
ECE 206 Advanced Calculus 2, Solutions to the Midterm Test, Spring 2016

[10] 1: (a) Let S be the surface given parametrically by (x, y, z) = σ(s, t) =
(
s − t2 , s

t
,
√
s t
)

. Find an implicit

equation (in the form ax+by+cz = d) for the tangent plane to the surface S at the point where (s, t) = (4, 1).

Solution: We have

σs × σt =

(
1 ,

1

t
,

t

2
√
st

)
×
(
−2t , − s

t2
,

s

2
√
st

)
(σs × σt)(4, 1) =

(
1, 1, 14

)
×
(
− 2,−4, 1

)
=
(
2,− 3

2 ,−2
)

Thus the tangent plane has normal vector (4,−3,−4) and so its equation is of the form 4x− 3y− 4z = d (∗)
for some constant d. When (s, t) = (4, 1) we have (x, y, z) = σ(4, 1) = (3, 4, 2), so we put (x, y, z) = (3, 4, 2)
into equation (∗) to get d = −8. Thus the tangent plane has equation

4x− 3y − 4z = −8.

(b) Let C be the curve of intersection of the paraboloid z = 1− x2 − y2 with the plane z = 1− 2x. Find a
parametric equation for the tangent line to C at the point (1, 1,−1).

Solution 1: We find the intersection of the tangent planes to the two surfaces. The paraboloid is given by
g(x, y) = 1 where g(x, y) = x2+y2+z, and we have ∇g = (2x, 2y, 1) so the tangent plane to the paraboloid at
(1, 1,−1) has normal vector u = ∇g(1, 1,−1) = (2, 2, 1). On the other hand, the plane 2x+z = 1 has normal
vector v = (2, 0, 1). Thus the tangent line to C has direction vector u × v = (2, 2, 1) × (2, 0, 1) = (2, 0,−4)
and so it is given parametrically by

(x, y, z) = (1, 1,−1) + t(2, 0,−4).

Solution 2: We find a parametric equation for C. When (x, y, z) lies on both the paraboloid and the plane
we have

1− x2 − y2 = z = 1− 2x =⇒ x2 − 2x+ y2 = 0 =⇒ (x− 1)2 + y2 = 1.

This is the equation of the circle in the xy-plane of radius 1 centred at (1, 0), and we can parametrize the
circle by (x, y) = (1 + cos t , sin t) for 0 ≤ t ≤ 2π. We also need z = 1− 2x = 1− 2(1 + cos t) = −1− 2 cos t),
and so the curve C can be parametrized by

(x, y, z) = α(t) =
(
1 + cos t , sin t , −1− 2 cos t

)
for 0 ≤ t ≤ 2π.

and then
α′(t) =

(
− sin t , cos t , 2 sin t

)
.

Since α
(
π
2

)
= (1, 1,−1) and α′

(
π
2

)
= (−1, 0, 2), the tangent line is given parametrically by

(x, y, z) = (1, 1,−1) + t(−1, 0, 2).
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[10] 2: (a) Let f(x, y, z) =
xy3

x+ z2
, a = (1, 2, 1) and u = 1

3 (2, 1,−2). Find Duf(a).

Solution: We have

∇f =

(
y3z2

(x+ z2)2
,

3xy2

x+ z2
,
−2xy3z

(x+ z2)2

)
∇f(a) = ∇f(1, 2, 1) = (2, 6,−4)

Duf(a) = ∇f(a).u = 1
3 (2, 6,−4).(2, 1,−2) = 6.

(b) Let (u, v) = f(x, y) =
(
xe−xy , 1+x2+x sin y

)
, let z = g(u, v) =

√
u2 + 2v2, and let h(x, y) = g

(
f(x, y)

)
.

Find ∇h(1, 0).

Solution: We have

Dh = DgDf =
(
zu zv

)(ux uy
vx vy

)
=
( u√

u2 + 2v2
2v√

u2 + 2v2

)(
e−xy − xye−xy −x2e−xy

2x+ sin y x cos y

)
When (x, y) = (1, 0) we have (u, v) = f(1, 0) = (1, 2) and so

Dh(1, 0) = Dg(1, 2)Df(1, 0) =
(

1
3

4
3

)( 1 −1
2 1

)
= (3, 1).

Thus ∇h(1, 0) = (3, 1).

(c) Let F (x, y, z) =

(
z2 +

1

y
, z − x

y2
, y + 2(x+ 1)z

)
. Find g such that F = ∇g.

Solution: To get ∂g
∂x = z2 + 1

y we need g = xz2 + x
y +φ(y, z). To get ∂g

∂y = z− x
y2 we need − x

y2 + ∂φ
∂y = z− x

y2

hence ∂φ
∂y = z and hence φ = yz + ψ(z). Thus we need g = xz2 + x

y + φ = xz2 + x
y + yz + ψ(z). Finally, to

gey ∂g
∂z = y+ 2xz+ 2z we need 2xz+ y+ψ′(z) = y+ 2xz+ 2z hence ψ′ = 2z and we can take ψ = z2. Thus

we can take
g(x, y, z) = xz2 +

x

y
+ yz + z2.
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[10] 3: (a) Find the mass of the tetrahedron with vertices at (0, 0, 0), (1, 0, 0), (0, 2, 0) and (0, 2, 2) with density
(mass per unit volume) given by ρ(x, y, z) = 2z − xy.

Solution: The top view of the tetrahedron is the triangle T in the xy-plane with vertices at (0, 0), (1, 0) and
(0, 2) which is given by T =

{
(x, y)

∣∣0 ≤ x ≤ 1 , 0 ≤ y ≤ 2 − 2x
}

. The top face of the tetrahedron is the
plane through (0, 0, 0), (1, 0, 0) and (0, 2, 2), which is the plane y = z, so the given tetrahedron is the set

D =
{

(x, y, z)
∣∣∣0 ≤ x ≤ 1 , 0 ≤ y ≤ 2− 2x , 0 ≤ z ≤ y

}
.

The mass is

M =

∫∫∫
D

ρ(x, y, z) dV =

∫ 1

x=0

∫ 2−2x

y=0

∫ y

z=0

2z − xy dz dy dx =

∫ 1

x=0

∫ 2−2x

y=0

y2 − xy2 dy dx

=

∫ 1

x=0

1
3 (1− x)(2− 2x)3 dx =

∫ 1

x=0

8
3 (1− x)4 dx =

∫ 1

u=0

8
3 u

4 du = 8
15 ,

where we made use of the substitution u = x− 1.

(b) Find the total charge on the cone S =
{

(x, y, z)
∣∣∣z =

√
x2 + y2 , z ≤ 1

}
with charge density (charge per

unit area) given by ρ(x, y, z) = x2z.

Solution: The cone S can be parametrized by

(x, y, z) = σ(r, θ) =
(
r cos θ , r sin θ , r

)
for 0 ≤ r ≤ 1 , 0 ≤ θ ≤ 2π.

We have
ρ
(
σ(r, θ)

)
= (r cos θ)2 · r = r3 cos2 θ,

σr × σθ =
(

cos θ , sin θ , 1
)
×
(
− r sin θ , r cos θ , 0

)
=
(
− r cos θ , −r sin θ , r

)
and∣∣σr × σθ∣∣ =

√
r2 + r2 =

√
2 r,

and so the charge is

Q =

∫∫
S

ρ(x, y, z)dA =

∫ 1

r=0

∫ 2π

θ=0

ρ
(
σ(r, θ)

)∣∣σr × σθ∣∣ dθ dr
=

∫ 1

r=0

∫ 2π

θ=0

r3 cos2 θ ·
√

2 r dθ dr =

∫ 1

r=0

√
2π r4 dr =

√
2π
5 .
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[10] 4: (a) Find the work done by the force F (x, y, z) =

(
z

1 + x
,
√
y , 2x

)
acting on a small object moving along

the curve C given by (x, y, z) = α(t) =
(
t , 1 + 2t2 , 1 + t3

)
for 0 ≤ t ≤ 2.

Solution: We have

F
(
α(t)

)
=

(
1 + t3

1 + t
,
√

1 + 2t2 , 2t

)
=
(

1− t+ t2 ,
√

1 + 2t2 , 2t
)

and

α′(t) =
(
1, 4t, 3t2

)
,

and so the work is

W =

∫
C

F.T dL =

∫ 2

t=0

F
(
α(t)

).α′(t) dt =

∫ 2

t=0

1− t+ t2 + 4t
√

1 + 2t2 + 6t3 dt

=
[
t− 1

2 t
2 + 1

3 t
3 + 2

3 (1 + 2t2)3/2 + 3
2 t

4
]2
t=0

= 2− 2 + 8
3 + 18− 2

3 + 24 = 44.

(b) Find the flux of the vector field F =
(
xy2 , yz , x2z

)
outwards across the boundary surface S = ∂D of

the cylinder D =
{

(x, y, z)
∣∣∣x2 + y2 ≤ 1 , 0 ≤ z ≤ 1

}
.

Solution 1: By the Divergence Theorem, the flux is

Φ =

∫∫
S

F.N dA =

∫∫∫
D

∇.F dV =

∫∫∫
D

x2 + z + y2 dV

=

∫ 1

r=0

∫ 2π

θ=0

∫ 1

z=0

(r2 + z)r dz dθ dr =

∫ 1

r=0

∫ 2π

θ=0

r3 + 1
2r dθ dr

=

∫ 1

r=0

2πr3 + πr dr = π
2 + π

2 = π.

Solution 2: The surface S consists of three parts: the top disc Stop =
{

(x, y, z)
∣∣z = 1, x2+y2 ≤ 1

}
, the bottom

disc Sbot =
{

(x, y, z)
∣∣z = 0, x2 + y2 ≤ 1

}
, and the vertical side Sside =

{
(x, y, z)

∣∣0 ≤ z ≤ 1 , x2 + y2 = 1
}

.
We calculate the flux across each of these surfaces. The flux across Stop is calculated by setting z = 1 in F
and taking N = (0, 0, 1) to get

Φtop =

∫∫
Stop

F.N dA =

∫∫
x2+y2≤1

(
xy2, y, x2

).(0, 0, 1) dA =

∫∫
x2+y2≤1

x2 dA

=

∫ 1

r=0

∫ 2π

θ=0

(r cos θ)2 r dθ dr =

∫ 1

r=0

π r3 dr = π
4 .

The flux across Sbot is calculated by setting z = 0 in F and taking N = (0, 0,−1) to get

Φbot =

∫∫
Sbot

F.N dA =

∫∫
x2+y2≤1

(xy2, 0, 0).(0, 0,−1) dA =

∫∫
x2+y2≤1

0 dA = 0.

To find the flux across Sside we parametrize the surface Sside by

(x, y, z) = σ(θ, z) =
(

cos θ, sin θ, z
)

for 0 ≤ θ ≤ 2π , 0 ≤ z ≤ 1.

We then have

F
(
σ(θ, z)

)
=
(

cos θ sin2 θ , z sin θ , z cos2 θ
)

and

σθ × σz = (− sin θ, cos θ, 0)× (0, 0, 1) = (cos θ, sin θ, 0).

We note that σθ × σz points outwards (as desired) so the flux across Sside is

Φside =

∫∫
Sside

F.N dA =

∫ 2π

θ=0

∫ 1

z=0

F
(
σ(θ, z)

).(σθ × σz) dz dθ
=

∫ 2π

θ=0

∫ 1

z=0

cos2 θ sin2 θ + z sin2 θ dz dθ =

∫ 2π

θ=0

cos2 θ sin2 θ + 1
2 sin2 θdθ

=

∫ 2π

θ=0

1
4 sin2 2θ + 1

2 sin2 θ dθ = π
4 + π

2 = 3π
4 .

Thus the total flux across S is

Φtot = Φtop + Φbot + Φside = π
4 + 0 + 3π

4 = π.
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