MATH 135 Algebra, Solutions to Assignment 4

: For each of the following pairs (a,b), find integers ¢ and r with 0 < r < |b| such that a = bq + 7.

(a) a=753,b=21

Solution: Using long division (or using a calculator) we find that 753 = 2135+ 18, so ¢ = 35 and r = 18.
(b) a = —5124, b = 316

Solution: Using long division (or using a calculator) we find that 5124 = 316 - 16 + 68, and so we have
—5124 = 316(—16) — 68 = 316(—17) + 316 — 68 = 316(—17) + 248. Thus ¢ = —17 and r = 248.

(c) a=4137, b= —152

Solution: Using long division (or using a calculator) we find that 4137 = 152 - 27 + 33 = (—152)(—27) + 33,
and so ¢ = —27 and r = 33.

: For each of the following pairs (a,b), find ged(a, b).
(a) a=178,b=34
Solution: Applying the Euclidean Algorithm gives

78=2-34+4+10

34=3-10+4

10=2-4+42
4=2-240

and so ged(a,b) = 2.
(b) a = 456, b = 1273
Solution: The Euclidean Algorithm gives

1273 = 2 - 456 4 361
456 = 1-361 + 95
361 =3-95+76
95=1-76+19
76=4-19+0
and so ged(a,b) = ged(1273,456) = 19.
(¢) a = —1205, b = 2501
Solution: The Euclidean Algorithm gives

2501 =2-1205+491
1205 =13-91 + 22

91=4-22+3
22=7-3+1
3=3-1+0

so we have ged(a,b) = ged(2501,1205) = 1.



3: For each of the following pairs (a, b), find d = ged(a, b) then find integers s and ¢ such that as + bt = d.
(a) a=160,b=35
Solution: The Euclidean Algorithm gives
60=1-35+25, 35=1-254+10, 25=2-10+5, 10=2-54+0
so we have d = ged(a, b) = 5. Back-Substitution then gives rise to the sequence
1, =2, 3, -5

so we have 60-3—35-5 = 5 and can take s = 3 and t = —5. Alternatively, the Extended Euclidean Algorithm
gives rise to the table

1 0 60
0 1 35
1 -1 25
-1 2 10
3 -5 5

so we have 60 -3 —35-5 =5 and can take s = 3 and ¢t = —5.
(b) a =239, b =759
Solution: The Euclidean Algorithm gives
759=3-2394+42, 239=5-424+29, 42=1-29+13, 29=2-13+3, 13=4-3+1, 3=3-1+40
so we have d = ged(a,b) = 1. Back-Substitution then gives rise to the sequence
1, —4, 9, —13, 74, —-235

so we have 759-74 —239-235 = 1 and can take s = —235 and ¢t = 74. Alternatively, the Extended Euclidean
Algorithm gives rise to the table

1 0 759
0 1 239
1 -3 42
) 16 29
6 -19 13
—-17 54 3
74 =235 1

so we have 759 - 74 — 239 - 235 = 1 and can take s = —235 and t = 74.
(¢) a = —5083, b = 1656
Solution: The Euclidean Algorithm gives
5083 = 3-1656 + 115, 1656 =14-115+46, 115=2-46+23, 46=2-23+4+0
so we have d = ged(a, b) = 23. Back-Substitution then gives rise to the sequence
1, , 29, -89

so we have 5083 - 29 — 1656 - 89 = 23 and can take s = —29 and t = —89. Alternatively, the Extended
Euclidean Algorithm gives rise to the table

-2

1 0 5083
0 1 1656
1 -3 115
—14 43 46
29 -89 23

so we have 5083 - 29 — 1656 - 89 = 23 and can take s = —29 and t = —&89.



4: Prove each of the following statements.
(a) For all integers a, b we have ged(a, b) = ged(2a + b, 3a + 2b).

Solution: We provide two proofs. For the first proof, let d = ged(a,b) and let e = ged(2a + b, 3a + 2b).
Since d = ged(a, b) we have d|a and d!b and so d|(az + by) for any integers x,y by Proposition 2.11(ii). In
particular, d|2a+b and d’3a+2b. Since d is a common divisor of 2a+b and 3a+ 2b, e is the greatest common
divisor of 2a + b and 3a + 2b, we must have d < e. On the other hand, since e = ged(2a + b, 3a + 2b), we
have e|(2a + b) and e|(2a + 3b) and so ¢e|(2a + b)x + (3a + 2b)y for any integers z,y, by Proposition 2.11(ii).
In particular e|2(2a + b) — 1(3a + 2b), that is e|a, and e| — 3(2a + b) + 2(3a + 2b), that is e|b. Since ¢ is a
common divisor of a and b, and d is the greatest common divisor of ¢ and b, we must have e < d. We have
shown that d < e and that e < d, so we must have d = e.

We now give a second proof. Taking a =z, b=y, g = —1 and r = a — bg = = + y in Proposition 2.21
gives ged(z,y) = ged(y, x +y), or equivalently ged(z,y) = ged(x +y,y). Reversing the roles of z and y gives
ged(z, y) = ged(y, ) = ged(x, 2 + y). Thus we obtain the following two rules: for all integers  and vy,

ged(z,y) = ged(x, 2 + y) , and ged(z,y) = ged(z + y,y) .
Using these two rules, we have
ged(a,b) = ged(a,a + b)
=ged (a+ (a+b),a+b) = ged(2a + b,a + b)
= ged (2a 4+ b, (a + b) + (2a + b)) = ged(2a + b, 3a + 2b), .

(b) For all integers a, b, ¢ with ¢ > 0 we have ged(ac, be) = ¢ ged(a, b).

Solution: Let d = ged(a,b) and let e = ged(ac, be). We must show that e = de. Since c‘ac and c|bc we have
c|e (by Proposition 2.29), say e = kec. Since e’ac, SO kc|ac, we have k|a, and since e‘bc, SO kc’bc7 we have
k‘|b, and so k is a common divisor of a and b. Since d is the greatest common divisor of ¢ and b, we must
have k < d, and hence kc < dc, that is e < dc. On the other hand, we have d|a SO dc|ac, and we have d|b SO
dcfbc, and so dc is a common divisor of ac and bc. Since e is the greatest common divisor of ac and be, we
must have dc < e. We have shown that e < dc and that dc < e, so we have e = dc, as required.

(c) For all integers a, b, ¢ we have ged(ab, ¢) = 1 if and only if ged(a, ¢) = ged(b, ¢) = 1.

Solution: Suppose first that ged(ab, ¢) = 1. Using Back Substitution, or the Extended Euclidean Algorithm,
we can find integers  and y so that abz + cy = 1. By Proposition 2.27, since a(bz) + ¢(y) = 1 we have
ged(a, ¢) = 1, and since b(az) + ¢(y) = 1 we have ged(b,c) = 1.

Conversely, suppose that ged(a, ¢) = ged(b, ¢) = 1. By Back Substitution, or by the Extended Euclidean
Algorithm, we can choose integers s, ¢, u and v such that as + ¢t = 1 and bu + cv = 1. Then we have
1 = (as + ct)(bu + cv) = ab(su) + c(asv + tbu + tcv), and so ged(ab, ¢) = 1 by Proposition 2.27.



5: Use long division of polynomials to solve the following problems. (You may find it useful to read part of
section 9.1 in the text. An example of long division of polynomials is on page 229, and the statement and
proof of the Division Algorithm for Polynomials is on page 230).

(a) Let a(z) = 42° — 2% + 222 — 32 + 5 and b(x) = 222 + 2 + 3. Find polynomials ¢(z) and r(z) with
deg(r(z)) < deg(b(z)) such that a(z) = b(z)q(z) + r(x).
Solution: Long division of polyomials gives
22% — 2% — 3z + 4
20 + 2 +3 ) 425 + 02t — 123 + 222 — 3+ 5
425 + 22* + 62°
-2z — T2 + 222

—2z4 — 3 — 322

—62% + 522 — 3z
—623 — 322 — 9z
8z2 +6x+ 5
82?4+ 4z + 12
20— 7

Thus we can take ¢(z) = 22° — 22 — 3z + 4 and r(z) = 22 — 7.

(b) Let a(z) = 223 — 32? — 22 + 8 and b(z) = 22 — 3z + 3. Find polynomials s(z) and t(z) such that
a(z)s(x) + b(x)t(z) = 1.

Solution: Notice that the proofs of Euclidean Algorithm, Back Substitution, and the Extended Euclidean

Algorithm can all modified so that they can be applied in the case that a = a(z) and b = b(z) are polynomials.
The Euclidean Algorithm gives

20+ 3 Tz —2

2 =3z +3 ) 223 322 -2z +38 x—1 )a2—3c+3
223 — 622 + 62 2 -

322 -8z +8 —2rx+3

322 -9z 49 —2x+2

rz—1 1

and so we have d(z) = ged (a(x),b(z)) = 1. Back-Substitution gives rise to the sequence
1, —(x-2), 1+(x-2)2x+3)=22>-2-5

so we have (22 — 3z + 3)(22% —x — 5) — (22% — 322 — 22 +8)(z — 2) = 1, and we can take s(x) = —z + 2 and
t(r) = 222 — x — 5. Alternatively, the Extended Euclidean Algorithm gives rise to the table

1 0 2¢% — 322 — 22+ 8

0 1 22 —-3x+3

1 —(2x + 3) x—1
—(z—2) 222 —x-5 1

so we have (22 — 3z + 3)(22% —x — 5) — (22% — 322 — 22 + 8)(z — 2) = 1, and we can take s(x) = —z + 2 and
t(x) = 22% —z — 5.



