

1: Find the prime factorization of each of the following integers.

- (a) $30!$
- (b) $\binom{30}{10}$
- (c) $2^{36} - 1$

2: (a) Let $a = 8400$. Find the number of positive factors of a .

(b) Find the number of positive integers whose prime factors are 2, 3 and 5 and which have exactly 100 positive divisors.

(c) Let $a = \prod_{k=1}^6 k^k$. Find the number of factors (positive or negative) of a which are either perfect squares or perfect cubes (or both).

3: In parts (a) and (b), find the prime factorization of $\gcd(a, b)$ and of $\text{lcm}(a, b)$.

(a) $a = 2^4 \cdot 3^2 \cdot 5 \cdot 11$ and $b = 2^2 \cdot 5^3 \cdot 7 \cdot 11$

(b) $a = 25!$ and $b = (5500)^3(1001)^2$.

(c) Find the number of pairs of positive integers (a, b) with $a \leq b$ such that $\gcd(a, b) = 60$ and $\text{lcm}(a, b) = 4200$.

4: (a) Show that for all positive integers a and b we have $a|b$ if and only if $a^2|b^2$.

(b) Show that for all positive integers a , b and c , if $c|ab$ then $c|\gcd(a, c)\gcd(b, c)$.

(c) Show that for all positive integers a and b we have $\gcd(a, b) = \gcd(a + b, \text{lcm}(a, b))$.

5: A **Hilbert number** is a positive integer of the form $n = 1 + 4k$ for some integer $k \geq 0$. A **Hilbert prime** is a Hilbert number $n > 1$ whose only Hilbert number factors are 1 and n .

(a) List the first 20 Hilbert primes.

(b) Show that every Hilbert number greater than 1 is either a Hilbert prime or a product of Hilbert primes.

(c) Show that the factorization of a Hilbert number into Hilbert primes is not always unique.