

j1p2
j2 · · · pl

jl with 0 ≤ ji ≤ ki for each i. Since for
each i there are (ki + 1) possible choices for ji, the total number of positive factors of n is equal to

l∏
i=1

(ki + 1) = (k1 + 1)(k2 + 1) · · · (kl + 1) .

Note that the prime factorization of 8400 is 24 · 31 · 52 · 71, so by the above formula, it has 5 · 2 · 3 · 2 = 60
positive factors.
(b) Find the number of positive integers whose prime factors are 2, 3 and 5 and which have exactly 100
positive divisors.

Solution: The positive integers with prime factors 2, 3 and 5 are of the form 2k · 3l · 5m with k, l,m ≥ 1.
By the formula in part (a), this integer has (k + 1)(l + 1)(m + 1) positive divisors, so to have 100 positive
divisors, we need to have (k + 1)(l + 1)(m + 1) = 100. We list all possible ways to factor 100 into three
integers which are greater than 1:

2 · 2 · 25 4 · 5 · 5 5 · 2 · 10 10 · 2 · 5 25 · 2 · 2
2 · 5 · 10 5 · 4 · 5 10 · 5 · 2
2 · 10 · 5 5 · 5 · 4
2 · 25 · 2 5 · 10 · 2

Since there are 12 ways to factor 100 into three integers greater than 1, there are 12 such integers.

(c) Let a =
6∏

k=1

kk. Find the number of factors (positive or negative) of a which are either perfect squares

or perfect cubes (or both).

Solution: Let us find the prime factorization of a. We have

a =
6∏

k=1

kk = 11 · 22 · 33 · 44 · 55 · 66

= 22 · 33 · 28 · 55 · 26 · 36

= 216 · 39 · 55 .

The positive factors of a are of the form 2i · 3j · 5k with 0 ≤ i ≤ 16, 0 ≤ j ≤ 9, and 0 ≤ k ≤ 5. The factors of
a which are perfect squares are of the form 2i · 3j · 5k with i = 0, 2, 4, · · · , 16, j = 0, 2, 4, 6, 8, and k = 0, 2, 4.
There are 9 choices for i, 5 for j, and 3 for k, so the number of square factors is equal to 9 · 5 · 3 = 135. The
factors of a which are perfect cubes are of the form ±2i · 3j · 5k with i = 0, 3, 6, 9, 12, 15, j = 0, 3, 6, 9 and
k = 0, 3. There are 6 choices for i, 4 for j, and 2 for k, so there are 6 · 4 · 2 = 48 positive cube factors and
another 48 negative cube factors. Finally, note that some of the 48 positive cube factors are also squares,
indeed the sixth powers are both cubes and squares. The sixth powers are of the form 2i · 3j · 5k with
i = 0, 6, 12, j = 0, 6 and k = 0, so there are 3 · 2 · 1 = 6 sixth powers. Thus the total number of factors
(positive or negative) which are squares or cubes is 135 + 48 + 48− 6 = 225.



3: In parts (a) and (b), find the prime factorization of gcd(a, b) and of lcm(a, b).
(a) a = 24 · 32 · 5 · 11 and b = 22 · 53 · 7 · 11

Solution: We have gcd(a, b) = 22 · 5 · 11 and lcm(a, b) = 24 · 32 · 53 · 7 · 11.
(b) a = 25! and b = (5500)3(1001)2.

Solution: Using the formula that we found above in Problem 1(a) we have

a = 212+6+3+1 · 38+2 · 55+1 · 73 · 112 · 13 · 17 · 19 · 23

= 222 · 310 · 56 · 73 · 112 · 13 · 17 · 19 · 23

and we have
b = (22 · 53 · 11)3(7 · 11 · 13)2 = 26 · 59 · 72 · 115 · 132

and so
gcd(a, b) = 26 · 56 · 72 · 112 · 13

lcm(a, b) = 222 · 310 · 59 · 73 · 115 · 132 · 17 · 19 · 23

(c) Find the number of pairs of integers (a, b) with 0 ≤ a ≤ b such that gcd(a, b) = 60 and lcm(a, b) = 4200.

Solution: To get gcd(a, b) = 60 = 22 ·3·5 and lcm(a, b) = 4200 = 23 ·3·52 ·7, we must have a = 2j1 ·3j2 ·5j3 ·7j4

and b = 2k1 · 3k2 · 5k3 · 7k4 with {j1, k1} = {2, 3}, {j2, k2} = {1, 1}, {j3, k3} = {1, 2} and {j4, k4} = {0, 1}.
There are two choices for the pair (j1, k1), namely (j1, ki) = (2, 3) or (3, 2), only one choice for (j2, k2), namely
(j2, k2) = (1, 1), and two choices for each of the pairs (j3, k3) and (j4, k4). Thus there are 2 · 1 · 2 · 2 = 8
pairs of positive integers (a, b) with gcd(a, b) = 60 and lcm(a, b) = 4200. Four of these pairs (a, b) will have
a < b and the other four (obtained by interchanging a and b) will have a > b.

(
Incidentally, the four pairs

are (a, b) = (60, 4200), (120, 2100), (300, 840), (420, 600)
)
.



4: (a) Show that for all positive integers a and b we have a
∣∣b if and only if a2

∣∣b2.

Solution: Write a = p1
j1p2

j2 · · · pn
jn and b = p1

k1p2
k2 · · · pn

kn where the pi are distinct primes. Then we
have a2 = p1

2j1p2
2j2 · · · pn

2jn and b2 = p1
2k1p2

2k2 · · · pn
2kn , and so

a
∣∣b⇐⇒ ji ≤ ki for all i⇐⇒ 2ji ≤ 2ki for all i⇐⇒ a2

∣∣b2 .

(b) Show that for all positive integers a, b and c, if c
∣∣ab then c

∣∣ gcd(a, c) gcd(b, c).

Solution: Write a = p1
j1p2

j2 · · · pn
jn , b = p1

k1p2
k2 · · · pn

kn and c = p1
m1p2

m2 · · · pn
mn . Note that

ab = p1
j1+k1p2

j2+k2 · · · pn
jn+kn

gcd(a, c) = p1
min{j1,m1}p2

min{j2,m2} · · · pn
min{jn,mn}

gcd(b, c) = p1
min{k1,m1}p2

min{k2,m2} · · · pn
min{kn,mn}

gcd(a, c) gcd(b, c) = p1
min{j1,m1}+min{k1,m1}p2

min{j2,m2}+min{k2,m2} · · · pn
min{jn,mn}+min{kn,mn} .

Suppose that c
∣∣ab so we have mi ≤ ji + ki for all i. Fix an index i. We consider three cases.

Case 1. If mi ≤ ji then we have mi = min{ji, mi} ≤ min{ji, mi}+ min{ki, mi}.
Case 2. If mi ≤ ki then we have mi = min{ki, mi} ≤ min{ji, mi}+ min{ki, mi}.
Case 3. If mi ≥ ji and mi ≥ ki then we have mi ≤ ji + ki = min{ji, mi}+ min{ki, mi}.

In all three cases we have mi ≤ min{ji, mi}+ min{ki, mi}. Thus c
∣∣ gcd(a, c) gcd(b, c) as required.

(c) Show that for all positive integers a and b we have gcd(a, b) = gcd
(
a + b, lcm(a, b)

)
.

Solution: Let d = gcd(a, b), m = lcm(a, b), and e = gcd(a + b, m). We must show that d = e. Write a = dk
and b = dl so we have gcd(k, l) = 1 (by Proposition 2.27(ii)) and m = dkl (by Theorem 2.59). By question
4(b) on assignment 4, we have

e = gcd(a + b, m) = gcd(d(k + l), dkl) = d gcd(k + l, kl) ,

so it suffices to show that gcd(k + l, kl) = 1. Suppose, for a contradiction, that gcd(k + l, kl) 6= 1. Let p be a
common prime factor of k + l and kl. Since p is prime and p

∣∣kl, we know that p
∣∣k or p

∣∣l by Theorem 2.53.
If p
∣∣k then since p

∣∣(k + l) we also have p
∣∣l by Proposition 2.11(ii). Similarly, if p

∣∣l then since p
∣∣(k + l) we

also have p
∣∣k. In either case we see that p is a common prime factor of k and l, which contradicts the fact

that gcd(k, l) = 1.



5: A Hilbert number is a positive integer of the form n=1 + 4k for some integer k ≥ 0. A Hilbert prime
is a Hilbert number n>1 whose only Hilbert number factors are 1 and n.
(a) List the first 20 Hilbert primes.

Solution: We can list the Hilbert primes using the same method used in the Sieve of Eratosthenes: list the
Hilbert numbers 1, 5, 9, 13, · · ·, cross off 1 (which is not a Hilbert prime), circle 5 (the first Hilbert prime),
cross off the multiples of 5 (that is 25, 45, 65, 85, 105, · · ·), circle 9 (the second Hilbert prime), cross off the
multiples of 9 (81, 117, · · ·), and so on. The first 20 Hilbert primes are

5, 9, 13, 17, 21, 29, 33, 37, 41, 49, 53, 57, 61, 69, 73, 77, 89, 93, 97, 101

(b) Show that every Hilbert number greater than 1 is either a Hilbert prime or a product of Hilbert primes.

Solution: We simply copy the proof of Proposition 2.51. Suppose, for a contradiction, that the result is false.
Let n be the smallest Hilbert number which is greater than 1 and is neither a Hilbert prime nor a product
of Hilbert primes. Since n is not a Hilbert prime, it has a Hilbert number factor other than 1 and n, so it
can be factored as n = rs for some Hilbert numbers r and s with 1 < r, s < n. By our choice of n, each of
the Hilbert numbers r and s is either a Hilbert prime or a product of Hilbert primes. It follows that n = rs
is a product of Hilbert primes, giving the desired contradiction.
(c) Show that the factorization of a Hilbert number into Hilbert primes is not always unique.

Solution: Note that 9 · 49 = 21 · 21.


