MATH 135 Algebra, Solutions to Assignment 5

: Solve each of the following linear diophantine equations.
(a) 422 4 30y = 24
Solution: The Euclidean Algorithm gives
42=30-14+12. 30=12-24+6, 12=6-240
so we have ged(42,30) = 6. Back-Substitution then gives
1, -2, 3

so we have 42(—2)+30(3) = 6. Note that 2! = 4, and multiplying both sides by 4 gives 42(—8)+30(12) = 24,
and so one solution is (z,y) = (—8,12). Note that % = 7 and 32 = 5, so by the Linear Diophantine Equation
Theorem, the general solution is

(x,y) = (—8,12) + k(=5,7) , k€ Z.
(b) 231z + 792y = 513
Solution: The Euclidean Algorithm gives
792 =3-231+99, 231=2-99+33, 99=3-33+0
and so ged(231,792) = 33. Back-Substitution gives
1, =2, 7

and so 231(7) + 792(—2) = 33. Note that 513 = 33 - 15 + 18, so 33 does not divide 513, and hence there is
no solution (by Proposition 2.11(ii) or by the Linear Diophantine Equation Theorem).

(c) 385z — 1183y = 294
Solution: The Euclidean Algorithm gives
1183 =3-385+28, 385=13-28421, 28=1-21+7, 21=3-74+0
and so ged(385,1183) = 7. Back Substitution gives
1, -1, 14, —43

and so we have 385(—43) + 1183(14) = 7. Note that &74 = 42, and multiplying both sides by 42 gives
385(—1806) — 1183(—588) = 294. Thus one solution is (z,y) = (—1806, —588). Note that 35 = 55 and
1183 — 169, and so by the Linear Diophantine Equation Theorem, the general solution is

7
(z,y) = (—1806, —588) + k(169,55) , k € Z



2: (a) Find all non-negative solutions to the diophantine equation 483z + 336y = 9513.
Solution: The Euclidean Algorithm gives
483 =1-336 4147, 336 =2-147+4+42, 147=3-42+21, 42=2-21+0
so ged(483,336) = 21. Back-Substitution gives
1, =3, 7, —-10

so we have 483(7) +336(—10) = 21. Note that 2333 = 453 and multiplying both sides of the equation by 453

gives 483(3171) + 336(—4530) = 9513. Thus one solution is (z,y) = (3171, —4530). Note that 43 = 23 and

336 — 16, so by the Linear Diophantine Equation Theorem, the general solution is

21
(z,y) = (3171, —4530) + k(—16,23) , k € Z.

Note that
> 0=>3171— 16k > 0 = 16k < 3171 = k < |2}21]| =198

16
y >0 =>—4530 + 23k > 0 = 23k > 4530 = k > [4330] = 197
so we obtain non-negative solutions when k£ = 197 and 198. The solutions are
(z,y) = (19,1), (3,24).

(b) Find all pairs of integers (x,y) with > 1000, y < 1000 such that 7262 — 1578y = 324.
Solution: The Euclidean Algorithm gives
1578 =2-726 +126, 726=5-126+96, 126=1-964+30, 96=3-304+6, 30=5-6+0
so we have ged(726,1578) = 6. Back-Substitution gives
1, -3, 4, —23. 50

so we have 726(50) — 1578(23) = 6. Note that 3% = 54 and multiplying both sides of the equation by 54

gives 726(2700) — 1578(1242) = 324, and so one solution is (z,y) = (2700, 1242). Note that 72¢ =121 and
%78 = 263, and so by the Linear Diophantine Equation Theorem, the general solution is

(z,y) = (2700,1242) + k(263,121) , k € Z.

Note that
x > 1000 = 2700 4 263k > 1000 => 263k > —1700 => k > [—100] = —6

y <1000 = 1242 4 121k < 1000 = 121k < —242 = k < |22 | = -2,
so we obtain solutions with > 1000 and y < 1000 when k = —6, —5, —4, —3, —2. The solutions are
(z,y) = (1122,516), (1385,637), (1648, 758), (1911, 879), (2174, 1000) .



3: (a) What combinations of 18- and 33-cent stamps can be used to mail a package which requires postage of
6 dollars.

Solution: Let x be the number of 18-cent stamps and let y be the number of 33-cent stamps. Then the
stamps are worth 6 dollars when
18z + 33y = 600.

We look for non-negative integer solutions to this equation. The Euclidean Algorithm gives
33=1-184+15, 18=1-15+3, 15=5-340
so we have ged(18,33) = 3. Back-Substitution gives
1, -1, 2

so we have 18(2) + 33(—1) = 3. Note that %% = 200, and multiplying both sides of the equation by 200
gives 18(400) + 33(—200) = 600, and so one solution is (z,y) = (400, —200). Note that i = 6 and 22 = 11,
so by the Linear Diophantine Equation Theorem, the general solution is

(z,y) = (400, —200) + k(—11,6) , k€ Z.

Note that
£ >0=400—11k > 0= 11k <400 = k < |48 | =36

y > 0= —200+ 6k > 0 => 6k > 200 = k > [220] = 34,

so we obtain non-negative solutions when k = 34, 25, 26. Thus there are three pairs (x, y) such that z 18-cents
stamps and y 33-cent stamps are worth 6 dollars; namely

(z,y) = (26,4), (15, 10), (4, 16) .
(b) A shopper spends $19.81 to buy some apples which cost 35 cents each and some oranges which cost 56
cents each. What is the minimum number of pieces of fruit that the shopper could have bought.

Solution: Let x be the number of apples purchased and let y be the number of oranges purchased. The fruit
is worth$ 19.81 when we have
35z + 56y = 1981.

The Euclidean Algorithm gives
56=1-35+21, 35=1-21+14, 21=1-14+7, 14=2-7T4+0
so we have ged(35,56) = 7. Back-Substitution gives
1, -1, 2, -3
so we have 35(—3) 4+ 56(2) = 7. Note that @ = 283 and multiplying both sides of the equation by 93 gives

35(—849) + 56(566) = 1981, and so one solution is (z,y) = (—849,566). Note that 3> =5 and 2% = 8, and
so by the Linear Diophantine Equation Theorem, the general solution is

(z,y) = (—849,566) + k(—8,5) , k € Z.

Note that
T>0= —849—8k>0=8k < —849 =k < |-52| =107
y > 0 =566+ 5k > 0 => 5k > —566 = k > {—526} =-113,

so we obtain non-negative solutions when —107 < k < 113. We wish to choose the value of k£ which minimizes
x + y (the total number of pieces of fruit purchased). Note that

x+y = —849 — 8k + 566 + 5k = —283 — 3k,

so to minimize = + y we must choose the maximum possible value of k, that is k = —107. When k£ = —107
we have x + y = —283 — 3k = 38. Thus the minimum number of pieces of fruit is 38.



4: We can solve a pair of linear diophantine equations in three variables by first eliminating one of the variables
and solving the resulting equation in the remaining two variables.

(a) Show that there is no solution to the pair of diophantine equations

20+ Ty+ z2=45
3v+8y+42=21.

Solution: Multiply the first equation by 4 and subtract the second equation to get 5x 4+ 20y = 159. Notice
that ged(5,20) =5 and 5 does not divide 159, so there is no solution.

(b) Find all solutions to the pair of diophantine equations

20z + 12y + 152 = 85 (1)
18z + 20y + 8z =110 (2)

Solution: To eliminate z, multiply (2) by 15 and subtract 8 times (1). This gives
110z + 204y = 970 (3)
The Euclidean Algorithm gives
205=1-110+94, 110=1-94+16, 94=5-16+14, 16=1-14+2, 14=7-240
so we have ged(110,204) = 2. Back-Substitution gives
1, -1, 6, -7, 13

so we have 110(13) +204(—7) = 2. Note that 220 = 485, and multiplying both sides of the previous equation
by 485 gives 110(6305)+204(—3395) = 970, and so one solution is (z,y) = (6305, —3395). Note that 1% = 55
and %% = 102, and so by the Linear Diophantine Equation Theorem, the general solution to equation (3) is

(x,y) = (6305, —3395) + k(—102,55) , k€ Z
Notice that taking k = 62 gives the solution (z,y) = (—19,15), so the general solution to (3) is also given by
(z,y) = (—19,15) + k(—102,55) , k€ Z.
Put x = —19 — 102k and y = 15 + 55k into (1) to get
20(—19 — 102k) + 12(15 4 55k) + 152 = 85

that is
—1380k 4+ 152 = 285 (4)

We don’t need to use the Euclidean Algorithm with Back-Substitution to solve this diophantine equation

beacause 15/1380. By inspection, one solution is (k, z) = (0,19), and since 1282 = 92, the general solution is

15
(k,2) = (0,19) + (1,92) , € Z.
The complete solution to the pair of equations (1) and (2) is given by
r=-—19— 102k = —19 — 102]
y = 15+ 55k = 15 + 551
z=19+92]

or equivalently
(z,y,2) = (—19,15,19) + 1(—102,55,92) , [ € Z.



5: Let a, b and ¢ be non-zero integers. The greatest common divisor d = ged(a, b, ¢) is defined to be the
largest positive integer d such that d|a, d‘b and d‘c.

(a) Show that ged(a, b, c) = ged (gcd(a7 b), c).

Solution: Let d = ged(a,b,c), e = ged(a,b) and f = ged(e, ¢). Since d is a common divisor of ¢ and b, we
have d|e by Proposition 2.29. Thus d is a common divisor of e and ¢, so (since f is the greatest common
divisor of e and ¢) we must have d < f. On the other hand, since f|e and e|a we have f |a, and since f|e
and e|b we have f |b. Thus f is a common divisor of a and b, and f also divides ¢, so (since d is the greatest
common divisor of a, b and ¢), we must have f <d.

(b) Show that for any integer e, the linear diophantine ax 4+ by 4+ ¢z = e has a solution if and only if
ged(a, b, c)le.

Solution: Suppose first that az + by + cz = e has a solution, say as + bt + cu = e, and let d = ged(a, b, ¢).
Since d|a, d’b and cl|c7 we can choose k, [ and m so that a = dk, b = dl and ¢ = dm. Then

as+bt+cu=e = dks+dlt +dmu=e¢ = d(ks+1lt+mu)=c¢

and so d |e. Conversely, suppose that d |e where again we let d = ged(a, b, ¢). Using the Euclidean Algorithm
with Back-Substitution, we can choose integers s and ¢ such that as + bt = ged(a,b). Also, since we have

d = ged (gcd(a,b),c) by part (a), and d|e so we have ged (gcd(a,b),c)‘e, we can choose integers u and v
so that ged(a,b)u + cv = e by the Linear Diophantine Equation Theorem. Since as + bt = ged(a,b) and

ged(a, b)u + cv = e, we have asu + btu + cv = e, so the diophantine equation ax 4 by + ¢z = e does indeed
have a solution.

(¢) Find all solutions to the linear diophantine equation 42z + 70y + 105z = 63.

Solution: By the Linear Diophantine Equation Theorem, for any fixed value of z, in order for the diophantine
equation 422+ 70y = 63— 107z to have a solution (z,y), we must have ged (42, 70)|(63—105z). The Euclidean
Algorithm gives

T0=1-424+928, 42=1-28+14, 28=2-1440

so we have ged(42,70) = 14. To have a solution, we need to have 14|(63 — 105z), that is we need to have
63 — 105z = 14k for some k € Z. Let us solve the diophantine equation 14k + 105z = 63. The Euclidean
Algorithm gives 105 = 14747 and 14 = 7-24-0, so we have ged(14, 105) = 7. Back-Substitution immediately
shows that 14(—7) + 105(1) = 7, and we multiply both sides by 9 to get 14(—63) 4+ 105(9) = 63. Thus one
solution to the diophantine equation 14k 4 105z = 63 is given by (k,z) = (—63,9). Note that 1 = 2 and

7

105 — 15, so the general solution is (k, z) = (—63,9)+1(—15,2) , | € Z. Taking | = —4 gives (k, z) = (-3, 1),

so we can also say that the general solution to the diophantine equation 14k + 105z = 63 is
(k,2) =(-3,1)+1(-15,2) , L€ Z.

Thus the original diophantine equation 42z + 70y + 105z = 63 has a solution when z = 1+ 2/ for some [ € Z.
Now fix z = 1+ 2l. The original diophantine equation becomes 42z + 70y + 105(1 + 21) = 63, or equivalently

42x 4+ 70y = —42 — 2101 .

Let us solve this. We applied the Euclidean Algorithm earlier to show that ged(42,70) = 14, and now Back-
Substitution gives the sequence 1, —1, 2, so we have 42(2) + 70(—1) = 14. Note that w = (=3 —15l),
so we multiply both sides by (—3 — 151) to get 42(—6 — 301) + 70(3 + 15/) = —42 — 210l. Thus one solution
is (z,y) = (=6 — 301,34+ 151). Note that % =3 and % = 5, so the general solution is

(z,y) = (=6 — 30(,3 4+ 151) + m(—5,3) , m € Z.
Since we also have z = 1 + 2[, the general solution to the original diophantine equation is
(z,y,2) =(—6,3,1) +1(—30,15,2) + m(-5,3,0) , I m e Z.
We remark that there are many equivalent ways to express this result, for example we could also write

(x,y,2) = (-1,0,1) +1(0,3,—2) + m(5,0,—2) , ,m € Z.



