

Name (print): _____

Signature: _____

ID Number: _____

ECE 206, Advanced Calculus 2
Midterm Test, Spring Term, 2015

University of Waterloo

Instructor: Stephen New

Date: June 15, 2015

Time: 10:00-11:20 am

Instructions:

1. Place your name, signature and ID number in the spaces provided at the top of this page.
2. This test contains 7 pages, including this cover page and a page at the end for rough work.
3. No calculators or any other electronic devices are allowed.
4. Answer all 5 questions; all questions will be given equal value.
5. Provide full explanations with all your solutions.

Question	Mark
1	/5
2	/5
3	/5
4	/5
5	/5
Total	/25

[5] **1:** Let C be the curve of intersection of the sphere $x^2 + y^2 + z^2 = 4x$ with the cone $z = \sqrt{x^2 + y^2}$.

Let L be the tangent line to the curve C at the point $(1, -1, \sqrt{2})$.

(a) Find a parametric equation for the line L .

(b) Find the point of intersection of the line L with the xy -plane.

[5] **2:** Consider the surface $z = f(x, y) = \frac{4}{2 + x^4 + x^2 + y^2}$.

(a) Find the gradient $\nabla f(1, 2)$.

(b) Find the directional derivative $D_u f(1, 2)$ when $u = \left(-\frac{4}{5}, \frac{3}{5} \right)$.

(c) An ant walks along the above surface above the circle $(x - 2)^2 + y^2 = 5$ moving counterclockwise (when looking down from above). Find the value of $\tan \theta$, where θ is the angle (from the horizontal) at which the ant is ascending when it is at the point $(1, 2, \frac{1}{2})$.

[5] **3:** Find the total charge in the region $D = \left\{ (x, y, z) \mid \sqrt{\frac{1}{3}(x^2 + y^2)} \leq z \leq \sqrt{4 - x^2 - y^2} \right\}$ where the charge density (charge per unit volume) is given by $f(x, y, z) = x^2$. (The region D is the intersection of a cone with a sphere).

[5] **4:** Find the work done by the force $F(x, y, z) = (2xz, 1+z, x^2+y)$ acting on a small object which moves along the curve given by $(x, y, z) = \alpha(t) = (\sqrt{1-t^2}, 1+t, \sqrt{t})$ for $0 \leq t \leq 1$ in the following two ways.

(a) Calculate the work W directly from the formula $W = \int_C F \cdot T \, dL$.

(b) Find a scalar potential for F then find the work by finding the change in potential.

[5] **5:** Find the flux of the vector field $F(x, y, z) = (x + y^2, xy + z^2, xy + yz)$ through the boundary surface of the tetrahedron with vertices at $(0, 1, 0)$, $(2, -1, 0)$, $(2, 3, 0)$ and $(0, 1, 2)$.

This page is for rough work. It will not be marked.