

MATH 135 Algebra, Solutions to Assignment 12

1: Express each of the following complex numbers in cartesian form.

(a) $4 e^{i 5\pi/3}$

Solution: We have $4 e^{i 5\pi/3} = 4 \left(\cos \frac{5\pi}{3} + i \sin \frac{5\pi}{3} \right) = 4 \left(\frac{1}{2} - \frac{\sqrt{3}}{2} i \right) = 2 - 2\sqrt{3} i$

(b) $(1 + i\sqrt{3})^{10}$

Solution: We have

$$\begin{aligned} (1 + i\sqrt{3})^{10} &= \left(2e^{i\pi/3} \right)^{10} = 2^{10} e^{i 10\pi/3} = 2^{10} \left(\cos \frac{10\pi}{3} + i \sin \frac{10\pi}{3} \right) \\ &= 1024 \left(-\frac{1}{2} - \frac{\sqrt{3}}{2} i \right) = -512 - 512\sqrt{3} i. \end{aligned}$$

(c) $5 e^{i\theta}$, where $\theta = \tan^{-1} 2$

Solution: We have $5 e^{i\theta} = 5 \left(\cos \theta + i \sin \theta \right) = 5 \left(\frac{1}{\sqrt{5}} + \frac{2}{\sqrt{5}} i \right) = \sqrt{5} + 2\sqrt{5} i$.

2: Express each of the following complex numbers in the polar form $re^{i\theta}$.

(a) $-2 + 2i$

Solution: We have $-2 + 2i = 2\sqrt{2} e^{i 3\pi/4}$.

(b) $\frac{(1-i)^2}{(1+i\sqrt{3})}$

Solution: We have $\frac{(1-i)^2}{(1+i\sqrt{3})} = \frac{(\sqrt{2} e^{-i\pi/4})^2}{2 e^{i\pi/3}} = \frac{2 e^{-i\pi/2}}{2 e^{i\pi/2}} = e^{-i(\frac{\pi}{2} + \frac{\pi}{3})} = e^{-i 5\pi/6}$.

(c) $-3 - i$

Solution: We have $-3 - i = \sqrt{10} e^{i\theta}$, where $\theta = \pi + \tan^{-1} \frac{1}{3}$.

3: Solve each of the following for $z \in \mathbf{C}$. Express your answers in the polar form $re^{i\theta}$.

(a) $z^3 + 8i = 0$

Solution: Write $z = r e^{i\theta}$ with $r > 0$ and $\theta \in [0, 2\pi)$. Then

$$\begin{aligned} z^3 + 8i = 0 &\iff (r e^{i\theta})^3 = -8i \iff r^3 e^{i3\theta} = 8 e^{i3\pi/2} \\ &\iff r^3 = 8 \text{ and } 3\theta = \frac{3\pi}{2} + 2\pi k \text{ for some } k \in \mathbf{Z} \\ &\iff r = 2 \text{ and } \theta = \frac{\pi}{2} + \frac{2\pi}{3} k \text{ where } k = 0, 1 \text{ or } 2. \end{aligned}$$

Thus the solutions are $z = 2 e^{i\pi/2}$, $z = 2 e^{i7\pi/6}$ and $z = 2 e^{i11\pi/6}$.

(b) $z = \frac{z - i}{z + 2 + i}$

Solution: We have

$$\begin{aligned} z = \frac{z - i}{z + 2 + i} &\iff z^2 + (2 + i)z = z - i \iff z^2 + (1 + i)z + i = 0 \iff z = \frac{-(1 + i) \pm \sqrt{(1 + i)^2 - 4i}}{2} \\ &\iff z = \frac{-(1 + i) \pm \sqrt{2i - 4i}}{2} = \frac{-(1 + i) \pm \sqrt{-2i}}{2} = \frac{-(1 + i) \pm (1 - i)}{2} \\ &\iff z = -1 \text{ or } -i. \end{aligned}$$

In polar coordinates, the solutions are $z = e^{i\pi}$ and $z = e^{i3\pi/2}$.

(c) $z^4 = 8\bar{z}$

Solution: Write $z = r e^{i\theta}$ where $r > 0$ and $\theta \in [0, 2\pi)$. Then

$$z^4 = 8\bar{z} \iff r^4 e^{i4\theta} = 8r e^{-i\theta} \iff (r = 0 \text{ or } r^3 e^{i5\theta} = 8) \iff (r = 0 \text{ or } (r = 2 \text{ and } 5\theta = 2\pi k, k \in \mathbf{Z})).$$

Thus the solutions are $z = 0$, $z = 2$, $z = 2 e^{i2\pi/5}$, $z = 2 e^{i4\pi/5}$, $z = 2 e^{i6\pi/5}$ and $z = 2 e^{i8\pi/5}$.

4: For each of the following polynomials $f(x)$, first solve $f(z) = 0$ for $z \in \mathbf{C}$, and then factor $f(x)$ over the real numbers. (You may find it useful to read section 9.2 in the text book).

(a) $f(x) = x^6 + 7x^3 - 8$

Solution: For $z \in \mathbf{C}$ we have

$$\begin{aligned} f(z) = 0 &\iff z^6 + 7z^3 - 8 = 0 \iff (z^3 + 8)(z^3 - 1) = 0 \iff z^3 = 1 \text{ or } z^3 = -8 = 8e^{i\pi} \\ &\iff z = 1, e^{i2\pi/3}, e^{i4\pi/3}, 2e^{i\pi/3}, 2e^{i\pi}, \text{ or } 2e^{i5\pi/3} \\ &\iff z = 1, \left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right), \left(-\frac{1}{2} - \frac{\sqrt{3}}{2}i\right), (1 + \sqrt{3}i), -2, (1 - \sqrt{3}i). \end{aligned}$$

It follows that $f(x)$ factors over the reals as $f(x) = (x - 1)(x + 2)(x^2 + x + 1)(x^2 - 2x + 4)$.

(b) $f(x) = x^6 + 1$

Solution: For $z \in \mathbf{C}$ we have

$$\begin{aligned} f(z) = 0 &\iff z^6 + 1 = 0 \iff z^6 = -1 = e^{i\pi} \\ &\iff z = e^{i\pi/6}, e^{i\pi/2}, e^{i5\pi/6}, e^{i7\pi/6}, e^{i3\pi/2} \text{ or } e^{i11\pi/6} \\ &\iff z = \left(\frac{\sqrt{3}}{2} + \frac{1}{2}i\right), i, \left(-\frac{\sqrt{3}}{2} + \frac{1}{2}i\right), \left(-\frac{\sqrt{3}}{2} - \frac{1}{2}i\right), -i, \left(\frac{\sqrt{3}}{2} - \frac{1}{2}i\right). \end{aligned}$$

It follows that $f(x)$ factors over the reals as $f(x) = (x^2 + 1)(x^2 - \sqrt{3}x + 1)(x^2 + \sqrt{3}x + 1)$.

(c) $f(x) = x^4 + 4x^3 + 6x^2 + 4x + 5$

Solution: For $z \in \mathbf{C}$ we have

$$\begin{aligned} f(z) = 0 &\iff z^4 + 4z^3 + 6z^2 + 4z + 5 = 0 \iff (z + 1)^4 + 4 = 0 \iff (z + 1)^4 = -4 = 4e^{i\pi} \\ &\iff z + 1 = \sqrt{2}e^{i\pi/4}, \sqrt{2}e^{i3\pi/4}, \sqrt{2}e^{i5\pi/4} \text{ or } \sqrt{2}e^{i7\pi/4} \\ &\iff z + 1 = (1 + i), (-1 + i), (-1 - i) \text{ or } (1 - i) \\ &\iff z = i, (-2 + i), (-2 - i) \text{ or } -i. \end{aligned}$$

It follows that $f(x)$ factors over the reals as $f(x) = (x^2 + 1)(x^2 + 4x + 5)$.

5: An equation of the form $ax^3 + bx^2 + cx + d = 0$, where $a, b, c, d \in \mathbf{C}$ with $a \neq 0$ can be solved as follows. First, divide by a to obtain an equation of the form $x^3 + Bx^2 + Cx + D = 0$. Next, make the substitution $x = z - \frac{B}{3}$. This will convert the equation to the form $z^3 + pz + q = 0$. Thirdly, make the substitution $z = w - \frac{p}{3w}$. This will convert the equation to the form $w^3 + rw^{-3} + q = 0$. Finally, multiply through by w^3 to obtain $w^6 + qw^3 + r = 0$, which we can solve for w^3 using the Quadratic Formula. (You may find section 9.6 useful).

(a) Solve $x^3 - 3x + 1 = 0$ for $x \in \mathbf{R}$.

Solution: Write $x = w + w^{-1}$. The equation becomes

$$\begin{aligned} (w + w^{-1})^3 - 3(w + w^{-1}) + 1 &= 0 \\ w^3 + 3w + 3w^{-1} + w^{-3} - 3w - 3w^{-1} + 1 &= 0 \\ w^3 + w^{-3} + 1 &= 0 \end{aligned}$$

Multiply by w^3 to get $w^6 + 1 + w^3 = 0$, that is $w^6 + w^3 + 1 = 0$. Solve for w^3 using the Quadratic Formula to get $w^3 = \frac{-1 \pm \sqrt{1-4}}{2} = -\frac{1}{2} \pm \frac{\sqrt{3}}{2}i$. When $w^3 = -\frac{1}{2} + \frac{\sqrt{3}}{2}i = e^{i2\pi/3}$, we have $w = e^{i2\pi/9}, e^{i8\pi/9}$ or $e^{i14\pi/9}$. Notice that in all cases we have $|w| = 1$ so that $w^{-1} = \bar{w}$ and hence $x = w + w^{-1} = w + \bar{w} = 2\operatorname{Re} w$. Thus we have $x = 2\cos\frac{2\pi}{9}, 2\cos\frac{8\pi}{9}$ or $x = 2\cos\frac{14\pi}{9}$. Alternatively, in degrees we have

$$x = 2\cos(40^\circ), 2\cos(160^\circ), \text{ or } 2\cos(280^\circ).$$

Note that we do not need to consider the case that $w^3 = -\frac{1}{2} - \frac{\sqrt{3}}{2}i$ since we have found all three real roots.

(b) Solve $x^3 + 3x^2 - 3x - 7 = 0$ for $x \in \mathbf{R}$.

Solution: Write $x = z - 1$. Then the equation becomes

$$\begin{aligned} (z - 1)^3 + 3(z - 1)^2 - 3(z - 1) - z &= 0 \\ z^3 - 3z^2 + 3z - 1 + 3z^2 - 6z + 3 - 3z + 3 - 7 &= 0 \\ z^3 - 6z - 2 &= 0 \end{aligned}$$

Write $z = w + 2w^{-1}$. Then the equation becomes

$$\begin{aligned} (w + 2w^{-1})^3 - 6(w + 2w^{-1}) - 2 &= 0 \\ w^3 + 6w + 12w^{-1} + 8w^{-3} - 6w - 12w^{-1} - 2 &= 0 \\ w^3 + 8w^{-3} - 2 &= 0 \end{aligned}$$

Multiply by w^3 to get $w^6 - 2w^3 + 8 = 0$. Use the Quadratic Formula to get $w^3 = \frac{2 \pm \sqrt{4-32}}{2} = 1 \pm \sqrt{7}i$. When $w^3 = 1 + \sqrt{7}i = 2\sqrt{2}e^{i\theta}$, where $\theta = \tan^{-1}\sqrt{7}$, we have $w = \sqrt{2}e^{i\theta/3}, \sqrt{2}e^{i(\theta+2\pi)/3}$, or $\sqrt{2}e^{i(\theta+4\pi)/3}$. Notice that in all cases, w is of the form $w = \sqrt{2}e^{i\phi}$, so we have $z = w + 2w^{-1} = \sqrt{2}e^{i\phi} + \sqrt{2}e^{-i\phi} = 2\sqrt{2}\operatorname{Re} w$. Thus $z = 2\sqrt{2}\cos\left(\frac{\theta}{3}\right), 2\sqrt{2}\cos\left(\frac{\theta+2\pi}{3}\right)$, or $2\sqrt{2}\cos\left(\frac{\theta+4\pi}{3}\right)$. Finally, since $x = z - 1$ we have

$$x = 2\sqrt{2}\cos\left(\frac{\theta}{3}\right) - 1, 2\sqrt{2}\cos\left(\frac{\theta+2\pi}{3}\right) - 1, \text{ or } 2\sqrt{2}\cos\left(\frac{\theta+4\pi}{3}\right) - 1,$$

where $\theta = \tan^{-1}\sqrt{7}$.