

Name (print): _____

Signature: _____

ID Number: _____

ECE 206, Advanced Calculus 2
Midterm Test, Spring Term, 2016

University of Waterloo

Instructor: Stephen New

Date: June 17, 2016

Time: 8:30-9:50 am

Instructions:

1. Place your name, signature and ID number in the spaces provided at the top of this page.
2. This test contains 6 pages, including this cover page and a page at the end for rough work.
3. No calculators or any other electronic devices are allowed.
4. Answer all 4 questions; all questions will be given equal value.
5. Provide full explanations with all your solutions.

Question	Mark
1	/10
2	/10
3	/10
4	/10
Total	/40

[10] **1:** (a) Let S be the surface given parametrically by $(x, y, z) = \sigma(s, t) = \left(s - t^2, \frac{s}{t}, \sqrt{st}\right)$. Find an implicit equation (in the form $ax + by + cz = d$) for the tangent plane to the surface S at the point where $(s, t) = (4, 1)$.

(b) Let C be the curve of intersection of the paraboloid $z = 1 - x^2 - y^2$ with the plane $z = 1 - 2x$. Find a parametric equation for the tangent line to C at the point $(1, 1, -1)$.

[10] **2:** (a) Let $f(x, y, z) = \frac{xy^3}{x+z^2}$, $a = (1, 2, 1)$ and $u = \frac{1}{3}(2, 1, -2)$. Find $D_u f(a)$.

(b) Let $(u, v) = f(x, y) = \left(xe^{-xy}, 1 + x^2 + x \sin y\right)$, let $z = g(u, v) = \sqrt{u^2 + 2v^2}$, and let $h(x, y) = g(f(x, y))$. Find $\nabla h(1, 0)$.

(c) Let $F(x, y, z) = \left(z^2 + \frac{1}{y}, z - \frac{x}{y^2}, y + 2(x+1)z\right)$. Find g such that $F = \nabla g$.

[10] **3:** (a) Find the mass of the tetrahedron with vertices at $(0, 0, 0)$, $(1, 0, 0)$, $(0, 2, 0)$ and $(0, 2, 2)$ with density (mass per unit volume) given by $\rho(x, y, z) = 2z - xy$.

(b) Find the total charge on the cone $S = \left\{ (x, y, z) \mid z = \sqrt{x^2 + y^2}, z \leq 1 \right\}$ with charge density (charge per unit area) given by $\rho(x, y, z) = x^2 z$.

[10] **4:** (a) Find the work done by the force $F(x, y, z) = \left(\frac{z}{1+x}, \sqrt{y}, 2x \right)$ acting on a small object moving along the curve C given by $(x, y, z) = \alpha(t) = (t, 1 + 2t^2, 1 + t^3)$ for $0 \leq t \leq 2$.

(b) Find the flux of the vector field $F = (xy^2, yz, x^2z)$ outwards across the boundary surface $S = \partial D$ of the cylinder $D = \{(x, y, z) \mid x^2 + y^2 \leq 1, 0 \leq z \leq 1\}$.

This page is for rough work.