

## MATH 135 Algebra, Solutions to Assignment 11

**1:** Express each of the following complex numbers in cartesian form.

(a)  $(2+i)(3+2i) - (5+3i)$

Solution: We have  $(2+i)(3+2i) - (5+3i) = (6+4i+3i-2) - (5+3i) = (4+7i) - (5+3i) = -1+4i$ .

(b)  $\frac{1}{(\sqrt{2}+i)(1+i\sqrt{2})}$

Solution: We have  $\frac{1}{(\sqrt{2}+i)(1+i\sqrt{2})} = \frac{1}{\sqrt{2}+2i+i-\sqrt{2}} = \frac{1}{3i} = -\frac{1}{3}i$ .

(c)  $\frac{(1+2i)^3}{(3+i)^2}$

Solution: We have

$$\begin{aligned} \frac{(1+2i)^3}{(3+i)^2} &= \frac{1+6i+12i^2+8i^3}{9+6i+i^2} = \frac{1+6i-12-8i}{9+6i-1} = \frac{-11-2i}{8+6i} \\ &= \frac{-11-2i}{2(4+3i)} \cdot \frac{4-3i}{4-3i} = \frac{-44+33i-8i-6}{2(16+9)} = \frac{-50+25i}{50} = -1+\frac{1}{2}i. \end{aligned}$$

**2:** Solve each of the following equations for  $z \in \mathbf{C}$ . Express your answers in cartesian form.

(a)  $\frac{z+1}{z+i} = 3+i$

Solution: We have

$$\begin{aligned} \frac{z+1}{z+i} = 3+i &\iff (z+1) = (3+i)(z+i) \iff z+1 = 3z+3i+iz-1 \iff 2-3i = (2+i)z \\ &\iff z = \frac{2-3i}{2+i} = \frac{2-3i}{2+i} \cdot \frac{2-i}{2-i} = \frac{1-8i}{5} \iff z = \frac{1}{5} - \frac{8}{5}i. \end{aligned}$$

(b)  $z^2 = \bar{z}$

Solution: Write  $z = x+iy$  with  $x, y \in \mathbf{R}$ . Then we have

$$z^2 = \bar{z} \iff (x+iy)^2 = x-iy \iff (x^2-y^2) + i(2xy) = x-iy \iff (x^2-y^2 = x \text{ and } 2xy = -y).$$

To get  $2xy = -y$  we need  $y = 0$  or  $2x = -\frac{1}{2}$ . When  $y = 0$ , the equation  $x^2 - y^2 = x$  gives  $x^2 = x$  so  $x = 0$  or  $1$ . When  $2x = -\frac{1}{2}$  so  $x = -\frac{1}{4}$ , the equation  $x^2 - y^2 = x$  gives  $\frac{1}{4} - y^2 = -\frac{1}{2}$  so  $y^2 = \frac{3}{4}$ , that is  $y = \pm\frac{\sqrt{3}}{2}$ . Thus  $z = x+iy = 0, 1, -\frac{1}{4} + \frac{\sqrt{3}}{2}i$  or  $-\frac{1}{4} - \frac{\sqrt{3}}{2}i$ .

(c)  $z^2 = 4+3i$

Solution: Write  $z = x+iy$  with  $x, y \in \mathbf{R}$ . Then we have

$$z^2 = 4+3i \iff (x+iy)^2 = 4+3i \iff (x^2-y^2) + i(2xy) = 4+3i \iff (x^2-y^2 = 4 \text{ and } 2xy = 3).$$

From  $2xy = 3$  we get  $y = \frac{3}{2x}$ . Put this into the equation  $x^2 - y^2 = 4$  to get

$$x^2 - \frac{9}{4x^2} = 4 \iff 4x^4 - 9 = 16x^2 \iff 4x^4 - 16x^2 - 9 = 0 \iff (2x^2 - 9)(2x^2 + 1) = 0 \iff (x^2 = \frac{9}{2} \text{ or } x^2 = -\frac{1}{2}).$$

Since  $x \in \mathbf{R}$  we must have  $x^2 = \frac{9}{2}$  so  $x = \pm\frac{3}{\sqrt{2}}$ . When  $x = \frac{3}{\sqrt{2}}$  we have  $y = \frac{3}{2x} = \frac{3}{2} \cdot \frac{\sqrt{2}}{3} = \frac{1}{\sqrt{2}}$ , and when  $x = -\frac{3}{\sqrt{2}}$  we have  $y = \frac{3}{2x} = -\frac{1}{\sqrt{2}}$ . Thus  $z = \pm\left(\frac{3}{\sqrt{2}} + \frac{1}{\sqrt{2}}i\right)$ .

**3:** Solve the following pairs of equations for  $z, w \in \mathbf{C}$ .

(a)  $z + iw = 2$

$iz + 2w = 3$

Solution: From the first equation we have  $z = 2 - iw$ . Put this into the second equation to get

$$i(2 - iw) + 2w = 3 \implies 2i + w + 2w = 3 \implies 3w = 3 - 2i \implies w = 1 - \frac{2}{3}i.$$

Then  $z = 2 - iw = 2 - i - \frac{2}{3} = \frac{4}{3} - i$ . Thus the solution is  $(z, w) = \left(\frac{4}{3} - i, 1 - \frac{2}{3}i\right)$ .

(b)  $iz + (1+i)w = -3 + i$

$(2+i)z + (3-2i)w = 4i$

Solution: Multiply the first equation by  $-i$  to get  $z + (-i+1)w = 3i + 1$  so we have  $z = (1+3i) - (1-i)w$ . Put this into the second equation to get

$$\begin{aligned} (2+i)((1+3i) - (1-i)w) + (3-2i)w &= 4i \implies (-1+7i) - (3-i)w + (3-2i)w = 4i \\ &\implies -iw = 1 - 3i \implies w = 3 + i. \end{aligned}$$

Then  $z = (1+3i) - (1-i)w = (1+3i) - (1-i)(3+i) = (1+3i) - (4-2i) = -3+5i$ . Thus the solution is  $(z, w) = (-3+5i, 3+i)$ .

**4:** Draw a picture of each of the following subsets of the plane.

(a)  $\{z \in \mathbf{C} \mid 1 < |z - 1| \leq \sqrt{5}\}$

Solution: We have  $1 < |z - 1| < \sqrt{5}$  when the distance between  $z$  and 1 is greater than 1, so  $z$  lies outside the unit circle centered at 1, and is less than or equal to 5, so  $z$  lies inside or on the circle of radius  $\sqrt{5}$  centered at 1.

(b)  $\{z \in \mathbf{C} \mid |z - 2i| = |z - 4|\}$

Solution: We have  $|z - 2i| = |z - 4|$  when  $z$  is equidistant from the points  $2i$  and  $4$ , that is when  $z$  lies on the perpendicular bisector of the line segment from  $2i$  to  $4$ .

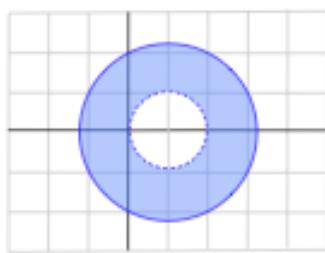
(c)  $\{z \in \mathbf{C} \mid |z| + |z - 4| = 8\}$

Solution: We have  $|z| + |z - 4| = 8$  when the sum of the distance from 0 to  $z$  with the distance from  $z$  to 4 is equal to 8. This happens when  $z$  is on the ellipse, with foci at 0 and 4, which passes through the points  $-2, \pm 3i, 4 \pm 3i$ , and 6.

Alternatively, writing  $z = x + iy$  with  $x, y \in \mathbf{R}$  we can see that this set is the above ellipse as follows.

$$\begin{aligned} |z| + |z - 4| = 8 &\iff \sqrt{x^2 + y^2} + \sqrt{(x-4)^2 + y^2} = 8 \iff \sqrt{x^2 - 8x + 16 + y^2} = 8 - \sqrt{x^2 + y^2} \\ &\iff x^2 - 8x + 16 + y^2 = 64 - 16\sqrt{x^2 + y^2} + x^2 + y^2 \iff 16\sqrt{x^2 + y^2} = 8x + 48 \\ &\iff 2\sqrt{x^2 + y^2} = x + 6 \iff 4(x^2 + y^2) = x^2 + 12x + 36 \iff 3x^2 - 12x + 4y^2 = 36 \\ &\iff 3(x-2)^2 + 4y^2 = 48 \iff \frac{(x-2)^2}{16} + \frac{y^2}{12} = 1. \end{aligned}$$

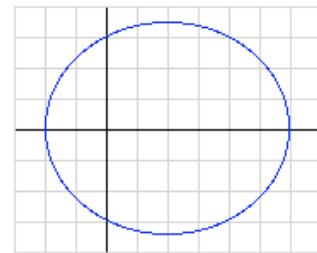
(a)



(b)



(c)



5: For real numbers  $x$  and  $y$ , we define  $e^{x+iy} = e^x \cos y + i e^x \sin y$ . For a complex number  $z$ , we define  $\cos z = \frac{e^{iz} + e^{-iz}}{2}$  and  $\sin z = \frac{e^{iz} - e^{-iz}}{2i}$ .

(a) Show that for all  $z, w \in \mathbf{C}$  we have  $e^{z+w} = e^z e^w$ .

Solution: Write  $z = x + iy$  and  $w = u + iv$  with  $x, y, u, v \in \mathbf{R}$ . Then

$$\begin{aligned} e^z e^w &= (e^x \cos y + i e^x \sin y)(e^u \cos v + i e^u \sin v) \\ &= (e^x e^u \cos y \cos v - e^x e^u \sin y \sin v) + i(e^x e^u \cos y \sin v + e^x e^u \sin y \cos v) \\ &= e^{x+u}(\cos y \cos v - \sin y \sin v) + i e^{x+u}(\sin y \cos v + \cos y \sin v) \\ &= e^{x+u}(\cos(y+v) + i \sin(y+v)) \\ &= e^{(x+u)+i(y+v)} = e^{z+w}. \end{aligned}$$

(b) Show that for all  $z, w \in \mathbf{C}$  we have  $\sin(z+w) = \sin z \cos w + \cos z \sin w$ .

Solution: We have

$$\begin{aligned} \sin z \cos w + \cos z \sin w &= \frac{e^{iz} - e^{-iz}}{2i} \cdot \frac{e^{iw} + e^{-iw}}{2} + \frac{e^{iz} + e^{-iz}}{2} \cdot \frac{e^{iw} - e^{-iw}}{2i} \\ &= \frac{e^{iz} e^{iw} + e^{iz} e^{-iw} - e^{-iz} e^{iw} - e^{-iz} e^{-iw} + e^{iz} e^{iw} - e^{iz} e^{-iw} + e^{-iz} e^{iw} - e^{-iz} e^{-iw}}{4i} \\ &= \frac{2e^{iz} e^{iw} - 2e^{-iz} e^{-iw}}{4i} = \frac{e^{i(z+w)} - e^{-i(z+w)}}{2i} = \sin(z+w). \end{aligned}$$

Note that we used the formula from part (a) on the last line above.

(c) Solve  $e^z = 1 + i\sqrt{3}$  for  $z \in \mathbf{C}$ .

Solution: First we claim that for  $r, s > 0$  and  $\theta, \phi \in \mathbf{R}$  we have

$$re^{i\theta} = se^{i\phi} \iff (r = s \text{ and } \theta = \phi + 2\pi k \text{ for some } k \in \mathbf{Z})$$

Indeed, if  $re^{i\theta} = se^{i\phi}$  then we must have  $r = |re^{i\theta}| = |se^{i\phi}| = s$ , and when  $r = s$  we have

$$\begin{aligned} re^{i\theta} = se^{i\phi} &\iff e^{i\theta} = e^{i\phi} \iff \cos \theta + i \sin \theta = \cos \phi + i \sin \phi \\ &\iff (\cos \theta = \cos \phi \text{ and } \sin \theta = \sin \phi) \iff \theta = \phi + 2\pi k \text{ for some } k \in \mathbf{Z}. \end{aligned}$$

It follows that for  $x, y \in \mathbf{R}$  we have

$$e^{x+iy} = re^{i\theta} \iff e^x e^{iy} = re^{i\theta} \iff (x = \ln r \text{ and } y = \theta + 2\pi k \text{ for some } k \in \mathbf{Z}).$$

In particular, writing  $z = x + iy$  with  $x, y \in \mathbf{R}$ , we have

$$e^z = 1 + i\sqrt{3} \iff e^{x+iy} = 2e^{i\pi/3} \iff (x = \ln 2 \text{ and } y = \frac{\pi}{3} + 2\pi k \text{ for some } k \in \mathbf{Z}).$$

Thus the solution is  $z = \ln 2 + i(\frac{\pi}{3} + 2\pi k)$  where  $k \in \mathbf{Z}$ .

(d) Solve  $\sin z = i$  for  $z \in \mathbf{C}$ .

Solution: Write  $z = x + iy$ . Then we have

$$\begin{aligned} \sin z = i &\iff \frac{e^{iz} - e^{-iz}}{2i} = i \iff e^{iz} - e^{-iz} = -2 \iff e^{i2z} + 2e^{iz} - 1 = 0 \iff (e^{iz} + 1)^2 = 2 \\ &\iff e^{iz} + 1 = \pm\sqrt{2} \iff e^{iz} = -1 \pm \sqrt{2} \iff e^{i(x+iy)} = -1 \pm \sqrt{2} \iff e^{-y+ix} = -1 \pm \sqrt{2}. \end{aligned}$$

We have  $e^{-y+ix} = \sqrt{2} - 1 = (\sqrt{2} - 1)e^{i0} \iff -y = \ln(\sqrt{2} - 1)$  and  $x = 2\pi k$  for some  $k \in \mathbf{Z}$  and we have  $e^{-y+ix} = -(\sqrt{2} + 1) = (\sqrt{2} + 1)e^{i\pi} \iff -y = \ln(\sqrt{2} + 1)$  and  $x = \pi + 2\pi k$  for some  $k \in \mathbf{Z}$ . Thus the solution is  $z = 2\pi k - i \ln(\sqrt{2} - 1)$  or  $z = (\pi + 2\pi k) - i \ln(\sqrt{2} + 1)$  for some  $k \in \mathbf{Z}$ .