

MATH 135 Algebra, Solutions to Assignment 2

1: (a) Make a truth table for the statement $(P \leftrightarrow \neg R) \wedge (R \rightarrow Q)$.

Solution: Here is a truth table.

P	Q	R	$\neg R$	$P \leftrightarrow \neg R$	$R \rightarrow Q$	$(P \leftrightarrow \neg R) \wedge (R \rightarrow Q)$
T	T	T	F	F	T	F
T	T	F	T	T	T	T
T	F	T	F	F	F	F
T	F	F	T	T	T	T
F	T	T	F	T	T	T
F	T	F	T	F	T	F
F	F	T	F	T	F	F
F	F	F	T	F	T	F

(b) Determine whether $(P \wedge \neg Q) \vee (R \leftrightarrow P)$ is equivalent to $Q \leftrightarrow R$.

Solution: We make a truth table for $(P \wedge \neg Q) \vee (R \leftrightarrow P)$ and $Q \leftrightarrow R$.

P	Q	R	$\neg Q$	$P \wedge \neg Q$	$R \leftrightarrow P$	$(P \wedge \neg Q) \vee (R \leftrightarrow P)$	$Q \leftrightarrow R$
T	T	T	F	F	T	T	T
T	T	F	F	F	F	F	F
T	F	T	T	T	T	T	F
T	F	F	T	T	F	T	T
F	T	T	F	F	F	F	T
F	T	F	F	F	T	T	F
F	F	T	T	F	F	F	F
F	F	F	T	F	T	T	T

Since the final two columns are not identical, the two statements are not equivalent (for example, as seen on the third row, when P is true, Q is false and R is true, the statement $(P \wedge \neg Q) \vee (R \leftrightarrow P)$ is true but the statement $Q \leftrightarrow R$ is false).

(c) Determine whether $P \rightarrow (Q \rightarrow R)$ is equivalent to $(P \rightarrow Q) \rightarrow R$.

Solution: We make a truth table for the two given statements.

P	Q	R	$Q \rightarrow R$	$P \rightarrow (Q \rightarrow R)$	$P \rightarrow Q$	$(P \rightarrow Q) \rightarrow R$
T	T	T	T	T	T	T
T	T	F	F	F	T	F
T	F	T	T	T	F	T
T	F	F	T	T	F	T
F	T	T	T	T	T	T
F	T	F	F	T	T	F
F	F	T	T	T	T	T
F	F	F	T	T	T	F

Since the column for $P \rightarrow (Q \rightarrow R)$ is not identical to the column for $(P \rightarrow Q) \rightarrow R$, these two statements are not equivalent (for example, as seen on the 6th row, when P is false, Q is true and R is false, the statement $P \rightarrow (Q \rightarrow R)$ is true but the statement $(P \rightarrow Q) \rightarrow R$ is false).

2: Let $S = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$. List all of the elements in each of the following sets.

(a) $A = \{x \in S \mid x \text{ is even or } x \text{ is a multiple of 3}\}$

Solution: We have

$$\begin{aligned} A &= \{x \in S \mid x \text{ is even}\} \cup \{x \in S \mid x \text{ is a multiple of 3}\} \\ &= \{2, 4, 6, 8, 10\} \cup \{3, 6, 9\} = \{2, 3, 4, 6, 8, 9, 10\}. \end{aligned}$$

(b) $B = \{x \in S \mid \text{if } x \text{ is even then } x \text{ is a multiple of 3}\}$

Solution: Since $P \rightarrow Q$ is equivalent to $\neg P \vee Q$, the statement “if x is even then x is a multiple of 3” is equivalent to the statement “ x is odd or x is a multiple of 3”, so we have

$$\begin{aligned} B &= \{x \in S \mid x \text{ is odd or } x \text{ is a multiple of 3}\} \\ &= \{x \in S \mid x \text{ is odd}\} \cup \{x \in S \mid x \text{ is a multiple of 3}\} \\ &= \{1, 3, 5, 7, 9\} \cup \{3, 6, 9\} = \{1, 3, 5, 6, 7, 9\}. \end{aligned}$$

(c) $C = \{(x, y) \in S \times S \mid 3x + 2y = 20 \text{ and } (y < x^2 \text{ if and only if } xy < 8)\}$

Solution: Note that for $(x, y) \in S \times S$ we have $3x + 2y = 20$ if and only if $(x, y) = (2, 7), (4, 4)$ or $(6, 1)$. When $(x, y) = (2, 7)$, the statement “ $y < x^2$ ” is false and the statement “ $xy < 8$ ” is false, so the statement “ $y < x^2$ if and only if $xy < 8$ ” is true. When $(x, y) = (4, 4)$, the statement “ $y < x^2$ ” is true and the statement “ $xy < 8$ ” is false, so the statement “ $y < x^2$ if and only if $xy < 8$ ” is false. When $(x, y) = (6, 1)$, the statement “ $y < x^2$ ” is true and the statement “ $xy < 8$ ” is true, so the statement “ $y < x^2$ if and only if $xy < 8$ ” is true. Thus $C = \{(2, 7), (6, 1)\}$.

3: Express each of the statements below symbolically, taking the universe of discourse to be \mathbf{R} and using only symbols from the following list:

$$\neg, \wedge, \vee, \rightarrow, \leftrightarrow, (,), \forall, \exists, 0, 1, +, \times, =, <, \leq, x, y, z$$

(a) x is equal to the minimum of y and z .

Solution: Here are three ways to express this statement symbolically.

$$\begin{aligned} &(y \leq z \wedge x = y) \vee (z \leq y \wedge x = z) \\ &(y \leq z \rightarrow x = y) \wedge (z \leq y \rightarrow x = z) \\ &(x = y \vee x = z) \wedge (x \leq y \wedge x \leq z) \end{aligned}$$

Note that many slight variations of these expressions will be incorrect. For example, although the statement $(y \leq z \rightarrow x = y) \vee (z \leq y \rightarrow x = z)$ may look similar to the second of the above expressions, it has a completely different meaning. Indeed it is true whenever $y \neq z$ (can you see why?).

(b) There is no smallest positive real number.

Solution: Here are two ways to express this statement symbolically.

$$\begin{aligned} &\neg \exists x (0 < x \wedge \forall y (0 < y \rightarrow x \leq y)) \\ &\forall x (0 < x \rightarrow \exists y (0 < y \wedge y < x)) \end{aligned}$$

(c) Every real number has a unique cubed root.

Solution: Here are two ways to express this symbolically.

$$\begin{aligned} &\forall x \exists y (y \times y \times y = x \wedge \forall z (z \times z \times z = x \rightarrow z = y)) \\ &\forall x \exists y (y \times y \times y = x) \wedge \forall y \forall z ((y \times y \times y = z \times z \times z) \rightarrow y = z) \end{aligned}$$

4: For each of the following statements, determine whether it is true when the universe of discourse is \mathbf{Z} and whether it is true when the universe of discourse is \mathbf{R} .

(a) $\forall x \exists y (x = y \times y \vee y \times y + x = 0)$ We can also write this statement as $\forall x \exists y x = \pm y^2$. This is false in \mathbf{Z} , for example when $x = 2$ there is no integer y for which $x = \pm y^2$. On the other hand, it is true in \mathbf{R} . Indeed given $x \in \mathbf{R}$ we can choose $y = \sqrt{|x|}$ and then we have $x = \pm y^2$.

(b) $\forall x \exists y (y < x \wedge \forall z (z < x \rightarrow z \leq y))$

Solution: This is true in \mathbf{Z} . Indeed given $x \in \mathbf{Z}$ we can choose $y = x - 1$. Then we have $y < x$, and for all $z \in \mathbf{Z}$, if $z < x$ then we have $z \leq x - 1$, that is $z \leq y$. On the other hand, the given statement is false in \mathbf{R} . Indeed given $x \in \mathbf{R}$ and given $y \in \mathbf{R}$ with $y < x$, we can choose $z \in \mathbf{R}$ with $y < z < x$ (for example we can choose $z = \frac{x+y}{2}$).

(c) $\forall x \forall y ((0 < x \wedge x + y < x \times y) \rightarrow 0 < y)$

Solution: This is true in \mathbf{Z} and we give a proof. Let $x, y \in \mathbf{Z}$. Suppose $0 < x$ and $x + y < xy$. Since $x + y < xy$ we have $xy - y > x$, that is $y(x - 1) > x$. Note that $x \neq 1$ since if we had $x = 1$ then $y(x - 1) > x$ would give $0 > 1$, which is false. Since $0 < x$ and $x \neq 1$ we know that $x > 1$, and so $y(x - 1) > x$ implies that $y > \frac{x}{x-1} = 1 + \frac{1}{x-1} > 1$. Thus $0 < y$, as required. On the other hand, the given statement is false in \mathbf{R} . For example when $x = \frac{1}{2}$ and $y = -2$, we have $0 < x$ and $x + y < xy$, but we do not have $0 < y$.

5: Prove each of the following statements, where the universe of discourse is \mathbf{R} .

(a) $\forall x (|x^2 - 4x| \leq x \leftrightarrow (x = 0 \vee (3 \leq x \wedge x \leq 5)))$

Solution: Let $x \in \mathbf{R}$. Then

$$\begin{aligned} |x^2 - 4x| \leq x &\iff -x \leq x^2 - 4x \text{ and } x^2 - 4x \leq x \\ &\iff x^2 - 3x \geq 0 \text{ and } x^2 - 5x \leq 0 \\ &\iff x(x - 3) \geq 0 \text{ and } x(x - 5) \leq 0 \\ &\iff (x \leq 0 \text{ or } x \geq 3) \text{ and } (0 \leq x \leq 5) \\ &\iff (x \leq 0 \text{ and } 0 \leq x \leq 5) \text{ or } (x \geq 3 \text{ and } 0 \leq x \leq 5) \\ &\iff x = 0 \text{ or } 3 \leq x \leq 5. \end{aligned}$$

(b) $\forall x \forall y (y^2 = x^3 + x^2 \leftrightarrow \exists z (x = z^2 - 1 \wedge y = z^3 - z))$

Solution: Let $x, y \in \mathbf{R}$. Suppose that $y^2 = x^3 + x^2$. If $x = 0$ then we must have $y = 0$ and we can choose $z = 1$ to get $x = z^2 - 1$ and $y = z^3 - z$. If $x \neq 0$ then we can choose $z = \frac{y}{x}$ to get $z^2 - 1 = \frac{y^2}{x^2} - 1 = \frac{x^3 + x^2}{x^2} - 1 = x$ and $z^3 - z = z(z^2 - 1) = \frac{y}{x} \cdot x = y$. Conversely, suppose that $x = z^2 - 1$ and $y = z^3 - z^2$. Then we have $y^2 = (z^3 - z)^2 = (z(z^2 - 1))^2 = z^2(z^2 - 1)^2$ and we have $x^3 + x^2 = x^2(x + 1) = (z^2 - 1)z^2$, and so $y^2 = x^3 + x^2$.