
MATH 135 Algebra, Solutions to Assignment 3

1: (a) Let a1 = 1 and an+1 = 3an + 2 for n ≥ 1. Show that an = 2 · 3n−1 − 1 for all n ≥ 1.

Solution: We claim that an = 2 · 3n−1 − 1 for all n ≥ 1. When n = 1 we have an = a1 = 1 and
2 · 3n−1 − 1 = 2 · 30 − 1 = 2 · 1− 1 = 1 so the claim is true when n = 1. Let k ≥ 1 and suppose the claim is
true when n = k, that is suppose that ak = 2 · 3k−1 − 1. Then when n = k + 1 we have

an = ak+1 = 3ak + 2 = 3
(
2 · 3k−1 − 1

)
+ 2 = 2 · 3k − 3 + 2 = 2 · 3k − 1 = 2 · 3n−1 − 1 .

Thus the claim is true when n = k + 1. By Mathematical Induction, an = 2 · 3n−1 − 1 for all n ≥ 1.
(b) Let a1 = 3 and an+1 = 2an − 1 for n ≥ 1. Find a closed form formula for an.

Solution: Using the given recursion formula, we find that a1 = 3, a2 = 5, a3 = 9, a4 = 17 and a5 = 33.
Notice that an = 2n + 1 for n = 1, 2, 3, 4, 5. We claim that an = 2n + 1 for all n ≥ 1. When n = 1 the claim
is true. Let k ≥ 1 and suppose that the claim is true when n = k, that is suppose that ak = 2k + 1. Then
when n = k + 1 we have

an = ak+1 = 2 · ak − 1 = 2(2k + 1)− 1 = 2k+1 + 2− 1 = 2k+1 + 1 = 2n + 1 .

Thus the claim is true when n = k + 1. By Mathematical Induction, we have an = 2n + 1 for all n ≥ 1.

(c) Let a1 = 2 and an+1 =
5an − 4

an
for n ≥ 1. Show that 1 ≤ an ≤ an+1 ≤ 4 for all n ≥ 1.

Solution: We claim that 1 ≤ an ≤ an+1 ≤ 4 for all n ≥ 1. We have a1 = 2 and the recursion formula gives

a2 =
5a1 − 4

a1
=

5 · 2− 4
2

= 3, and so we do have 1 ≤ a1 ≤ a2 ≤ 4 and so the claim is true when n = 1. Let

k ≥ 1 and suppose the claim is true when n = k, that is suppose that 1 ≤ ak ≤ ak+1 ≤ 4. We have

1 ≤ ak ≤ ak+1 ≤ 4 =⇒ 1 ≥ 1
ak
≥ 1

ak+1
≥ 1

4 =⇒ 4 ≥ 4
ak
≥ 4

ak+1
≥ 1 =⇒ −4 ≤ − 4

ak
≤ − 4

ak+1
≤ −1

=⇒ 1 ≤ 5− 4
ak
≤ 5− 4

ak+1
≤ 4 =⇒ 1 ≤ 5ak−4

ak
≤ 5ak+1−4

ak+1
≤ 4 =⇒ 1 ≤ ak+1 ≤ ak+2 ≤ 4 .

Thus the claim is true when n = k + 1. By Mathematical Induction, 1 ≤ an ≤ an+1 ≤ 4 for all n ≥ 1.

2: (a) Let a0 = 0 and a1 = 1 and for n ≥ 2 let an = an−1 +6an−2. Show that an = 1
5

(
3n− (−2)n

)
for all n ≥ 0.

Solution: We claim that an = 1
5

(
3n − (−2)n

)
for all n ≥ 0. When n = 0 we have an = a0 = 0 and

1
5

(
3n − (−2)n

)
= 1

5

(
30 − (−2)0

)
= 0 , so the claim is true when n = 0. When n = 1 we have an = a1 = 1

and 1
5

(
3n − (−2)n

)
= 1

5

(
3− (−2)

)
= 1, so the claim is true when n = 1. Let k ≥ 2 and suppose the claim is

true for all n < k. In particular we suppose the claim is true when n = k − 1 and when n = k − 2, that is
we suppose ak−1 = 1

5

(
3k−1 − (−2)k−1

)
and ak−2 = 1

5

(
3k−2 − (−2)k−2

)
. Then when n = k we have

an = ak = ak−1 + 6ak−2

= 1
5

(
3k−1 − (−2)k−1

)
+ 6

5

(
3k−2 − (−2)k−2

)
=
(

1
5 · 3

k−1 + 6
5 · 3

k−2
)
−
(

1
5 (−2)k−1 + 6

5 (−2)k−2
)

=
(

3
5 · 3

k−2 + 6
5 · 3

k−2
)
−
(
− 2

5 (−2)k−2 + 6
5 (−2)k−2

)
= 9

5 · 3
k−2 − 4

5 (−2)k−2 = 1
5 · 3

k − 1
5 (−2)k

= 1
5

(
3k − (−2)k

)
= 1

5

(
3n − (−2)n

)
.

Thus the claim is true when n = k. By Strong Mathematical Induction, the claim is true for all n ≥ 0 .



(b) Let a0 = 1 and a1 = 1 and for n ≥ 2 let an = 2an−1 + an−2. Show that an = 1
2

(
(1 +

√
2)n + (1−

√
2)n
)

for all n ≥ 0.

Solution: We claim that an = 1
2

(
(1 +
√

2)n + (1−
√

2)n
)

for all n ≥ 0. When n = 0 we have an = a0 = 1 and
1
2

(
(1+
√

2)n +(1−
√

2)n
)

= 1
2

(
(1+
√

2)0 +(1−
√

2)0
)

= 1
2

(
1−1

)
= 0, so the claim is true when n = 0. When

n = 1 we have an = a1 = 1 and 1
2

(
(1+
√

2)n+(1−
√

2)n
)

= 1
2

(
(1+
√

2)1+(1−
√

2)1
)

= 1
2

(
1+
√

2+1−
√

2
)

= 1,
so the claim is true when n = 1. Let k ≥ 2 and suppose the claim is true for all n < k. In particular, suppose
the claim is true when n = k − 1 and when = k − 2, that is suppose ak−1 = 1

2

(
(1 +

√
2)k−1 + (1−

√
2)k−1

)
and ak−2 = 1

2

(
(1 +

√
2)k−2 + (1−

√
2)k−2

)
. Then when n = k we have

an = ak = 2ak−1 + ak−2

= 2 · 1
2

(
(1 +

√
2)k−1 + (1−

√
2)k−1

)
+ 1

2

(
(1 +

√
2)k−2 + (1−

√
2)k−2

)
= (1 +

√
2)k−1 + 1

2 (1 +
√

2)k−2 + (1−
√

2)k−1 + 1
2 (1−

√
2)k−2

= (1 +
√

2)(1 +
√

2)k−2 + 1
2 (1 +

√
2)k−2 + (1−

√
2)(1−

√
2)k−2 + 1

2 (1−
√

2)k−2

= 1
2 (3 + 2

√
2)(1 +

√
2)k−2 + 1

2 (3− 2
√

2)(1−
√

2)k−2

= 1
2 (1 +

√
2)2(1 +

√
2)k−2 + 1

2 (1−
√

2)2(1−
√

2)k−2

= 1
2

(
(1 +

√
2)k + (1−

√
2)k
)

= 1
2

(
(1 +

√
2)n + (1−

√
2)n
)
,

Thus the claim is true when n = k. By Strong Mathematical Induction, the claim is true for all n ≥ 0.

3: (a) Show that
n∑

i=1

(2i− 1)2 =
n(2n− 1)(2n + 1)

3
for all n ≥ 1.

Solution: We claim that
n∑

i=1

(2i−1)2 =
n(2n− 1)(2n + 1)

3
for all n ≥ 1. When n = 1 we have

n∑
i=1

(2i−1)2 =

12 = 1 and
n(2n− 1)(2n + 1)

3
=

1 · 1 · 3
3

= 1, so the claim is true when n = 1. Let k ≥ 1 and suppose the

claim is true when n = k, that is suppose that
k∑

i=1

(2i− 1)2 =
k(2k − 1)(2k + 1)

3
. Then when n = k + 1 we

have
n∑

i=1

(2i− 1)2 =
k+1∑
i=1

(2i− 1)2 =

(
k∑

i=1

(2i− 1)2
)

+ (2k + 1)2

=
k(2k − 1)(2k + 1)

3
+ (2k + 1)2 = (2k + 1)

(
k(2k − 1)

3
+ (2k + 1)

)
= (2k + 1)

(
k(2k − 1) + 3(2k + 1)

3

)
=

(2k + 1)(2k2 − k + 6k + 3)
3

=
(2k + 1)(2k2 + 5k + 3)

3
=

(2k + 1)(k + 1)(2k + 3)
3

=
(2n− 1)(n)(2n + 1)

3
.

Thus the claim is true when n = k + 1. By Mathematical Induction, the claim is true for all n ≥ 0.



(b) Find a closed form formula for
n∑

i=1

(−1)i(2i− 1)2 for n ≥ 1.

Solution: We have
1∑

i=1

(−1)i(2i− 1)2 = −12 = −1

2∑
i=1

(−1)i(2i− 1)2 = −12 + 32 = −1 + 9 = 8 = 2 · 4

3∑
i=1

(−1)i(2i− 1)2 = −12 + 32 − 52 = −1 + 9− 25 = −17 = 1− 2 · 9

4∑
i=1

(−1)i(2i− 1)2 = −12 + 32 − 52 + 72 = −1 + 9− 25 + 49 = 32 = 2 · 16

5∑
i=1

(−1)i(2i− 1)2 = −12 + 32 − 52 + 72 − 92 = −1 + 9− 25 + 49− 81 = −49 = 1− 2 · 25

6∑
i=1

(−1)i(2i− 1)2 = −12 + 32 − 52 + 72 − 92 + 112 = −1 + 9− 25 + 49− 81 + 121 = 72 = 2 · 36 .

It appears that for all n ≥ 1,
n∑

i=1

(−1)i(2i− 1)2 =

{
2n2 when n is even,

1− 2n2 when n is odd.
In other words, it appears that

2m∑
i=1

(−1)i(2i− 1)2 = 2(2m)2 for all m ≥ 1 and that
2m−1∑
i=1

(−1)i(2i− 1)2 = 1− 2(2m− 1)2 for all m ≥ 1.

We claim first that
2m∑
i=1

(−1)i(2i − 1)2 = 2(2m)2 for all m ≥ 1. We have seen that this claim is true when

m = 1 (and when m = 2, 3). Let k ≥ 1 and suppose that the claim is true when m = k, that is suppose that
2k∑
i=1

(−1)i(2i− 1)2 = 2(2k)2. Then when m = k + 1 we have

2m∑
i=1

(−1)i(2i− 1)2 =
2k+2∑
i=1

(−1)i(2i− 1)2

=

(
2k∑
i=1

(−1)i(2i− 1)2
)

+ (−1)2k+1(4k + 1)2 + (−1)2k+2(4k + 3)2

= 2(2k)2 − (4k + 1)2 + (4k + 3)2 = 8k2 − (16k2 + 8k + 1) + (16k2 + 24k + 8)

= 8k2 + 16k + 8 = 8(k + 1)2 = 2(2m)2 .

Thus the claim is true when m = k + 1. By Mathematical Induction, the claim is true for all m ≥ 1. Finally,
note that for all m ≥ 1 we have 1− 2(2m− 1)2 = 1− 2(4m2 − 4m + 1) = −8m2 + 8m− 1 and

2m−1∑
i=1

(−1)i(2i− 1)2 =

(
2m∑
i=1

(−1)i(2i− 1)2
)
− (−1)2m(4m− 1)2 = 2(2m)2 − (4m− 1)2

= 8m2 − (16m2 − 8m + 1) = −8m2 + 8m− 1 = 1− 2(2m− 1)2 .



4: (a) Expand (2x + 5)4.

Solution: We have

(2x + 5)4 =
(

4
0

)
(2x)4 +

(
4
1

)
(2x)3(5)1 +

(
4
2

)
(2x)2(5)2 +

(
4
3

)
(2x)1(5)3 +

(
4
4

)
(5)4

= 1 · 16 x4 + 4 · 8 · 5 x3 + 6 · 4 · 25 x2 + 4 · 2 · 125 x1 + 1 · 625

= 16x4 + 160x3 + 600x2 + 1000x + 625 .

(b) Expand
(
x− 1

2x

)8.

Solution: We have(
x− 1

2x

)8 =
(

8
0

)
(x)8 +

(
8
1

)
(x)7

(
− 1

2x

)1 +
(

8
2

)
(x)6

(
− 1

2x

)2 +
(

8
3

)
(x)5

(
− 1

2x

)3 +
(

8
4

)
(x)4

(
− 1

2x

)4
+
(

8
5

)
(x)3

(
− 1

2x

)5 +
(

8
6

)
(x)2

(
− 1

2x

)6 +
(

8
7

)
(x)1

(
− 1

2x

)7 +
(

8
8

)
= 1 · x8 − 8 · x7 · 1

2x + 28 · x6 · 1
4x2 − 56 · x5 · 1

8x3 + 70 · x4 · 1
16x4

− 56 · x6 · 1
32x5 + 28 · x2 · 1

64x6 − 8 · x · 1
128x7 + 1

256x8

= x8 − 4x6 + 7x4 − 7x2 + 35
8 −

7
4x2 + 7

16x4 − 1
16x6 + 1

256x8 .

(c) Find the term involving x8 in the expansion of
(

x3

6 −
12
x2

)11

.

Solution: The ith term in the expansion is(
11
i

) (
x3

6

)11−i (
− 12

x2

)i =
(

11
i

) (
1
6

)11−i (−12)ix3(11−i)−2i = (−1)i
(

11
i

)
12i

611−i x33−5i .

The term involving x8 occurs when 33− 5i = 8, that is when i = 5. The 5th is

(−1)5
(

11
5

)
125

66 x8 = − 11·10·9·8·7
5·4·3·2·1

25·65

66 x8 = −11 · 7 · 25 x8 = −2464 x8 .

5: (a) Evaluate
n∑

i=0

(n

i

) 1
2i

.

Solution: By the Binomial Theorem, we have
n∑

i=0

(
n
i

)
1
2i =

(
1 + 1

2

)n =
(

3
2

)n
.

(b) Evaluate
n∑

i=0

(
2n

2i

)
1
2i

.

Solution: By the Binomial Theorem, we have(
2n
0

)
+
(

2n
1

)
1√
2

+
(

2n
2

)
1√
2
2 +

(
2n
3

)
1√
2
3 +

(
2n
4

)
1√
2
4 + · · ·+

(
2n
2n

)
1√
2
2n =

(
1 + 1√

2

)2n

and (
2n
0

)
−
(

2n
1

)
1√
2

+
(

2n
2

)
1√
2
2 −

(
2n
3

)
1√
2
3 +

(
2n
4

)
1√
2
4 − · · ·+

(
2n
2n

)
1√
2
2n =

(
1− 1√

2

)2n

.

Adding these gives

2
((

2n
0

)
+
(

2n
2

)
1√
2
2 +

(
2n
4

)
1√
2
4 + · · ·+

(
2n
2n

)
1√
2
2n

)
=
(

1 + 1√
2

)2n

+
(

1− 1√
2

)2n

.

Thus
n∑

i=0

(
2n
2i

)
1
2i = 1

2

((
1 + 1√

2

)2n

+
(

1− 1√
2

)2n
)

.



(c) Evaluate
n∑

i=0

(
n + i

i

)
1
2i

.

Solution: We have
0∑

i=0

(
n+i

i

)
1
2i =

(
0
0

)
= 1

1∑
i=0

(
n+i

i

)
1
2i =

(
1
0

)
+
(

2
1

)
1
2 = 1 + 2

2 = 2

2∑
i=0

(
n+i

i

)
1
2i =

(
2
0

)
+
(

3
1

)
1
2 +

(
4
2

)
1
4 = 1 + 3

2 + 6
4 = 4

3∑
i=0

(
n+i

i

)
1
2i =

(
3
0

)
+
(

4
1

)
1
2 +

(
5
2

)
1
4 +

(
6
3

)
1
8 = 1 + 4

2 + 10
4 + 20

8 = 8 .

We claim that
n∑

i=0

(
n+i

i

)
1
2i = 2n for all n ≥ 0. When n = 0 (and also when n = 1, 2 and 3) we have

seen that the claim is true. Let k ≥ 0 and suppose that the claim is true when n = k, that is suppose
k∑

i=0

(
k+i

i

)
1
2i = 2k. Let n = k + 1 and write S =

n∑
i=0

(
n+i

i

)
1
2i =

k+1∑
i=0

(
k+1+i

i

)
1
2i . Then we have

S =
(

k+1
0

)
+
(

k+2
1

)
1
2 +

(
k+3
2

)
1
22 +

(
k+4
3

)
1
23 + · · ·+

(
2k+1

k

)
1
2k +

(
2k+2
k+1

)
1

2k+1

= 1 +
((

k+1
0

)
+
(

k+1
1

))
1
2 +

((
k+2
1

)
+
(

k+2
2

))
1
22 +

((
k+3
2

)
+
(

k+3
3

))
1
22

+ · · ·+
((

2k
k−1

)
+
(

2k
k

))
1
2k +

((
2k+1

k

)
+
(

2k+1
k+1

))
1

2k+1

=
((

k+1
0

)
1
2 +

(
k+2
1

)
1
22 +

(
k+3
2

)
1
23 + · · ·+

(
2k

k−1

)
1
2k +

(
2k+1

k

)
1

2k+1

)
+
(

1 +
(

k+1
1

)
1
2 +

(
k+2
2

)
1
22 +

(
k+3
3

)
1
23 + · · ·+

(
2k
k

)
1
2k +

(
2k+1
k+1

)
1

2k+1

)
=
(

1
2S −

(
2k+2
k+1

)
1

2k+2

)
+
( k∑

i=0

(
k+i

i

)
1
2i +

(
2k+1
k+1

)
1

2k+1

)
.

Subtract 1
2S from each side to get

1
2S =

k∑
i=0

(
k+i

i

)
1
2i +

(
2k+1
k+1

)
1

2k+1 −
(

2k+2
k+1

)
1

2k+2 .

Notice that (
2k+2
k+1

)
= (2k+2)!

(k+1)!(k+1)! = (2k+2)(2k+1)!
(k+1)k!(k+1)! = 2(2k+1)!

k!(k+1)! = 2
(

2k+1
k+1

)
and so we have 1

2S =
k∑

i=0

(
k+i

i

)
1
2i = 2k, that is S = 2k+1 = 2n. Thus the claim holds when n = k + 1, and

so by Mathematical Induction, the claim holds for all n ≥ 0.


