
MATH 135 Algebra, Solutions to Assignment 1

1: (a) Find all real numbers x such that
√

x

1 + x
=

1
3−
√

x
.

Solution: By cross multiplying and then using the quadratic formula, we have
√

x

1 + x
=

1
3−
√

x
⇐⇒

√
x (3−

√
x) = 1 + x ⇐⇒ 3

√
x− x = 1 + x ⇐⇒ 2x− 3

√
x + 1 = 0

⇐⇒
√

x =
3±
√

9− 8
4

⇐⇒
√

x = 1 or 1
2 ⇐⇒ x = 1 or 1

4 .

(b) Solve y = x + 1
x with 0 < x ≤ 1 for x in terms of y.

Solution: Multiply both sides of the equation by x then use the quadratic formula to get

y = x + 1
x ⇐⇒ xy = x2 + 1 ⇐⇒ x2 − xy + 1 = 0 ⇐⇒ x =

y ±
√

y2 − 4
2

.

Note that 0 < x ≤ 1 =⇒ 1
x ≥ 1 ≥ x =⇒ y = x + 1

x ≥ 2x =⇒ x ≤ y
2 , so we must use the negative sign. Thus

x =
y −

√
y2 − 4
2

.

2: (a) Find all ordered pairs of integers (x, y) such that xy = 6 + 2x.

Solution: We have xy = 6 + 2x ⇐⇒ xy − 2x = 6 ⇐⇒ x(y − 2) = 6. So x must be a factor of 6, that is
x = ±1,±2,±3,±6, and we have y = 6

x + 2. Thus

(x, y) = (−6, 1), (−3, 0), (−2,−1), (−1,−4), (1, 8), (2, 5), (3, 4) or (6, 3) .

Note that these are the 6 points with integer coordinates which lie on the hyperbola y = 6
x + 2.

(b) Find all ordered pairs of integers (x, y) such that x2 + y2 = 4x + 2y.

Solution: Complete the square to get

x2 +y2 = 4x+2y ⇐⇒ x2−4x+y2−2y = 0 ⇐⇒ (x−2)2−4+(y−1)2−1 = 0 ⇐⇒ (x−2)2 +(y−1)2 = 5 .

Since (x − 2)2 = 5 − (y − 1)2 ≤ 5 we must have |x − 2| ≤
√

5 so (x − 2) = 0,±1, or ±2. Also, we have
(y − 1)2 = 5− (x− 2)2 so y = 1±

√
5− (x− 2)2, and so when (x− 2) = 0 we have y = 1±

√
5 which is not

an integer, when (x− 2) = ±1 we have y = 1± 2, and and when (x− 2) = ±2 we have y = 1± 1. Thus

(x, y) = (0, 0), (0, 2), (1,−1), (1, 3), (3,−1), (3, 3), (4, 0) or (4, 2) .

These are the 8 points with integer coordinates which lie on the circle of radius
√

5 centered at (2, 1).

3: (a) Determine whether there exists an integer x such that x2 + 20 is a perfect square.

Solution: There does exist such an integer x, indeed when x = 4 we have x2 + 20 = 16 + 20 = 36 = 62.
(b) Determine whether there exists an integer x such that x2 + 10 is a perfect square.

Solution: We claim that there is no such value of x. Note that it suffices to consider only non-negative values
of x since (−x)2 = x2. We list the first few values of x2 + 10.

x 0 1 2 3 4
x2 + 10 10 11 14 19 26

We see from the table that for 0 ≤ x ≤ 4, x2 + 10 is not a perfect square. Now suppose, for a contradiction,
that x ≥ 5 and x2 + 10 is a perfect square, say x2 + 10 = y2 where y ≥ 0. Then

y2 = x2 + 10 =⇒ y2 > x2 =⇒ y > x =⇒ y ≥ x + 1 =⇒ y2 ≥ (x + 1)2 = x2 + 2x + 1

=⇒ y2 ≥ x2 + 2 · 5 + 1 = x2 + 11 =⇒ y2 > x2 + 10 =⇒ y2 6= x2 + 10

giving us the desired contradiction.



4: (a) The first 15 odd prime numbers are 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47 and 53. Determine which
of these 15 prime numbers are equal to the sum of two squares, then make a conjecture about which odd
prime numbers are equal to the sum of two squares.

Solution: Note that each of the primes 5, 13, 17, 29, 37, 41 and 53 is a sum of two squares (indeed 5 = 1 + 4,
13 = 4 + 9, 17 = 1 + 16, 29 = 4 + 25, 37 = 1 + 36, 41 = 16 + 25 and 53 = 4 + 49). By trying all possibilities,
we can verify that none of the remaining primes 3, 7, 11, 19, 23, 31, 43 and 47 is a sum of two squares (for
example, 47 is not a sum of two squares since 47−0 = 47, 47−1 = 46, 47−4 = 43, 47−9 = 38, 47−16 = 31,
47− 25 = 22 and 47− 36 = 11, none of which are perfect squares).

Notice that each of the primes 5, 13, 17, 29, 37, 41 and 53 is equal to 1 more than a multiple of 4,
while each of the remaining primes 3, 7, 11, 19, 23, 31, 43 and 47 is equal to 1 less than a multiple of 4. We
conjecture that an odd prime is a sum of two squares if and only if it is equal to 1 more than a multiple of 4.
(In fact, this conjecture is true, but we shall not prove it in this course).
(b) Find all integers n with 2 ≤ n ≤ 20 with the property that n is a factor of 2n−1 − 1, then make a
conjecture about which integers n ≥ 2 have the property that n is a factor of 2n−1 − 1.

Solution: With the help of a calculator, we find that the values of n with 2 ≤ n ≤ 20 such that n is a factor
of 2n−1 − 1 are 3, 5, 7, 11, 13, 17, and 19. We conjecture that an integer n ≥ 2 is a factor of 2n−1 − 1 if and
only if n is an odd prime. (In fact, this conjecture is false, as we shall show in Assignment 9).

5: (a) The first six terms of sequences {an} and {bn} are listed below:

n 1 2 3 4 5 6
an 1 2 5 12 29 70
bn 1 3 7 17 41 99

(i) Find a rule that governs how the terms an+1 and bn+1 are obtained from the terms an and bn, and use
this rule to find the terms a7, b7, a8 and b8.

Solution: It appears that an+1 = an + bn and that bn+1 = an + an+1 = 2an + bn. Using these rules we find
that a7 = 169, b7 = 239, a8 = 408 and b8 = 577.
(ii) Use a calculator to find the ratio bn

2/an
2 for 1 ≤ n ≤ 6 and make a conjecture about the limit

lim
n→∞

(bn/an).

Solution: With a calculator, we find the following approximate values for bn
2/an

2.

n 1 2 3 4 5 6
bn

2/an
2 1.0000 2.2500 1.9600 2.0069 1.9988 2.0002

It appears that lim
n→∞

bn
2/an

2 = 2, so we conjecture that lim
n→∞

(bn/an) =
√

2. (In fact, this conjecture is true).

(b) For a real number x, let bxc denote the largest integer which is less than or equal to x. For each positive
integer n, let an =

⌊
n
√

2
⌋

and let bn be the nth positive integer which does not occur in the sequence {an}.
The first 20 terms of the sequence {an} and the first 8 terms of the sequence {bn} are listed below.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
an 1 2 4 5 7 8 9 11 12 14 15 16 18 19 21 22 24 25 26 28
bn 3 6 10 13 17 20 23 27

Make a conjecture about a rule which allows us to determine the terms an and bn without using a calculator
and without using the value of

√
2.

Solution: It appears that for all n ≥ 1 we have bn = an + 2n, so we conjecture that the terms an and bn can
be obtained using the following rule: we start with a1 = 1 and b1 = 3, and once we have found a1, · · · an−1

and b1, · · · , bn−1, we let an be the nth positive integer which does not occur in the sequence b1, · · · , bn−1, and
then we set bn = an + 2n. (This conjecture is true, and it is also true that bn =

⌊
n(2 +

√
2)
⌋

for all n).


