
MATH 135 Algebra, Solutions to Assignment 4

1: For each of the following pairs (a, b), find integers q and r with 0 ≤ r < |b| such that a = bq + r.
(a) a = 753, b = 21

Solution: Using long division (or using a calculator) we find that 753 = 21 · 35 + 18, so q = 35 and r = 18.
(b) a = −5124, b = 316

Solution: Using long division (or using a calculator) we find that 5124 = 316 · 16 + 68, and so we have
−5124 = 316(−16)− 68 = 316(−17) + 316− 68 = 316(−17) + 248. Thus q = −17 and r = 248.
(c) a = 4137, b = −152

Solution: Using long division (or using a calculator) we find that 4137 = 152 · 27 + 33 = (−152)(−27) + 33,
and so q = −27 and r = 33.

2: For each of the following pairs (a, b), find gcd(a, b).
(a) a = 78, b = 34

Solution: Applying the Euclidean Algorithm gives

78 = 2 · 34 + 10
34 = 3 · 10 + 4
10 = 2 · 4 + 2
4 = 2 · 2 + 0

and so gcd(a, b) = 2.
(b) a = 456, b = 1273

Solution: The Euclidean Algorithm gives

1273 = 2 · 456 + 361
456 = 1 · 361 + 95
361 = 3 · 95 + 76
95 = 1 · 76 + 19
76 = 4 · 19 + 0

and so gcd(a, b) = gcd(1273, 456) = 19.
(c) a = −1205, b = 2501

Solution: The Euclidean Algorithm gives

2501 = 2 · 1205 + 91
1205 = 13 · 91 + 22

91 = 4 · 22 + 3
22 = 7 · 3 + 1
3 = 3 · 1 + 0

so we have gcd(a, b) = gcd(2501, 1205) = 1.



3: For each of the following pairs (a, b), find d = gcd(a, b) then find integers s and t such that as + bt = d.
(a) a = 60, b = 35

Solution: The Euclidean Algorithm gives

60 = 1 · 35 + 25 , 35 = 1 · 25 + 10 , 25 = 2 · 10 + 5 , 10 = 2 · 5 + 0

so we have d = gcd(a, b) = 5. Back-Substitution then gives rise to the sequence

1 , −2 , 3 , −5

so we have 60 ·3−35 ·5 = 5 and can take s = 3 and t = −5. Alternatively, the Extended Euclidean Algorithm
gives rise to the table

1 0 60
0 1 35
1 −1 25
−1 2 10
3 −5 5

so we have 60 · 3− 35 · 5 = 5 and can take s = 3 and t = −5.
(b) a = 239, b = 759

Solution: The Euclidean Algorithm gives

759 = 3 · 239 + 42 , 239 = 5 · 42 + 29 , 42 = 1 · 29 + 13 , 29 = 2 · 13 + 3 , 13 = 4 · 3 + 1 , 3 = 3 · 1 + 0

so we have d = gcd(a, b) = 1. Back-Substitution then gives rise to the sequence

1 , −4 , 9 , −13 , 74 , −235

so we have 759 · 74− 239 · 235 = 1 and can take s = −235 and t = 74. Alternatively, the Extended Euclidean
Algorithm gives rise to the table

1 0 759
0 1 239
1 −3 42
−5 16 29
6 −19 13
−17 54 3
74 −235 1

so we have 759 · 74− 239 · 235 = 1 and can take s = −235 and t = 74.
(c) a = −5083, b = 1656

Solution: The Euclidean Algorithm gives

5083 = 3 · 1656 + 115 , 1656 = 14 · 115 + 46 , 115 = 2 · 46 + 23 , 46 = 2 · 23 + 0

so we have d = gcd(a, b) = 23. Back-Substitution then gives rise to the sequence

1 , −2 , 29 , −89

so we have 5083 · 29 − 1656 · 89 = 23 and can take s = −29 and t = −89. Alternatively, the Extended
Euclidean Algorithm gives rise to the table

1 0 5083
0 1 1656
1 −3 115
−14 43 46
29 −89 23

so we have 5083 · 29− 1656 · 89 = 23 and can take s = −29 and t = −89.



4: Prove each of the following statements.
(a) For all integers a, b we have gcd(a, b) = gcd(2a + b, 3a + 2b).

Solution: We provide two proofs. For the first proof, let d = gcd(a, b) and let e = gcd(2a + b, 3a + 2b).
Since d = gcd(a, b) we have d

∣∣a and d
∣∣b and so d

∣∣(ax + by) for any integers x, y by Proposition 2.11(ii). In
particular, d

∣∣2a+b and d
∣∣3a+2b. Since d is a common divisor of 2a+b and 3a+2b, e is the greatest common

divisor of 2a + b and 3a + 2b, we must have d ≤ e. On the other hand, since e = gcd(2a + b, 3a + 2b), we
have e

∣∣(2a + b) and e
∣∣(2a + 3b) and so e

∣∣(2a + b)x + (3a + 2b)y for any integers x, y, by Proposition 2.11(ii).
In particular e

∣∣2(2a + b) − 1(3a + 2b), that is e
∣∣a, and e

∣∣ − 3(2a + b) + 2(3a + 2b), that is e
∣∣b. Since e is a

common divisor of a and b, and d is the greatest common divisor of a and b, we must have e ≤ d. We have
shown that d ≤ e and that e ≤ d, so we must have d = e.

We now give a second proof. Taking a = x, b = y, q = −1 and r = a − bq = x + y in Proposition 2.21
gives gcd(x, y) = gcd(y, x + y), or equivalently gcd(x, y) = gcd(x + y, y). Reversing the roles of x and y gives
gcd(x, y) = gcd(y, x) = gcd(x, x + y). Thus we obtain the following two rules: for all integers x and y,

gcd(x, y) = gcd(x, x + y) , and gcd(x, y) = gcd(x + y, y) .

Using these two rules, we have

gcd(a, b) = gcd(a, a + b)

= gcd
(
a + (a + b), a + b

)
= gcd(2a + b, a + b)

= gcd
(
2a + b, (a + b) + (2a + b)

)
= gcd(2a + b, 3a + 2b), .

(b) For all integers a, b, c with c > 0 we have gcd(ac, bc) = c gcd(a, b).

Solution: Let d = gcd(a, b) and let e = gcd(ac, bc). We must show that e = dc. Since c
∣∣ac and c

∣∣bc we have
c
∣∣e (by Proposition 2.29), say e = kc. Since e

∣∣ac, so kc
∣∣ac, we have k

∣∣a, and since e
∣∣bc, so kc

∣∣bc, we have
k
∣∣b, and so k is a common divisor of a and b. Since d is the greatest common divisor of a and b, we must

have k ≤ d, and hence kc ≤ dc, that is e ≤ dc. On the other hand, we have d
∣∣a so dc

∣∣ac, and we have d
∣∣b so

dc
∣∣bc, and so dc is a common divisor of ac and bc. Since e is the greatest common divisor of ac and bc, we

must have dc ≤ e. We have shown that e ≤ dc and that dc ≤ e, so we have e = dc, as required.
(c) For all integers a, b, c we have gcd(ab, c) = 1 if and only if gcd(a, c) = gcd(b, c) = 1.

Solution: Suppose first that gcd(ab, c) = 1. Using Back Substitution, or the Extended Euclidean Algorithm,
we can find integers x and y so that abx + cy = 1. By Proposition 2.27, since a(bx) + c(y) = 1 we have
gcd(a, c) = 1, and since b(ax) + c(y) = 1 we have gcd(b, c) = 1.

Conversely, suppose that gcd(a, c) = gcd(b, c) = 1. By Back Substitution, or by the Extended Euclidean
Algorithm, we can choose integers s, t, u and v such that as + ct = 1 and bu + cv = 1. Then we have
1 = (as + ct)(bu + cv) = ab(su) + c(asv + tbu + tcv), and so gcd(ab, c) = 1 by Proposition 2.27.



5: Use long division of polynomials to solve the following problems. (You may find it useful to read part of
section 9.1 in the text. An example of long division of polynomials is on page 229, and the statement and
proof of the Division Algorithm for Polynomials is on page 230).
(a) Let a(x) = 4x5 − x3 + 2x2 − 3x + 5 and b(x) = 2x2 + x + 3. Find polynomials q(x) and r(x) with
deg(r(x)) < deg(b(x)) such that a(x) = b(x)q(x) + r(x).

Solution: Long division of polyomials gives

2x3 − x2 − 3x + 4

2x2 + x + 3
)

4x5 + 0x4 − 1x3 + 2x2 − 3x + 5
4x5 + 2x4 + 6x3

−2x4 − 7x3 + 2x2

−2x4 − x3 − 3x2

−6x3 + 5x2 − 3x

−6x3 − 3x2 − 9x

8x2 + 6x + 5
8x2 + 4x + 12

2x− 7

Thus we can take q(x) = 2x3 − x2 − 3x + 4 and r(x) = 2x− 7.
(b) Let a(x) = 2x3 − 3x2 − 2x + 8 and b(x) = x2 − 3x + 3. Find polynomials s(x) and t(x) such that
a(x)s(x) + b(x)t(x) = 1.

Solution: Notice that the proofs of Euclidean Algorithm, Back Substitution, and the Extended Euclidean
Algorithm can all modified so that they can be applied in the case that a = a(x) and b = b(x) are polynomials.
The Euclidean Algorithm gives

2x + 3

x2 − 3x + 3
)

2x3 − 3x2 − 2x + 8
2x3 − 6x2 + 6x

3x2 − 8x + 8
3x2 − 9x + 9

x− 1

x− 2

x− 1
)

x2 − 3x + 3
x2 − x

−2x + 3
−2x + 2

1

and so we have d(x) = gcd
(
a(x), b(x)

)
= 1. Back-Substitution gives rise to the sequence

1 , −(x− 2) , 1 + (x− 2)(2x + 3) = 2x2 − x− 5

so we have (x2− 3x + 3)(2x2− x− 5)− (2x3− 3x2− 2x + 8)(x− 2) = 1, and we can take s(x) = −x + 2 and
t(x) = 2x2 − x− 5. Alternatively, the Extended Euclidean Algorithm gives rise to the table

1 0 2x3 − 3x2 − 2x + 8
0 1 x2 − 3x + 3
1 −(2x + 3) x− 1

−(x− 2) 2x2 − x− 5 1

so we have (x2− 3x + 3)(2x2− x− 5)− (2x3− 3x2− 2x + 8)(x− 2) = 1, and we can take s(x) = −x + 2 and
t(x) = 2x2 − x− 5.


