

MATH 135 Algebra, Solutions to Assignment 1

1: (a) Find all real numbers x such that $\frac{\sqrt{x}}{1+x} = \frac{1}{3-\sqrt{x}}$.

Solution: By cross multiplying and then using the quadratic formula, we have

$$\begin{aligned} \frac{\sqrt{x}}{1+x} = \frac{1}{3-\sqrt{x}} &\iff \sqrt{x}(3-\sqrt{x}) = 1+x \iff 3\sqrt{x} - x = 1+x \iff 2x - 3\sqrt{x} + 1 = 0 \\ &\iff \sqrt{x} = \frac{3 \pm \sqrt{9-8}}{4} \iff \sqrt{x} = 1 \text{ or } \frac{1}{2} \iff x = 1 \text{ or } \frac{1}{4}. \end{aligned}$$

(b) Solve $y = x + \frac{1}{x}$ with $0 < x \leq 1$ for x in terms of y .

Solution: Multiply both sides of the equation by x then use the quadratic formula to get

$$y = x + \frac{1}{x} \iff xy = x^2 + 1 \iff x^2 - xy + 1 = 0 \iff x = \frac{y \pm \sqrt{y^2 - 4}}{2}.$$

Note that $0 < x \leq 1 \implies \frac{1}{x} \geq 1 \geq x \implies y = x + \frac{1}{x} \geq 2x \implies x \leq \frac{y}{2}$, so we must use the negative sign. Thus

$$x = \frac{y - \sqrt{y^2 - 4}}{2}.$$

2: (a) Find all ordered pairs of integers (x, y) such that $xy = 6 + 2x$.

Solution: We have $xy = 6 + 2x \iff xy - 2x = 6 \iff x(y-2) = 6$. So x must be a factor of 6, that is $x = \pm 1, \pm 2, \pm 3, \pm 6$, and we have $y = \frac{6}{x} + 2$. Thus

$$(x, y) = (-6, 1), (-3, 0), (-2, -1), (-1, -4), (1, 8), (2, 5), (3, 4) \text{ or } (6, 3).$$

Note that these are the 6 points with integer coordinates which lie on the hyperbola $y = \frac{6}{x} + 2$.

(b) Find all ordered pairs of integers (x, y) such that $x^2 + y^2 = 4x + 2y$.

Solution: Complete the square to get

$$x^2 + y^2 = 4x + 2y \iff x^2 - 4x + y^2 - 2y = 0 \iff (x-2)^2 - 4 + (y-1)^2 - 1 = 0 \iff (x-2)^2 + (y-1)^2 = 5.$$

Since $(x-2)^2 = 5 - (y-1)^2 \leq 5$ we must have $|x-2| \leq \sqrt{5}$ so $(x-2) = 0, \pm 1$, or ± 2 . Also, we have $(y-1)^2 = 5 - (x-2)^2$ so $y = 1 \pm \sqrt{5 - (x-2)^2}$, and so when $(x-2) = 0$ we have $y = 1 \pm \sqrt{5}$ which is not an integer, when $(x-2) = \pm 1$ we have $y = 1 \pm 2$, and when $(x-2) = \pm 2$ we have $y = 1 \pm 1$. Thus

$$(x, y) = (0, 0), (0, 2), (1, -1), (1, 3), (3, -1), (3, 3), (4, 0) \text{ or } (4, 2).$$

These are the 8 points with integer coordinates which lie on the circle of radius $\sqrt{5}$ centered at $(2, 1)$.

3: (a) Determine whether there exists an integer x such that $x^2 + 20$ is a perfect square.

Solution: There does exist such an integer x , indeed when $x = 4$ we have $x^2 + 20 = 16 + 20 = 36 = 6^2$.

(b) Determine whether there exists an integer x such that $x^2 + 10$ is a perfect square.

Solution: We claim that there is no such value of x . Note that it suffices to consider only non-negative values of x since $(-x)^2 = x^2$. We list the first few values of $x^2 + 10$.

x	0	1	2	3	4
$x^2 + 10$	10	11	14	19	26

We see from the table that for $0 \leq x \leq 4$, $x^2 + 10$ is not a perfect square. Now suppose, for a contradiction, that $x \geq 5$ and $x^2 + 10$ is a perfect square, say $x^2 + 10 = y^2$ where $y \geq 0$. Then

$$\begin{aligned} y^2 = x^2 + 10 &\implies y^2 > x^2 \implies y > x \implies y \geq x + 1 \implies y^2 \geq (x+1)^2 = x^2 + 2x + 1 \\ &\implies y^2 \geq x^2 + 2 \cdot 5 + 1 = x^2 + 11 \implies y^2 > x^2 + 10 \implies y^2 \neq x^2 + 10 \end{aligned}$$

giving us the desired contradiction.

4: (a) The first 15 odd prime numbers are 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47 and 53. Determine which of these 15 prime numbers are equal to the sum of two squares, then make a conjecture about which odd prime numbers are equal to the sum of two squares.

Solution: Note that each of the primes 5, 13, 17, 29, 37, 41 and 53 is a sum of two squares (indeed $5 = 1 + 4$, $13 = 4 + 9$, $17 = 1 + 16$, $29 = 4 + 25$, $37 = 1 + 36$, $41 = 16 + 25$ and $53 = 4 + 49$). By trying all possibilities, we can verify that none of the remaining primes 3, 7, 11, 19, 23, 31, 43 and 47 is a sum of two squares (for example, 47 is not a sum of two squares since $47 - 0 = 47$, $47 - 1 = 46$, $47 - 4 = 43$, $47 - 9 = 38$, $47 - 16 = 31$, $47 - 25 = 22$ and $47 - 36 = 11$, none of which are perfect squares).

Notice that each of the primes 5, 13, 17, 29, 37, 41 and 53 is equal to 1 more than a multiple of 4, while each of the remaining primes 3, 7, 11, 19, 23, 31, 43 and 47 is equal to 1 less than a multiple of 4. We conjecture that an odd prime is a sum of two squares if and only if it is equal to 1 more than a multiple of 4. (In fact, this conjecture is true, but we shall not prove it in this course).

(b) Find all integers n with $2 \leq n \leq 20$ with the property that n is a factor of $2^{n-1} - 1$, then make a conjecture about which integers $n \geq 2$ have the property that n is a factor of $2^{n-1} - 1$.

Solution: With the help of a calculator, we find that the values of n with $2 \leq n \leq 20$ such that n is a factor of $2^{n-1} - 1$ are 3, 5, 7, 11, 13, 17, and 19. We conjecture that an integer $n \geq 2$ is a factor of $2^{n-1} - 1$ if and only if n is an odd prime. (In fact, this conjecture is false, as we shall show in Assignment 9).

5: (a) The first six terms of sequences $\{a_n\}$ and $\{b_n\}$ are listed below:

n	1	2	3	4	5	6
a_n	1	2	5	12	29	70
b_n	1	3	7	17	41	99

(i) Find a rule that governs how the terms a_{n+1} and b_{n+1} are obtained from the terms a_n and b_n , and use this rule to find the terms a_7 , b_7 , a_8 and b_8 .

Solution: It appears that $a_{n+1} = a_n + b_n$ and that $b_{n+1} = a_n + a_{n+1} = 2a_n + b_n$. Using these rules we find that $a_7 = 169$, $b_7 = 239$, $a_8 = 408$ and $b_8 = 577$.

(ii) Use a calculator to find the ratio b_n^2/a_n^2 for $1 \leq n \leq 6$ and make a conjecture about the limit $\lim_{n \rightarrow \infty} (b_n/a_n)$.

Solution: With a calculator, we find the following approximate values for b_n^2/a_n^2 .

n	1	2	3	4	5	6
b_n^2/a_n^2	1.0000	2.2500	1.9600	2.0069	1.9988	2.0002

It appears that $\lim_{n \rightarrow \infty} b_n^2/a_n^2 = 2$, so we conjecture that $\lim_{n \rightarrow \infty} (b_n/a_n) = \sqrt{2}$. (In fact, this conjecture is true).

(b) For a real number x , let $\lfloor x \rfloor$ denote the largest integer which is less than or equal to x . For each positive integer n , let $a_n = \lfloor n\sqrt{2} \rfloor$ and let b_n be the n^{th} positive integer which does not occur in the sequence $\{a_n\}$. The first 20 terms of the sequence $\{a_n\}$ and the first 8 terms of the sequence $\{b_n\}$ are listed below.

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
a_n	1	2	4	5	7	8	9	11	12	14	15	16	18	19	21	22	24	25	26	28
b_n	3	6	10	13	17	20	23	27												

Make a conjecture about a rule which allows us to determine the terms a_n and b_n without using a calculator and without using the value of $\sqrt{2}$.

Solution: It appears that for all $n \geq 1$ we have $b_n = a_n + 2n$, so we conjecture that the terms a_n and b_n can be obtained using the following rule: we start with $a_1 = 1$ and $b_1 = 3$, and once we have found a_1, \dots, a_{n-1} and b_1, \dots, b_{n-1} , we let a_n be the n^{th} positive integer which does not occur in the sequence b_1, \dots, b_{n-1} , and then we set $b_n = a_n + 2n$. (This conjecture is true, and it is also true that $b_n = \lfloor n(2 + \sqrt{2}) \rfloor$ for all n).