
ECE 206 Advanced Calculus 2, Solutions to the Review Problems

1: Find an implicit equation, of the form ax+ by+ cz = d, for the tangent plane to the surface given paramet-
rically by (x, y, z) = σ(s, t) =

(√
s , (2 − s) cos t , (2 − s) sin t

)
for 0 ≤ s ≤ 5 and 0 ≤ t ≤ 2π at the point

where (s, t) =
(
4, π6

)
.

Solution: When (s, t) =
(
4, π6

)
we have

σs × σt =

 1
2
√
3

− cos t
− sin t

×
 0
−(2− s) sin t

(2− s) cos t

 =


1
4

−
√
3
2

− 1
2

×
 0

1
−
√

3

 =

 2
√
3
4
1
4

 = 1
4

 8√
3

1


and so the tangent plane has normal vector (8,

√
3, 1) and its equation is of the form 8x+

√
3y+ z = c. Put

in (x, y, z) = σ
(
4, π6

)
= (2,−

√
3,−1) to get c = 16− 3− 1 = 12, and so the equation is 8x+

√
3y + 2 = 12.

2: Let (x, y) = f(r, θ) =
(
r cos θ , r sin θ

)
, and z = g(x, y), and let h(r, θ) = g

(
f(r, θ)

)
. Suppose that h(r, θ) =

r2e
√
3 (θ−π

6 )
. Use the Chain Rule to find ∇g(

√
3, 1).

Solution: Note that (x, y) = (
√

3, 1) when (r, θ) =
(
2, π6

)
and then, by the Chain Rule,

Dh = Dg ·Df

( ∂h∂r
∂h
∂θ ) =

( ∂g
∂x

∂g
∂y

)( ∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ

)
(

2r e
√
3(θ−π

6 )
,
√

3r2e
√
3(θ−π

6 )
)

=
(
∂g
∂x ,

∂g
∂y

)(
cos θ −r sin θ
sin θ r cos θ

)
(
4 , 4
√

3
)

=
(
∂g
∂x ,

∂g
∂y

)( √3
2 −1
1
2

√
3

)
and so

∇gT =
(
∂g
∂x ,

∂g
∂y

)
=
(
4, 3
√

3
)( √3

2 −1
1
2

√
3

)−1
=
(
4, 4
√

3
)
· 12

(√
3 1

− 1
2

√
3
2

)
=
(√

3, 5
)
.

3: Find the total charge in the solid tetrahedron with vertices at (0, 1, 0), (1, 0, 0), (3, 1, 0) and (3, 1, 3) where
the charge density (charge per unit volume) is given by ρ(x, y, z) = y.

Solution: Let D denote the given tetrahedron with vertices at a = (0, 1, 0), b = (1, 0, 0), c = (3, 1, 0) and
d = (3, 1, 3). The top view of the tetrahedron D (the projection of D onto the xy-plane) is the triangle T with
vertices a′ = (0, 1), b′ = (1, 0), and c′ = d′ = (3, 1), that is T =

{
(x, y)

∣∣0 ≤ y ≤ 1 , 1− y ≤ y ≤ 1 + 2y
}

. The
top face of the tetrahedron D has direction vectors. u = d− a = (3, 0, 3) = 3(1, 0, 1) and v = d− b = (2, 1, 3)
and so it has normal vector w = (1, 0, 1)× (2, 1, 3) = (−1,−1, 1). Thus the equation of the top face is of the
form x+ y − z = c and we can put in the point (x, y, z) = a = (0, 1, 0 to get c = 1. Thus the tetrahedron is
the region

D =
{

(x, y, z)
∣∣0 ≤ y ≤ 1 , 1− y ≤ x ≤ 1 + 2y , 0 ≤ z ≤ x+ y − 1

}
.

Thus the total charge is

Q =

∫∫∫
D

y dV =

∫ 1

y=0

∫ 1+2y

x=1−y

∫ x+y−1

z=0

y dz dx dy

=

∫ 1

y=0

∫ 1+2y

x=1−y
y(x+ y − 1) dx dy =

∫ 1

y=0

[
1
2yx

2 + (y2 − y)x
]1+2y

x=1−y
dy

=

∫ 1

y=0

1
2

(
(1 + 2y)2 − (1− y)2

)
+ (y2 − y)

(
(1 + 2y)− (1− y)

)
dy

=

∫ 1

y=0

1
2y(6y + 3y2) + (y2 − y)(3y) dy =

∫ 1

y=0

9
2y

3 dy = 9
8 .



4: Find the total mass on the surface S =
{

(x, y, z)
∣∣x2 + y2 ≤ 3 , 2z = x2 + y2

}
with density (mass per unit

area) ρ(x, y, z) = x2.

Solution: The surface S can be given parametrically by (x, y, z) = σ(r, θ) =
(
r cos θ , r sin θ , 1

2r
2
)

for

0 ≤ r ≤
√

3 and 0 ≤ θ ≤ 2π. We have

σr × σθ =

 cos θ
sin θ
r

×
−r sin θ
r cos θ

0

 =

−r2 cos θ
−r2 sin θ

r

 = r

−r cos θ
r sin θ

1


so that

∣∣σr × σθ∣∣ = r
√
r2 + 1. Also note that ρ = x2 = (r cos θ)2. Using the substitution u = r2 + 1 so that

du = 2r dr, the mass is

M =

∫∫
S

ρ dA =

∫ √3

r=0

∫ 2π

θ=0

(r cos θ)2 · r
√
r2 + 1 dθ dr =

∫ √3

r=0

πr3
√
r2 + 1 dr =

∫ 4

u=1

π
2 (u− 1)

√
u du

= π

∫ 4

u=1

1
2u

3/2 − 1
2u

1/2 du = π
[
1
5u

5/2 − 1
323/2

]4
u=1

= π
((

32
5 −

8
3

)
−
(
1
5 −

1
3

))
= π

(
31
5 −

7
3

)
= 58π

15 .

5: Let F be a force field given by F (x, y, z) =
(
x+ y , x− y , z

)
and let C be the curve given parametrically by

(x, y, z) = α(t) =
(
3t2 + 1 , 3t2 − 1 , 2t3

)
for 0 ≤ t ≤ 1.

(a) Find the length of the curve C.

Solution: We have α′(t) = (6t, 6t, 6t2) = 6t(1, 1, t) so that
∣∣α′(t)| = 6t

√
2 + t2, and so the length is

L =

∫ 1

t=0

|α′(t)| dt =

∫ 1

t=0

6t
√
t2 + 1 dt =

[
2(t2 + 2)3/2

]1
t=0

= 6
√

3− 4
√

2).

(b) Find work done by the force F acting on a small object which moves along C.

Solution: We have F
(
α(t)

)
= F (3t2 + 1, 3t2 − 1, 2t3) = (6t2, 2, 2t3), and so the work is

W =

∫
C

F.T dL =

∫ 1

t=0

(6t2, 2, 2t3).(6t, 6t, 6t2) dt =

∫ 1

t=0

36t3 + 12t+ 12t5 dt = 36
4 + 12

2 + 12
6 = 17.

6: A fluid flows in space with velocity field V (x, y, z) = (yz, xz, z2). Find the rate (volume per unit time) at
which the fluid flows upwards through the surface

S =
{

(x, y, z)
∣∣∣(x− 1)2 + y2 ≤ 1 , z =

√
x2 + y2

}
.

The surface S can be given parametrically by (x, y, z) = σ(r, θ) =
(
r cos θ , r sin θ , r

)
with −π2 ≤ θ ≤

π
2 and

0 ≤ r ≤ 2 cos θ.

Solution: We have
V
(
σ(r, θ)

)
=
(
r2 sin θ , r2 cos θ , r2

)
, and

σr × σθ =

 cos θ
sin θ

1

×
−r sin θ
r cos θ

0

 =

−r cos θ
−r sin θ

r


and so the flux (which is the required rate of flow) is

Φ =

∫∫
S

F.N dA =

∫ π/2

θ=−π/2

∫ 2 cos θ

r=0

(
r2 sin θ, r2 cos θ, r2

).(− r cos θ , −r sin θ , r
)
dr dθ

=

∫ π/2

θ=−π/2

∫ 2 cos θ

r=0

−2r3 sin θ + r3 dr dθ =

∫ π/2

θ=−π/2
(1− 2 sin θ)

[
1
4 r

4
]2 cos θ

r=0
dθ

=

∫ π/2

θ=−π/2
(1− 2 sin θ cos θ) · 4 cos4 θ dθ .

Since sin θ cos5 θ is an odd function and cos4 θ is an even function, we have

Φ =

∫ π/2

θ=0

8 cos4 θ dθ =

∫ π/2

θ=0

2(1 + cos 2θ)2 dθ =

∫ π/2

θ=0

2 + 4 cos 2θ + 2 cos2 2θ dθ = π + 0 + π
2 = 3π

2 .



7: Find the flux of F (x, y, z) =
(
x2 +

√
z , y2 +

√
x , 3 + x

)
outwards through the surface

S =
{

(x, y, z)
∣∣x2 + y2 + (z − 1)2 = 4 , z ≥ 0

}
.

Solution: Let D =
{

(x, y, z)
∣∣x2 + y2 + (z − 1)2 ≤ 4 , z ≥ 0

}
. The boundary surface of D consists of the

given surface S together with the flat disc T =
{

(x, y, z)
∣∣x2 + y2 ≤ 3 , z = 0

}
. By the Divergence Theorem,∫∫

S

F.N dA+

∫∫
T

F.N dA =

∫∫∫
D

∇.F dV

using the outwards normal vector for S and the downwards normal vector for T . We have ∇.F = 2x + 2y

and, by symmetry, we have

∫∫∫
D

x dV =

∫∫∫
D

y dV = 0 and so

∫∫∫
D

∇.F dV = 0. Since

∫∫
T

x dA = 0

by symmetry, the outwards flux across S is∫∫
S

F.N dA = −
∫∫

T

F.N dA = −
∫∫

T

(x2 +
√

7 , y2 +
√
x , 3 + x

).(0, 0,−1) dA

=

∫∫
T

3 + x dA = 3

∫∫
T

1 dA = 3 Area(T ) = 3(3π) = 9π.

8: The square S =
{

(x, y, z)
∣∣ − 1 ≤ x ≤ 1 , −1 ≤ y ≤ 1 , z = 0

}
carries a charge distribution with charge

density (charge per unit area) ρ(x, y) = |xy|. Find the electric field at all points along the z-axis.

Solution: For r = (0, 0, z) and s = (x, y, 0) we have

dE(r) =
1

4πε0
· ρ(r − s)
|r − s|3

dA =
1

4πε0
· |xy|(−x,−y, z)

(x2 + y2 + z2)3/2
dx dy.

By symmetry, the electric field at r = (0, 0, z) will be in the direction of the z-axis (pointing upwards for
z > 0 and downwards when z < 0). Also the total electric field E(r) is equal to 4 times the electric field
produced by the portion of the square which lies in the first quadrant. The z-component of E(r) is given by

Ez =

∫ 1

x=−1

∫ 1

y=−1

1

4πε0
· |xy| z

(x2 + y2 + z2)3/2
dy dx = 4

∫ 1

x=0

∫ 1

y=0

1

4πε0
· xyz

(x2 + y2 + z2)3/2
dy dx

=
z

πε0

∫ 1

x=0

[
−x

(x2 + y2 + z2)1/2

]1
y=0

dx =
z

πε0

∫ 1

x=0

x√
x2 + z2

− x√
x2 + z2 + 1

dx

=
z

πε0

[√
x2 + z2 −

√
x2 + z2 + 1

]1
x=0

=
z

πε0

((√
z2 + 1−

√
z2 + 2

)
−
(√
z2 −

√
z2 + 1

))
=

1

πε0
z
(

2
√
z2 + 1−

√
z2 + 2− |z|

)
.



9: A loop of wire follows the line segment L =
{

(x, y, z)
∣∣ − 1 ≤ x ≤ 1 , y = z = 0

}
and the semicircle

C =
{

(x, y, z)
∣∣x2 + y2 = 1 , y ≥ 0 , z = 0

}
, and it carries a constant current I. Find the magnetic field at all

points along the z-axis.

Solution: First we find the contribution to the magnetic field made by the straight portion of the wire. For
r = (0, 0, z) and s = α(t) = (t, 0, 0) for −1 ≤ t ≤ 1 we have

dB(r) =
µ0

4π
· dI × (r − s)
|r − s|3

=
µ0I

4π

α′(t)× (r − s)
|r − s|3

dt =
µ0

4π
· (1, 0, 0)× (−t, 0, z)

(t2 + z2)3/2
dt =

µ0I

4π
· (0,−z, 0)

(t2 + z2)3/2
dt.

Making the substitution z tan θ = dt so that z sec θ =
√
t2 + z2 and z sec2 θ dθ = dt , the y-component of

this contribution is

By(r) =

∫ 1

t=−1

µ0

4π
· −z

(t2 + z2)3/2
dt = −µ0I

4π

∫ 1

t=−1

z · z sec2 θ dθ

(z sec θ)3/2
= −µ0I

4π

∫ 1

t=−1

1

z
cos θ dθ

= −µ0I

4πz

[
sin θ

]1
t=−1

= −µ0I

4πz

[
t√

t2 + z2

]1
t=−1

= −µ0I

2πz

1√
1 + z2

.

Next we find the contribution made by the semicircular portion of the wire. For r = (0, 0, z) and s = α(t) =
(cos t, sin t, 0) for 0 ≤ t ≤ π we have

dB(r) =
µ0I

4π
· α
′(t)× (r − s)
|r − s|3

=
µ0I

4π
· (− sin t, cos t, 0)× (− cos t, sin t, z)

(cos2 t+ sin2 t+ z2)3/2
dt =

µ0I

4π
· (z cos t, z sin t, 1)

(1 + z2)3/2
dt.

We calculate each component of this contribution: we have

Bx(r) =
µ0I

4π
· z

1 + z2

∫ π

0

cos t dt = 0 ,

By(r) =
µ0I

4π
· z

1 + z2

∫ π

0

sin t dt =
µ0I

2π
· z

1 + z2
,

Bz(r) =
µ0I

4π
· 1

1 + z2

∫ π

t=0

1 dt =
µ0I

4
· 1

1 + z2
.

Thus the total magnetic field induced by the loop of wire is

B(r) =

(
0 ,

µ0I

2π

( z

1 + z2
− 1

z
√

1 + z2

)
,
µ0I

4
· 1

1 + z2

)
=

µ0I

4πz(1 + z2)

(
0 , 2

(
z2 −

√
1 + z2

)
, πz

)
.

10: A static charge distribution in space produces an electric field given by

E(x, y, z) =
√
x2 + y2 + z2 (x, y, z).

(a) Find the charge density ρ = ρ(x, y, z).

Solution: We have

∂
∂x

(
x
√
x2 + y2 + z2

)
=
√
x2 + y2 + z2 + x · x√

x2+y2+z2
=

2x2+y2+z2√
x2+y2+z2

and similarly ∂
∂y

(
y
√
x2 + y2 + z2

)
=

x2+2y2+z2√
x2+y2+z2

and ∂
∂z

(
z
√
x2 + y2 + z2

)
=

x2+y2+2z2√
x2+y2+z2

so, by Maxwell’s

first equations (or Gauss’ Law), the density is

ρ = ε0∇.E = ε0

(
2x2+y2+z2√
x2+y2+z2

+
x2+2y2+z2√
x2+y2+z2

+
x2+y2+2z2√
x2+y2+z2

)
=

4ε0(x
2+y2+z2)√

x2+y2+z2
= 4ε0

√
x2 + y2 + z2.

(b) Find a scalar potential for E.

Solution: By inspection, if we let g(x) = 1
3 (x2 + y2 + z2)3/2 then we have ∇g = F .

(c) Find the work done by E on an object of unit charge which moves along the curve given parametrically
by (x, y, z) = α(t) =

(
t , t+ 1 , t2 + t

)
for 1 ≤ t ≤ 2.

Solution: By the Conservative Fields Theorem, the work is

W =

∫
α

F.T dL =

∫
α

(∇g).T dL = g
(
α(2)

)
− g
(
α(1)

)
= g(2, 3, 6)− g(1, 2, 2) = 1

3 493/2 − 1
393/2 = 343−27

3 = 356
3 .



11: A steady current distribution in space produces a magnetic field given by

B(x, y, z) =
(
2z − 2y , 2x− z , y − 2x

)
.

(a) Find the current density J = J(x, y, z).

Solution: By Maxwell’s fourth equation, the current density is

J = 1
µ0
∇×B = 1

µ0

(
1 + 1, 2 + 2, 2 + 2

)
= 1

µ0
(3, 4, 4).

(b) Find a vector potential for B.

Solution: By inspection, if we let A =
(
2xy + 2xz , xy + 2yz , xz + 2yz

)
then we have ∇×A = B.

(c) Find the flux of B upwards through S =
{

(x, y, z)
∣∣x2 + (y − 1)2 + z2 = 1 , z ≥ 0

}
.

Solution: Let D be the half-ball D =
{

(x, y, z)
∣∣x2 + (y − 1)2 + z2 ≤ 1 , z ≥ 0

}
. The boundary surface of D

consists of the given surface S together with the flat disc T =
{

(x, y, z)
∣∣x2 + (y − 1)2 ≤ 1 , z = 0

}
. Since

∇.B = 0, by the Divergence Theorem we have∫∫
S

B.N dA+

∫∫
T

B.N dA =

∫∫∫
D

∇.B dV = 0

where we use the upwards flux through S and the downwards flux through T . Thus the required flux is

Φ =

∫∫
S

B.N dA = −
∫∫

B.N dA = −
∫∫

T

(
2z − 2y , 2x− z , y − 2x

).(0, 0,−1) dA

=

∫∫
T

y − 2x dA =

∫∫
T

y dA = 1
2 Volume(C) = 1

2 (2π) = π,

where we noticed that

∫∫
T

x dA = 0 by symmetry, and then we found the value of

∫∫
T

y dA by inspection

by noticing that this integral measures the volume of the solid given by (x, y) ∈ T , 0 ≤ z ≤ y, which is equal
half of the volume of the cylinder C =

{
(x, y, z)

∣∣x2 + (y − 1)2 ≤ 1 , 0 ≤ z ≤ 1
}

.

12: (a) Show that a steady current density J = J(x, y, z) must satisfy the requirement that whenever S is the

boundary surface of a bounded region in R3 we have

∫∫
S

J.N dA = 0.

Solution: Let S be the boundary surface of the region D. Then by the Divergence Theorem and Maxwell’s
fourth equation we have∫∫

S

J.N dA =

∫∫∫
D

∇.J dV =

∫∫∫
D

∇.(∇× 1
µ0
B
)
dV = 1

µ0

∫∫∫
D

∇.(∇×B) dV = 0

since we have ∇.(∇×B) = 0 (indeed ∇.(∇× F ) = 0 for every smooth vector field F ).

(b) Given k > 0, find ω > 0 such that the fields E and B given by

E(x, y, z, t) =
(
ω sin(kz − ωt) , 0 , 0

)
B(x, y, z, t) =

(
0 , k sin(kz − ωt) , 0

)
are solutions to Maxwell’s Equations in a vacuum.

Solution: For the given fields E and B we have

∇.E = 0

∇× E =
(
0 , kω cos(kz − ωt) , 0

)
∂E
∂t =

(
− ω2 cos(kz − ωt) , 0 , 0

)
∇.B = 0

∇×B =
(
− k2 cos(kz − ωt) , 0− , 0

)
∂B
∂t =

(
0 , −kω cos(kz − ωt) , 0

)
Thus the first three of Maxwell’s equations, namely ∇.E = 0, ∇×E = −∂B∂t and ∇.B = 0, are all satisfied,

and Maxwell’s fourth equation ∇×B = ε0µ0
∂E
∂t is satisfied when k2 = ε0µ0ω

2, that is when ω = k
/√

ε0µ0.



13: Solve each of the following for z ∈ C. Express your solutions in Cartesian form.

(a) z6 + 8 = 0

Solution: For z = reiθ we have

z6 + 8 = 0 ⇐⇒ (reiθ)6 = −8 ⇐⇒ r6ei 6θ = 8 ei π ⇐⇒
(
r6 = 8 and 6θ = π + 2π k for some k ∈ Z

)
⇐⇒

(
r =
√

2 and θ = π
6 + kπ

3 for some k ∈ {0, 1, 2, 3, 4, 5}
)

⇐⇒ z = reiθ ∈
{√

2 eiπ/6 ,
√

2 ei π/2 ,
√

2 ei 5π/6 ,
√

2 ei 7π/6 ,
√

2 ei 3π/2 ,
√

2 ei 11π/6
}
.

In Cartesian form, the 6 solutions are z ∈
{
±
√
3
2 ±

1√
2
i , ±
√

2 i
}
.

(b) iz2 + (2 + i)z + (7 + i) = 0

Solution: Using the Quadratic Formula, and noting that (4− 3i)2 = (7− 24i), the solutions are given by

z =
−(2 + i)±

√
(3 + 4i)− 4i(7 + i)

2i
=
−(2 + i)±

√
7− 24i

2i
=
−(2 + i)± (4− 3i)

2i

that is z ∈
{

2−4i
2i ,

−6+2i
2i

}
=
{
− i(1− 2i),−i(−3 + i)

}
=
{
− 2− i , 1 + 3i

}
.

(c) z3 + 6z + 2 = 0 (hint: let z = w − 2
w ).

Solution: Let z = w − 2
w . Then

z3 + 6z + 2 = 0 ⇐⇒
(
w − 2

w

)3
+ 6
(
w − 2

w

)
+ 2 = 0 ⇐⇒ w3 − 8

w3 + 2 = 0

⇐⇒ w6 + 2w3 − 8 = 0 ⇐⇒ (w3 + 4)(w3 − 2) = 0 ⇐⇒ w3 = 2 or w3 = −4
.

Consider the case that w3 = 2. Then w ∈
{

3
√

2 , 3
√

2 ei 2π/3 , 3
√

2 e−i 2π/3
}

and so

z = w − 2
w ∈

{
3
√

2− 3
√

4 ,
3
√

2 ei 2π/3 − 3
√

4 e−i 2π/3 ,
3
√

2 e−i 2π/3 − 3
√

4 ei 2π/3
}

=
{

3
√

2− 3
√

4 , 3
√

2
(
− 1

2 +
√
3
2 i
)
− 3
√

4
(
− 1

2 −
√
3
2 i
)
, 3
√

2
(
− 1

2 −
√
3
2 i
)
− 3
√

4
(
− 1

2 +
√
3
2 i
)}

=
{
− ( 3
√

4− 3
√

2) , 1
2 ( 3
√

4− 3
√

2)±
√
3
2 ( 3
√

4− 3
√

2) i
}

Since a cubic polynomial has at most 3 roots, we have found all 3 solutions (so we do not need to consider
the case that w3 = −4).

14: (a) Use the formula tanh z =
ez − e−z

ez + e−z
to show that tanh−1 z = 1

2 log
(1 + z

1− z

)
.

Solution: We have

z = tanhw ⇐⇒ z =
ew − e−w

ew + e−w
⇐⇒ zew + ze−w = ew − e−w ⇐⇒ ze2w + z = e2w − 1

⇐⇒ z + 1 = (1− z)e2w ⇐⇒ e2w = 1+z
1−z ⇐⇒ 2w = log 1+z

1−z ⇐⇒ w = 1
2 log 1+z

1−z .

(b) Solve tanh z = ei π/3.

Solution: By Part (a), we have tanh z = ei π/3 when

z = tanh−1
(
ei π/3

)
= tanh−1

(
1
2 +

√
3
2 i
)

= 1
2 log

1+ 1
2+

√
3

2 i

1− 1
2−

√
3

2 i
= 1

2 log
3+
√
3 i

1−
√
3 i

= 1
2 log

(3+
√
3 i)(1+

√
3 i)

4

= 1
2 log

4
√
3 i

4 = 1
2 log

(√
3ei π/2

)
= 1

2

(
ln
√

3 + i
(
π
2 + 2πk

))
= 1

4 ln 3 + i
(
π
4 + πk

)
for some k ∈ Z.

(c) Solve sinh z =
ez

1 + i
.

Solution: We have

sinh z =
ez

1 + i
⇐⇒ ez − e−z

2
=

ez

1 + i
⇐⇒ (1 + i)

(
ez − e−z) = 2 ez ⇐⇒ (−1 + i)ez = (1 + i)e−z

⇐⇒ e2z =
1+i
−1+i =

−2i
2 = −i = e−i π/2 ⇐⇒ 2z = log(−i) = log

(
e−i π/2

)
= i
(
− π

2 + 2πk
)

⇐⇒ z = i
(
− π

4 + kπ
)

for some k ∈ Z.



15: (a) Find the image under w = f(z) = z2 of the line x = c where c > 0.

Solution: The line x = c is given by z = c+it. It is mapped to the curve w = z2 = (c+it)2 = (c2−t2)+i(2ct),
that is the curve given by u = c2 − t2 (1) and v = 2ct (2). From (2) we get t = v

2c then from (1) we get

u = c2 −
(
v
2c

)2
. Thus the image is the parabola u = c2 − 1

4c2 v
2, that is the parabola with vertex on the

positive real axis at w = c2 which opens to the left passing through the points w = ±i 2c2.

(b) Show that f(z) = z2 is equal to the composite f = h ◦ f ◦ g where g(z) = e−iθz and h(z) = ei2θz, and
deduce that the image under w = z2 of the line whose nearest point to the origin is the point a = reiθ is
equal to the parabola with vertex at a2 = r2ei2θ which passes through the points ±i 2a2.

Solution: Since h
(
f
(
g(z)

))
= h

(
f(e−iθz)

)
= h

(
(e−iθz)2

)
= h

(
e−i2θz2

)
= ei2θe−i2θz2 = z2 = f(z), it follows

that f = h ◦ f ◦ g. The line whose nearest point to 0 is the point a = reiθ is sent by the map g (which
rotates clockwise by θ) to the line x = r. By Part (a), the map x = r is then sent by the map f to the
parabola with vertex at r2 which passes through ±i 2r2. This parabola is then sent by the map h (which
rotates counterclockwise by 2θ) to the parabola with vertex at r2ei2θ = a2 which passes through the points
±i 2r2ei2θ = ±i 2a2, as required.

(c) Find the image under f(z) = z2 + 4i z of the triangle with vertices at 2, 1− i and 2− i.
Solution: Let a = 2, b = 1 − i and c = 2 − i. Note that f(z) = z2 + 4i z = (z + 2i)2 + 4 = f3

(
f2
(
f1(z)

))
where f1(z) = z + 2i, f2(z1) = z1

2 and f3(z2) = z2 + 4. The first map f1(z) = z + 2i translates the given
triangle up 2 units to the triangle with vertices at a1 = 2 + 2i, b1 = 1 + i and c1 = 2 + i. The second map
f2(z1) = z1

2 sends the three vertices to a2 = a1
2 = 8i, b2 = b1

2 = 2i and c2 = c1
2 = 3 + 4i. The map

f2(z) = z2 sends the ray from the origin in the direction of eiθ to the ray through the origin in the direction
of ei 2θ, and it sends the line whose nearest point to the origin is the point 0 6= u ∈ C to the parabola with
vertex at the point u2 which passes through the points u2 and ±2i u2. Since the line segment a1b1 lies on
the ray through the origin in the direction of eiπ/4, it is mapped to the line segment a2b2 which lies along
the positive imaginary axis. The line segment b1c1 lies along the line whose nearest point to the origin is i.
This line is mapped by f2 to the parabola with vertex at i2 = −1 which passes through the points −1 and
±2i. Thus the line segment b1c1 is mapped by f2 to the arc along this parabola from b2 = 2i to c2 = 3 + 4i.
Similarly, the line segment c1a1 lies on the line whose nearest point to the origin is 2, and it is mapped by
f2 to the arc along the parabola with vertex at 4 from the point b2 = 3 + 4i to the point a2 = 8i. Finally,
the map f3 translates the image 4 units to the right. The images are shown below.

−→ −→ −→
f1 f2 f3

16: Let f
(
r ei θ

)
= r2/3ei 2θ/3 for r > 0 and 0 < θ < 2π. Find f ′(−2+2i) and f ′′(−2+2i). Express your answers

in Cartesian form.

Solution: Note that f(z)3 = z2. Differentiate both sides, using the Chain Rule on the left side, to get

3f(z)2f ′(z) = 2z and so f ′(z) =
2z

3f(z)2
and f ′′(z) =

2

3
· f(z)2 − 2z f(z)f ′(z)

f(z)4
=

2

3
· f(z)− 2z f ′(z)

f(z)3
. When

z = −2 + 2i = 2
√

2 ei 3π/4 we have f(z) = 2 ei π/2 = 2i and so

f ′(z) =
2z

3f(z)2
=

2(−2 + 2i)

3(2i)2
=

1− i
3

, and

f ′′(z) =
2

3
· f(z)− 2z f ′(z)

f(z)3
=

2

3
·

(2i)− 2(−2 + 2i)
(
1−i
3

)
(2i)3

=
2

3
· 6i− 2(4i)

3(−8i)
=

1

36
.



17: Find the image under the map f(z) =
2z − 1

2− z
of the set U =

{
z ∈ C

∣∣|z| < 1 , z 6= 1
2

}
.

Solution: Note that f(z) =
2z − 1

2− z
=

2z − 4 + 3

2− z
= −2 − 3

z − 2
= f4

(
f3
(
f2(f1(z))

))
where f1(z) = z − 2,

f2(z1) = 1
z1

, f3(z2) = −3z2 and f4(z3) = z3−2. The map f1 translates 2 units to the left and sends U to the

set U1 =
{
z1
∣∣|z1 + 2| < 1 , z1 6= − 3

2

}
. Recall from a homework problem (Assignment 9, Problem 6) that the

map f2(z1) = 1
z1

sends the circle with diameter a, ta to the circle with diameter 1
a .

1
ta , so it sends the circle

with diameter −1,−3 to the circle with diameter −1,− 1
3 (which is centered at − 2

3 and has radius 1
3 , and hence

it sends the set U1 to the set U2 =
{
z2
∣∣|z2 + 2

3 | <
1
3 , z2 6= −

2
3

}
. The map f3(z2) = −3z2 rotates about the

origin by the angle π and scales by the factor 3, and so it sends U2 to the set U3 =
{
z2
∣∣|z2−2| < 1 , z2 6= 2

}
.

Finally, the map f4 translates 2 units to the left sending U3 to the set V =
{
w
∣∣|w| < 1 , w 6= 0

}
. The images

are shown below.

−→ −→ −→ −→
f1 f2 f3 f4

18: (a) Find

∫
α

z(3z − 4) dz where α(t) = t+ i for 0 ≤ t ≤ 1.

Solution: Using the Fundamental Theorem of Calculus we have∫
α

f =

∫
α

3z2 − 4z dz =
[
z3 − 2z

]α(1)
α(0)

=
[
z3 − 2z2

]1+i
i

= (1 + i)3 − 2(1 + i)2 − (i)3 + 2(i)2

= (1 + i)(2i)− 2(2i) + i− 2 = −4− i.

(b) Find

∫
α

f(z) dz where f
(
r ei θ

)
= r1/3ei θ/3 for r > 0 and −π < θ < π and α(t) = 2 + it for −2 ≤ t ≤ 2.

Solution: Since f(z) is a branch of z1/3, we expect that an antiderivative g(z) is given by a branch of 3
4 z

4/3,
but let us take some care in deciding exactly which branch to use. Let U =

{
reiθ

∣∣r > 0 , − 3π
4 < θ < 3π

4

}
and note that when − 3π

4 < θ < 3π
4 we have −π < 4θ

3 < π. Define g : U → C by

g
(
reiθ

)
= 3

4 r
4/3ei 4θ/3 for r > 0 and − 3π

4 < θ < 3π
4 .

Note that g(z)3 = 27
64z

4 so that 3g(z)2g′(z) = 27
16z

3, that is g′(z) = 9z3
/

16g(z)2. For z = reiθ we have

g′(z) =
9z3

16g(z)2
=

9r3ei 3θ

16
(
3
4 r

4/3ei 4θ/3
)2 =

r3ei 3θ

r8/3ei 8θ/3
= r1/3ei θ/3 = f(z)

and so g is indeed an antiderivative of f in the set U . By the Fundamental Theorem of Calculus,∫
α

f =
[
g(z)

]α(2)
α(−2)

=
[
g(z)

]2+2i

2−2i
= g(2 + 2i)− g(2− 2i) = g

(
2
√

2 ei π/4
)
− g
(
2
√

2 e−i π/4
)

= 3
4 · 4e

iπ/3 − 3
4 · 4e

−i π/3 = 3
(
ei π/3 − e−i π/3

)
= 3 · 2i sin π

3 = 3
√

3 i.



19: Find

∫
α

4 dz

(z + 1)2(z2 + 1)
where α(t) = 1 + t(−3 + i) for 0 ≤ t ≤ 1.

Solution: To get
A

z + 1
+

B

(z + 1)2
+

C

z + i
+

D

z − i
=

4

(z + 1)2(z2 + 1)
we need

A(z + 1)(z2 + 1) +B(z2 + 1) + C(z + 1)2(z − i) +D(z + 1)2(z + i) = 4 .

Putting in z = −1 gives 2B = 4 so B = 2. Putting in z = i gives −4D = 4 so D = −1. Putting in z = −i
gives −4C = 4 so C = −1. Equating coefficients of z3 gives A + C + D = 0 so A = −C −D = 2. By the
Fundamental Theorem of Calculus and the Winding Number Theorem (it helps to make a sketch of α(t),
which is the line segment from α(0) = 1 to α(1) = −2 + i to determine the values of r(0), r(1), θ(0) and θ(1)
when using the Winding Number Theorem), we have∫

α

4 dz

(z + 1)2(z2 + 1)
=

∫
α

2

z + 1
+

2

(z + 1)2
− 1

z + i
− 1

z − i
dz

= 2
(

ln
√
2
2 + i 3π

4

)
+ 2

[
−1
z+1

]−2+i
1
−
(

ln 2
√
2√
2

+ i π2

)
−
(

ln 2√
2
− i 3π

4

)
=
(
− ln 2 + i 3π

2

)
+ 2
(
−1
−1+i + 1

2

)
−
(

ln 2 + i π2

)
−
(

1
2 ln 2− i 3π

4

)
= − 5

2 ln 2 + i 7π
4 + 2

(
1+i
2 + 1

2

)
=
(
2− 5 ln 2

2

)
+ i
(
1 + 7π

4

)
.

20: Find

∫
α

log(z − 1)

z(z + 1)3
dz where α(t) = 1

2 + 1
2 (1− 3 cos t)eit for 0 ≤ t ≤ 2π, as shown below, and log(w) is given

by log
(
r ei θ

)
= ln(r) + i θ for r > 0 and 0 < θ < 2π.

Solution: We decompose α, say along the line Re(z) = − 3
4 , into two loops β and γ so that β winds twice

around z = 0 (but does not surround z = −1) and γ winds once around z = −1 (but does not surround
z = 0), as shown below.

γ β

By Cauchy’s Integral Formulas we have∫
α

log(z − 1)

z(z + 1)3
dz =

∫
β

F (z)

z
dz +

∫
γ

G(z)

(z + 1)3
dz = 2πi · 2 · F (0) + 2πi · 1 · G

′′(−1)

2!

where F (z) =
log(z − 1)

(z + 1)3
and G(z) =

log(z − 1)

z
. Note that we have F (0) = log(−1) = iπ and we have

G′(z) =
z
z−1 − log(z − 1)

z2
− 1

z2 − z
− log(z − 1)

z2
and G′′(z) =

−(2z − 1)

(z2 − z)2
−

z2

z−1 − 2z log(z − 1)

z4
so that

G′′(−1) = 3
4 −

(
− 1

2 + 2 log(−2)
)

= 5
4 − 2(ln 2 + iπ). Thus∫

α

log(z − 1)

z(z + 1)3
dz = 4πi (iπ) + πi

(
5
4 − 2 ln 2− i 2π

)
= −2π2 + i π

(
5
4 − 2 ln 2

)
.


