
MATH 135 Algebra, Solutions to Assignment 5

1: Solve each of the following linear diophantine equations.
(a) 42x + 30y = 24

Solution: The Euclidean Algorithm gives

42 = 30 · 1 + 12 . 30 = 12 · 2 + 6 , 12 = 6 · 2 + 0

so we have gcd(42, 30) = 6. Back-Substitution then gives

1 , −2 , 3

so we have 42(−2)+30(3) = 6. Note that 24
6 = 4, and multiplying both sides by 4 gives 42(−8)+30(12) = 24,

and so one solution is (x, y) = (−8, 12). Note that 42
6 = 7 and 30

6 = 5, so by the Linear Diophantine Equation
Theorem, the general solution is

(x, y) = (−8, 12) + k(−5, 7) , k ∈ Z .

(b) 231x + 792y = 513

Solution: The Euclidean Algorithm gives

792 = 3 · 231 + 99 , 231 = 2 · 99 + 33 , 99 = 3 · 33 + 0

and so gcd(231, 792) = 33. Back-Substitution gives

1 , −2 , 7

and so 231(7) + 792(−2) = 33. Note that 513 = 33 · 15 + 18, so 33 does not divide 513, and hence there is
no solution (by Proposition 2.11(ii) or by the Linear Diophantine Equation Theorem).
(c) 385x− 1183y = 294

Solution: The Euclidean Algorithm gives

1183 = 3 · 385 + 28 , 385 = 13 · 28 + 21 , 28 = 1 · 21 + 7 , 21 = 3 · 7 + 0

and so gcd(385, 1183) = 7. Back Substitution gives

1 , −1 , 14 , −43

and so we have 385(−43) + 1183(14) = 7. Note that 294
7 = 42, and multiplying both sides by 42 gives

385(−1806) − 1183(−588) = 294. Thus one solution is (x, y) = (−1806,−588). Note that 385
7 = 55 and

1183
7 = 169, and so by the Linear Diophantine Equation Theorem, the general solution is

(x, y) = (−1806,−588) + k(169, 55) , k ∈ Z



2: (a) Find all non-negative solutions to the diophantine equation 483x + 336y = 9513.

Solution: The Euclidean Algorithm gives

483 = 1 · 336 + 147 , 336 = 2 · 147 + 42 , 147 = 3 · 42 + 21 , 42 = 2 · 21 + 0

so gcd(483, 336) = 21. Back-Substitution gives

1 , −3 , 7 , −10

so we have 483(7) + 336(−10) = 21. Note that 9513
21 = 453 and multiplying both sides of the equation by 453

gives 483(3171) + 336(−4530) = 9513. Thus one solution is (x, y) = (3171,−4530). Note that 483
21 = 23 and

336
21 = 16, so by the Linear Diophantine Equation Theorem, the general solution is

(x, y) = (3171,−4530) + k(−16, 23) , k ∈ Z .

Note that
x ≥ 0 =⇒ 3171− 16k ≥ 0 =⇒ 16k ≤ 3171 =⇒ k ≤

⌊
3171
16

⌋
= 198

y ≥ 0 =⇒ −4530 + 23k ≥ 0 =⇒ 23k ≥ 4530 =⇒ k ≥
⌈

4530
23

⌉
= 197

so we obtain non-negative solutions when k = 197 and 198. The solutions are

(x, y) = (19, 1) , (3, 24) .

(b) Find all pairs of integers (x, y) with x ≥ 1000, y ≤ 1000 such that 726x− 1578y = 324.

Solution: The Euclidean Algorithm gives

1578 = 2 · 726 + 126 , 726 = 5 · 126 + 96 , 126 = 1 · 96 + 30 , 96 = 3 · 30 + 6 , 30 = 5 · 6 + 0

so we have gcd(726, 1578) = 6. Back-Substitution gives

1 , −3 , 4 , −23 , 50

so we have 726(50) − 1578(23) = 6. Note that 324
6 = 54 and multiplying both sides of the equation by 54

gives 726(2700) − 1578(1242) = 324, and so one solution is (x, y) = (2700, 1242). Note that 726
6 = 121 and

1578
6 = 263, and so by the Linear Diophantine Equation Theorem, the general solution is

(x, y) = (2700, 1242) + k(263, 121) , k ∈ Z .

Note that
x ≥ 1000 =⇒ 2700 + 263k ≥ 1000 =⇒ 263k ≥ −1700 =⇒ k ≥

⌈
− 1700

263

⌉
= −6

y ≤ 1000 =⇒ 1242 + 121k ≤ 1000 =⇒ 121k ≤ −242 =⇒ k ≤
⌊
− 242

121

⌋
= −2 ,

so we obtain solutions with x ≥ 1000 and y ≤ 1000 when k = −6,−5,−4,−3,−2. The solutions are

(x, y) = (1122, 516), (1385, 637), (1648, 758), (1911, 879), (2174, 1000) .



3: (a) What combinations of 18- and 33-cent stamps can be used to mail a package which requires postage of
6 dollars.

Solution: Let x be the number of 18-cent stamps and let y be the number of 33-cent stamps. Then the
stamps are worth 6 dollars when

18x + 33y = 600 .

We look for non-negative integer solutions to this equation. The Euclidean Algorithm gives

33 = 1 · 18 + 15 , 18 = 1 · 15 + 3 , 15 = 5 · 3 + 0

so we have gcd(18, 33) = 3. Back-Substitution gives

1 , −1 , 2

so we have 18(2) + 33(−1) = 3. Note that 600
3 = 200, and multiplying both sides of the equation by 200

gives 18(400) + 33(−200) = 600, and so one solution is (x, y) = (400,−200). Note that 18
3 = 6 and 33

3 = 11,
so by the Linear Diophantine Equation Theorem, the general solution is

(x, y) = (400,−200) + k(−11, 6) , k ∈ Z .

Note that
x ≥ 0 =⇒ 400− 11k ≥ 0 =⇒ 11k ≤ 400 =⇒ k ≤

⌊
400
11

⌋
= 36

y ≥ 0 =⇒ −200 + 6k ≥ 0 =⇒ 6k ≥ 200 =⇒ k ≥
⌈

200
6

⌉
= 34 ,

so we obtain non-negative solutions when k = 34, 25, 26. Thus there are three pairs (x, y) such that x 18-cents
stamps and y 33-cent stamps are worth 6 dollars; namely

(x, y) = (26, 4), (15, 10), (4, 16) .

(b) A shopper spends $19.81 to buy some apples which cost 35 cents each and some oranges which cost 56
cents each. What is the minimum number of pieces of fruit that the shopper could have bought.

Solution: Let x be the number of apples purchased and let y be the number of oranges purchased. The fruit
is worth$ 19.81 when we have

35x + 56y = 1981 .

The Euclidean Algorithm gives

56 = 1 · 35 + 21 , 35 = 1 · 21 + 14 , 21 = 1 · 14 + 7 , 14 = 2 · 7 + 0

so we have gcd(35, 56) = 7. Back-Substitution gives

1 , −1 , 2 , −3

so we have 35(−3) + 56(2) = 7. Note that 1981
7 = 283 and multiplying both sides of the equation by 93 gives

35(−849) + 56(566) = 1981, and so one solution is (x, y) = (−849, 566). Note that 35
7 = 5 and 56

7 = 8, and
so by the Linear Diophantine Equation Theorem, the general solution is

(x, y) = (−849, 566) + k(−8, 5) , k ∈ Z .

Note that
x ≥ 0 =⇒ −849− 8k ≥ 0 =⇒ 8k ≤ −849 =⇒ k ≤

⌊
− 849

8

⌋
= −107

y ≥ 0 =⇒ 566 + 5k ≥ 0 =⇒ 5k ≥ −566 =⇒ k ≥
⌈
−566

5

⌉
= −113 ,

so we obtain non-negative solutions when −107 ≤ k ≤ 113. We wish to choose the value of k which minimizes
x + y (the total number of pieces of fruit purchased). Note that

x + y = −849− 8k + 566 + 5k = −283− 3k ,

so to minimize x + y we must choose the maximum possible value of k, that is k = −107. When k = −107
we have x + y = −283− 3k = 38. Thus the minimum number of pieces of fruit is 38.



4: We can solve a pair of linear diophantine equations in three variables by first eliminating one of the variables
and solving the resulting equation in the remaining two variables.
(a) Show that there is no solution to the pair of diophantine equations

2x + 7y + z = 45
3x + 8y + 4z = 21 .

Solution: Multiply the first equation by 4 and subtract the second equation to get 5x + 20y = 159. Notice
that gcd(5, 20) = 5 and 5 does not divide 159, so there is no solution.
(b) Find all solutions to the pair of diophantine equations

20x + 12y + 15z = 85 (1)
18x + 20y + 8z = 110 (2)

Solution: To eliminate z, multiply (2) by 15 and subtract 8 times (1). This gives

110x + 204y = 970 (3)

The Euclidean Algorithm gives

205 = 1 · 110 + 94 , 110 = 1 · 94 + 16 , 94 = 5 · 16 + 14 , 16 = 1 · 14 + 2 , 14 = 7 · 2 + 0

so we have gcd(110, 204) = 2. Back-Substitution gives

1 , −1 , 6 , −7 , 13

so we have 110(13)+204(−7) = 2. Note that 970
2 = 485, and multiplying both sides of the previous equation

by 485 gives 110(6305)+204(−3395) = 970, and so one solution is (x, y) = (6305,−3395). Note that 110
2 = 55

and 204
2 = 102, and so by the Linear Diophantine Equation Theorem, the general solution to equation (3) is

(x, y) = (6305,−3395) + k(−102, 55) , k ∈ Z

Notice that taking k = 62 gives the solution (x, y) = (−19, 15), so the general solution to (3) is also given by

(x, y) = (−19, 15) + k(−102, 55) , k ∈ Z .

Put x = −19− 102k and y = 15 + 55k into (1) to get

20(−19− 102k) + 12(15 + 55k) + 15z = 85

that is
−1380k + 15z = 285 (4)

We don’t need to use the Euclidean Algorithm with Back-Substitution to solve this diophantine equation
beacause 15

∣∣1380. By inspection, one solution is (k, z) = (0, 19), and since 1380
15 = 92, the general solution is

(k, z) = (0, 19) + l(1, 92) , l ∈ Z .

The complete solution to the pair of equations (1) and (2) is given by

x = −19− 102k = −19− 102l

y = 15 + 55k = 15 + 55l

z = 19 + 92l

or equivalently
(x, y, z) = (−19, 15, 19) + l(−102, 55, 92) , l ∈ Z .



5: Let a, b and c be non-zero integers. The greatest common divisor d = gcd(a, b, c) is defined to be the
largest positive integer d such that d

∣∣a, d
∣∣b and d

∣∣c.

(a) Show that gcd(a, b, c) = gcd
(

gcd(a, b), c
)
.

Solution: Let d = gcd(a, b, c), e = gcd(a, b) and f = gcd(e, c). Since d is a common divisor of a and b, we
have d

∣∣e by Proposition 2.29. Thus d is a common divisor of e and c, so (since f is the greatest common
divisor of e and c) we must have d ≤ f . On the other hand, since f

∣∣e and e
∣∣a we have f

∣∣a, and since f
∣∣e

and e
∣∣b we have f

∣∣b. Thus f is a common divisor of a and b, and f also divides c, so (since d is the greatest
common divisor of a, b and c), we must have f ≤ d.
(b) Show that for any integer e, the linear diophantine ax + by + cz = e has a solution if and only if
gcd(a, b, c)

∣∣e.

Solution: Suppose first that ax + by + cz = e has a solution, say as + bt + cu = e, and let d = gcd(a, b, c).
Since d

∣∣a, d
∣∣b and d

∣∣c, we can choose k, l and m so that a = dk, b = dl and c = dm. Then

as + bt + cu = e =⇒ dks + dlt + dmu = e =⇒ d(ks + lt + mu) = e

and so d
∣∣e. Conversely, suppose that d

∣∣e where again we let d = gcd(a, b, c). Using the Euclidean Algorithm
with Back-Substitution, we can choose integers s and t such that as + bt = gcd(a, b). Also, since we have
d = gcd

(
gcd(a, b), c) by part (a), and d

∣∣e so we have gcd
(

gcd(a, b), c)
∣∣∣e, we can choose integers u and v

so that gcd(a, b)u + cv = e by the Linear Diophantine Equation Theorem. Since as + bt = gcd(a, b) and
gcd(a, b)u + cv = e, we have asu + btu + cv = e, so the diophantine equation ax + by + cz = e does indeed
have a solution.
(c) Find all solutions to the linear diophantine equation 42x + 70y + 105z = 63.

Solution: By the Linear Diophantine Equation Theorem, for any fixed value of z, in order for the diophantine
equation 42x+70y = 63−107z to have a solution (x, y), we must have gcd(42, 70)

∣∣(63−105z). The Euclidean
Algorithm gives

70 = 1 · 42 + 28 , 42 = 1 · 28 + 14 , 28 = 2 · 14 + 0

so we have gcd(42, 70) = 14. To have a solution, we need to have 14
∣∣(63 − 105z), that is we need to have

63 − 105z = 14k for some k ∈ Z. Let us solve the diophantine equation 14k + 105z = 63. The Euclidean
Algorithm gives 105 = 14·7+7 and 14 = 7·2+0, so we have gcd(14, 105) = 7. Back-Substitution immediately
shows that 14(−7) + 105(1) = 7, and we multiply both sides by 9 to get 14(−63) + 105(9) = 63. Thus one
solution to the diophantine equation 14k + 105z = 63 is given by (k, z) = (−63, 9). Note that 14

7 = 2 and
105
7 = 15, so the general solution is (k, z) = (−63, 9)+ l(−15, 2) , l ∈ Z. Taking l = −4 gives (k, z) = (−3, 1),

so we can also say that the general solution to the diophantine equation 14k + 105z = 63 is

(k, z) = (−3, 1) + l(−15, 2) , l ∈ Z .

Thus the original diophantine equation 42x+ 70y + 105z = 63 has a solution when z = 1 + 2l for some l ∈ Z.
Now fix z = 1 + 2l. The original diophantine equation becomes 42x + 70y + 105(1 + 2l) = 63, or equivalently

42x + 70y = −42− 210l .

Let us solve this. We applied the Euclidean Algorithm earlier to show that gcd(42, 70) = 14, and now Back-
Substitution gives the sequence 1, −1, 2, so we have 42(2) + 70(−1) = 14. Note that −42−210l

14 = (−3− 15l),
so we multiply both sides by (−3− 15l) to get 42(−6− 30l) + 70(3 + 15l) = −42− 210l. Thus one solution
is (x, y) = (−6− 30l, 3 + 15l). Note that 42

14 = 3 and 70
14 = 5, so the general solution is

(x, y) = (−6− 30l, 3 + 15l) + m(−5, 3) , m ∈ Z .

Since we also have z = 1 + 2l, the general solution to the original diophantine equation is

(x, y, z) = (−6, 3, 1) + l(−30, 15, 2) + m(−5, 3, 0) , l,m ∈ Z .

We remark that there are many equivalent ways to express this result, for example we could also write

(x, y, z) = (−1, 0, 1) + l(0, 3,−2) + m(5, 0,−2) , l,m ∈ Z .


