

Please note that the symbols \neg , \wedge , \vee , \rightarrow and \leftrightarrow are alternate notations for the connectives “NOT”, “AND”, “OR”, “ \Rightarrow ” and “ \Leftrightarrow ” respectively.

1: (a) Make a truth table for the statement $(P \leftrightarrow \neg R) \wedge (R \rightarrow Q)$.
 (b) Determine whether $(P \wedge \neg Q) \vee (R \leftrightarrow P)$ is equivalent to $Q \leftrightarrow R$.
 (c) Determine whether $P \rightarrow (Q \rightarrow R)$ is equivalent to $(P \rightarrow Q) \rightarrow R$.

2: Let $S = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$. List all of the elements in each of the following sets.

(a) $A = \{x \in S \mid x \text{ is even or } x \text{ is a multiple of 3}\}$
 (b) $B = \{x \in S \mid \text{if } x \text{ is even then } x \text{ is a multiple of 3}\}$
 (c) $C = \{(x, y) \in S \times S \mid 3x + 2y = 20 \text{ and } (y < x^2 \text{ if and only if } xy < 8)\}$

3: Express each of the statements below symbolically, taking the universe of discourse to be \mathbf{R} and using only symbols from the following list:

$\neg, \wedge, \vee, \rightarrow, \leftrightarrow, (,), \forall, \exists, 0, 1, +, \times, =, <, \leq, x, y, z$

(a) x is equal to the minimum of y and z .
 (b) There is no smallest positive real number.
 (c) Every real number has a unique cubed root.

4: For each of the following statements, determine whether it is true when the universe of discourse is \mathbf{Z} and whether it is true when the universe of discourse is \mathbf{R} .

(a) $\forall x \exists y (x = y \times y \vee y \times y + x = 0)$
 (b) $\forall x \exists y (y < x \wedge \forall z (z < x \rightarrow z \leq y))$
 (c) $\forall x \forall y ((0 < x \wedge x + y < x \times y) \rightarrow 0 < y)$

5: Prove each of the following statements, where the universe of discourse is \mathbf{R} .

(a) $\forall x (|x^2 - 4x| \leq x \leftrightarrow (x = 0 \vee (3 \leq x \wedge x \leq 5)))$
 (b) $\forall x \forall y (y^2 = x^3 + x^2 \leftrightarrow \exists z (x = z^2 - 1 \wedge y = z^3 - z))$