

## ECE 206 Advanced Calculus 2, Solutions to the Review Problems

**1:** Find an implicit equation, of the form  $ax + by + cz = d$ , for the tangent plane to the surface given parametrically by  $(x, y, z) = \sigma(s, t) = (\sqrt{s}, (2-s)\cos t, (2-s)\sin t)$  for  $0 \leq s \leq 5$  and  $0 \leq t \leq 2\pi$  at the point where  $(s, t) = (4, \frac{\pi}{6})$ .

Solution: When  $(s, t) = (4, \frac{\pi}{6})$  we have

$$\sigma_s \times \sigma_t = \begin{pmatrix} \frac{1}{2\sqrt{3}} \\ -\cos t \\ -\sin t \end{pmatrix} \times \begin{pmatrix} 0 \\ -(2-s)\sin t \\ (2-s)\cos t \end{pmatrix} = \begin{pmatrix} \frac{1}{4} \\ -\frac{\sqrt{3}}{2} \\ -\frac{1}{2} \end{pmatrix} \times \begin{pmatrix} 0 \\ 1 \\ -\sqrt{3} \end{pmatrix} = \frac{1}{4} \begin{pmatrix} 2 \\ \frac{\sqrt{3}}{4} \\ \frac{1}{4} \end{pmatrix} = \frac{1}{4} \begin{pmatrix} 8 \\ \sqrt{3} \\ 1 \end{pmatrix}$$

and so the tangent plane has normal vector  $(8, \sqrt{3}, 1)$  and its equation is of the form  $8x + \sqrt{3}y + z = c$ . Put in  $(x, y, z) = \sigma(4, \frac{\pi}{6}) = (2, -\sqrt{3}, -1)$  to get  $c = 16 - 3 - 1 = 12$ , and so the equation is  $8x + \sqrt{3}y + z = 12$ .

**2:** Let  $(x, y) = f(r, \theta) = (r \cos \theta, r \sin \theta)$ , and  $z = g(x, y)$ , and let  $h(r, \theta) = g(f(r, \theta))$ . Suppose that  $h(r, \theta) = r^2 e^{\sqrt{3}(\theta - \frac{\pi}{6})}$ . Use the Chain Rule to find  $\nabla g(\sqrt{3}, 1)$ .

Solution: Note that  $(x, y) = (\sqrt{3}, 1)$  when  $(r, \theta) = (2, \frac{\pi}{6})$  and then, by the Chain Rule,

$$\begin{aligned} Dh &= Dg \cdot Df \\ \left( \frac{\partial h}{\partial r} \quad \frac{\partial h}{\partial \theta} \right) &= \left( \frac{\partial g}{\partial x} \quad \frac{\partial g}{\partial y} \right) \begin{pmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} \end{pmatrix} \\ \left( 2r e^{\sqrt{3}(\theta - \frac{\pi}{6})}, \sqrt{3}r^2 e^{\sqrt{3}(\theta - \frac{\pi}{6})} \right) &= \left( \frac{\partial g}{\partial x}, \frac{\partial g}{\partial y} \right) \begin{pmatrix} \cos \theta & -r \sin \theta \\ \sin \theta & r \cos \theta \end{pmatrix} \\ (4, 4\sqrt{3}) &= \left( \frac{\partial g}{\partial x}, \frac{\partial g}{\partial y} \right) \begin{pmatrix} \frac{\sqrt{3}}{2} & -1 \\ \frac{1}{2} & \sqrt{3} \end{pmatrix} \end{aligned}$$

and so

$$\nabla g^T = \left( \frac{\partial g}{\partial x}, \frac{\partial g}{\partial y} \right) = (4, 3\sqrt{3}) \begin{pmatrix} \frac{\sqrt{3}}{2} & -1 \\ \frac{1}{2} & \sqrt{3} \end{pmatrix}^{-1} = (4, 4\sqrt{3}) \cdot \frac{1}{2} \begin{pmatrix} \sqrt{3} & 1 \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix} = (\sqrt{3}, 5).$$

**3:** Find the total charge in the solid tetrahedron with vertices at  $(0, 1, 0)$ ,  $(1, 0, 0)$ ,  $(3, 1, 0)$  and  $(3, 1, 3)$  where the charge density (charge per unit volume) is given by  $\rho(x, y, z) = y$ .

Solution: Let  $D$  denote the given tetrahedron with vertices at  $a = (0, 1, 0)$ ,  $b = (1, 0, 0)$ ,  $c = (3, 1, 0)$  and  $d = (3, 1, 3)$ . The top view of the tetrahedron  $D$  (the projection of  $D$  onto the  $xy$ -plane) is the triangle  $T$  with vertices  $a' = (0, 1)$ ,  $b' = (1, 0)$ , and  $c' = d' = (3, 1)$ , that is  $T = \{(x, y) | 0 \leq y \leq 1, 1 - y \leq x \leq 1 + 2y\}$ . The top face of the tetrahedron  $D$  has direction vectors  $u = d - a = (3, 0, 3) = 3(1, 0, 1)$  and  $v = d - b = (2, 1, 3)$  and so it has normal vector  $w = (1, 0, 1) \times (2, 1, 3) = (-1, -1, 1)$ . Thus the equation of the top face is of the form  $x + y - z = c$  and we can put in the point  $(x, y, z) = a = (0, 1, 0)$  to get  $c = 1$ . Thus the tetrahedron is the region

$$D = \{(x, y, z) | 0 \leq y \leq 1, 1 - y \leq x \leq 1 + 2y, 0 \leq z \leq x + y - 1\}.$$

Thus the total charge is

$$\begin{aligned} Q &= \iiint_D y \, dV = \int_{y=0}^1 \int_{x=1-y}^{1+2y} \int_{z=0}^{x+y-1} y \, dz \, dx \, dy \\ &= \int_{y=0}^1 \int_{x=1-y}^{1+2y} y(x + y - 1) \, dx \, dy = \int_{y=0}^1 \left[ \frac{1}{2}yx^2 + (y^2 - y)x \right]_{x=1-y}^{1+2y} \, dy \\ &= \int_{y=0}^1 \frac{1}{2}((1+2y)^2 - (1-y)^2) + (y^2 - y)((1+2y) - (1-y)) \, dy \\ &= \int_{y=0}^1 \frac{1}{2}y(6y + 3y^2) + (y^2 - y)(3y) \, dy = \int_{y=0}^1 \frac{9}{8}y^3 \, dy = \frac{9}{8}. \end{aligned}$$

4: Find the total mass on the surface  $S = \{(x, y, z) | x^2 + y^2 \leq 3, 2z = x^2 + y^2\}$  with density (mass per unit area)  $\rho(x, y, z) = x^2$ .

Solution: The surface  $S$  can be given parametrically by  $(x, y, z) = \sigma(r, \theta) = (r \cos \theta, r \sin \theta, \frac{1}{2}r^2)$  for  $0 \leq r \leq \sqrt{3}$  and  $0 \leq \theta \leq 2\pi$ . We have

$$\sigma_r \times \sigma_\theta = \begin{pmatrix} \cos \theta \\ \sin \theta \\ r \end{pmatrix} \times \begin{pmatrix} -r \sin \theta \\ r \cos \theta \\ 0 \end{pmatrix} = \begin{pmatrix} -r^2 \cos \theta \\ -r^2 \sin \theta \\ r \end{pmatrix} = r \begin{pmatrix} -r \cos \theta \\ -r \sin \theta \\ 1 \end{pmatrix}$$

so that  $|\sigma_r \times \sigma_\theta| = r\sqrt{r^2 + 1}$ . Also note that  $\rho = x^2 = (r \cos \theta)^2$ . Using the substitution  $u = r^2 + 1$  so that  $du = 2r dr$ , the mass is

$$\begin{aligned} M &= \iint_S \rho \, dA = \int_{r=0}^{\sqrt{3}} \int_{\theta=0}^{2\pi} (r \cos \theta)^2 \cdot r \sqrt{r^2 + 1} \, d\theta \, dr = \int_{r=0}^{\sqrt{3}} \pi r^3 \sqrt{r^2 + 1} \, dr = \int_{u=1}^4 \frac{\pi}{2} (u-1) \sqrt{u} \, du \\ &= \pi \int_{u=1}^4 \frac{1}{2} u^{3/2} - \frac{1}{2} u^{1/2} \, du = \pi \left[ \frac{1}{5} u^{5/2} - \frac{1}{3} u^{3/2} \right]_{u=1}^4 = \pi \left( \left( \frac{32}{5} - \frac{8}{3} \right) - \left( \frac{1}{5} - \frac{1}{3} \right) \right) = \pi \left( \frac{31}{5} - \frac{7}{3} \right) = \frac{58\pi}{15}. \end{aligned}$$

5: Let  $F$  be a force field given by  $F(x, y, z) = (x + y, x - y, z)$  and let  $C$  be the curve given parametrically by  $(x, y, z) = \alpha(t) = (3t^2 + 1, 3t^2 - 1, 2t^3)$  for  $0 \leq t \leq 1$ .

(a) Find the length of the curve  $C$ .

Solution: We have  $\alpha'(t) = (6t, 6t, 6t^2) = 6t(1, 1, t)$  so that  $|\alpha'(t)| = 6t\sqrt{2+t^2}$ , and so the length is

$$L = \int_{t=0}^1 |\alpha'(t)| \, dt = \int_{t=0}^1 6t\sqrt{t^2 + 1} \, dt = \left[ 2(t^2 + 2)^{3/2} \right]_{t=0}^1 = 6\sqrt{3} - 4\sqrt{2}.$$

(b) Find work done by the force  $F$  acting on a small object which moves along  $C$ .

Solution: We have  $F(\alpha(t)) = F(3t^2 + 1, 3t^2 - 1, 2t^3) = (6t^2, 2, 2t^3)$ , and so the work is

$$W = \int_C F \cdot T \, dL = \int_{t=0}^1 (6t^2, 2, 2t^3) \cdot (6t, 6t, 6t^2) \, dt = \int_{t=0}^1 36t^3 + 12t + 12t^5 \, dt = \frac{36}{4} + \frac{12}{2} + \frac{12}{6} = 17.$$

6: A fluid flows in space with velocity field  $V(x, y, z) = (yz, xz, z^2)$ . Find the rate (volume per unit time) at which the fluid flows upwards through the surface

$$S = \{(x, y, z) | (x-1)^2 + y^2 \leq 1, z = \sqrt{x^2 + y^2}\}.$$

The surface  $S$  can be given parametrically by  $(x, y, z) = \sigma(r, \theta) = (r \cos \theta, r \sin \theta, r)$  with  $-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$  and  $0 \leq r \leq 2 \cos \theta$ .

Solution: We have

$$V(\sigma(r, \theta)) = (r^2 \sin \theta, r^2 \cos \theta, r^2), \text{ and}$$

$$\sigma_r \times \sigma_\theta = \begin{pmatrix} \cos \theta \\ \sin \theta \\ 1 \end{pmatrix} \times \begin{pmatrix} -r \sin \theta \\ r \cos \theta \\ 0 \end{pmatrix} = \begin{pmatrix} -r \cos \theta \\ -r \sin \theta \\ r \end{pmatrix}$$

and so the flux (which is the required rate of flow) is

$$\begin{aligned} \Phi &= \iint_S F \cdot N \, dA = \int_{\theta=-\pi/2}^{\pi/2} \int_{r=0}^{2 \cos \theta} (r^2 \sin \theta, r^2 \cos \theta, r^2) \cdot (-r \cos \theta, -r \sin \theta, r) \, dr \, d\theta \\ &= \int_{\theta=-\pi/2}^{\pi/2} \int_{r=0}^{2 \cos \theta} -2r^3 \sin \theta + r^3 \, dr \, d\theta = \int_{\theta=-\pi/2}^{\pi/2} (1 - 2 \sin \theta) \left[ \frac{1}{4} r^4 \right]_{r=0}^{2 \cos \theta} \, d\theta \\ &= \int_{\theta=-\pi/2}^{\pi/2} (1 - 2 \sin \theta \cos \theta) \cdot 4 \cos^4 \theta \, d\theta. \end{aligned}$$

Since  $\sin \theta \cos^5 \theta$  is an odd function and  $\cos^4 \theta$  is an even function, we have

$$\Phi = \int_{\theta=0}^{\pi/2} 8 \cos^4 \theta \, d\theta = \int_{\theta=0}^{\pi/2} 2(1 + \cos 2\theta)^2 \, d\theta = \int_{\theta=0}^{\pi/2} 2 + 4 \cos 2\theta + 2 \cos^2 2\theta \, d\theta = \pi + 0 + \frac{\pi}{2} = \frac{3\pi}{2}.$$

7: Find the flux of  $F(x, y, z) = (x^2 + \sqrt{z}, y^2 + \sqrt{x}, 3 + x)$  outwards through the surface

$$S = \{(x, y, z) | x^2 + y^2 + (z - 1)^2 = 4, z \geq 0\}.$$

Solution: Let  $D = \{(x, y, z) | x^2 + y^2 + (z - 1)^2 \leq 4, z \geq 0\}$ . The boundary surface of  $D$  consists of the given surface  $S$  together with the flat disc  $T = \{(x, y, z) | x^2 + y^2 \leq 3, z = 0\}$ . By the Divergence Theorem,

$$\iint_S F \cdot N \, dA + \iint_T F \cdot N \, dA = \iiint_D \nabla \cdot F \, dV$$

using the outwards normal vector for  $S$  and the downwards normal vector for  $T$ . We have  $\nabla \cdot F = 2x + 2y$  and, by symmetry, we have  $\iiint_D x \, dV = \iiint_D y \, dV = 0$  and so  $\iiint_D \nabla \cdot F \, dV = 0$ . Since  $\iint_T x \, dA = 0$  by symmetry, the outwards flux across  $S$  is

$$\begin{aligned} \iint_S F \cdot N \, dA &= - \iint_T F \cdot N \, dA = - \iint_T (x^2 + \sqrt{7}, y^2 + \sqrt{x}, 3 + x) \cdot (0, 0, -1) \, dA \\ &= \iint_T 3 + x \, dA = 3 \iint_T 1 \, dA = 3 \text{Area}(T) = 3(3\pi) = 9\pi. \end{aligned}$$

8: The square  $S = \{(x, y, z) | -1 \leq x \leq 1, -1 \leq y \leq 1, z = 0\}$  carries a charge distribution with charge density (charge per unit area)  $\rho(x, y) = |xy|$ . Find the electric field at all points along the  $z$ -axis.

Solution: For  $r = (0, 0, z)$  and  $s = (x, y, 0)$  we have

$$dE(r) = \frac{1}{4\pi\epsilon_0} \cdot \frac{\rho(r - s)}{|r - s|^3} \, dA = \frac{1}{4\pi\epsilon_0} \cdot \frac{|xy|(-x, -y, z)}{(x^2 + y^2 + z^2)^{3/2}} \, dx \, dy.$$

By symmetry, the electric field at  $r = (0, 0, z)$  will be in the direction of the  $z$ -axis (pointing upwards for  $z > 0$  and downwards when  $z < 0$ ). Also the total electric field  $E(r)$  is equal to 4 times the electric field produced by the portion of the square which lies in the first quadrant. The  $z$ -component of  $E(r)$  is given by

$$\begin{aligned} E_z &= \int_{x=-1}^1 \int_{y=-1}^1 \frac{1}{4\pi\epsilon_0} \cdot \frac{|xy| z}{(x^2 + y^2 + z^2)^{3/2}} \, dy \, dx = 4 \int_{x=0}^1 \int_{y=0}^1 \frac{1}{4\pi\epsilon_0} \cdot \frac{xyz}{(x^2 + y^2 + z^2)^{3/2}} \, dy \, dx \\ &= \frac{z}{\pi\epsilon_0} \int_{x=0}^1 \left[ \frac{-x}{(x^2 + y^2 + z^2)^{1/2}} \right]_{y=0}^1 \, dx = \frac{z}{\pi\epsilon_0} \int_{x=0}^1 \frac{x}{\sqrt{x^2 + z^2}} - \frac{x}{\sqrt{x^2 + z^2 + 1}} \, dx \\ &= \frac{z}{\pi\epsilon_0} \left[ \sqrt{x^2 + z^2} - \sqrt{x^2 + z^2 + 1} \right]_{x=0}^1 = \frac{z}{\pi\epsilon_0} \left( (\sqrt{z^2 + 1} - \sqrt{z^2 + 2}) - (\sqrt{z^2} - \sqrt{z^2 + 1}) \right) \\ &= \frac{1}{\pi\epsilon_0} z \left( 2\sqrt{z^2 + 1} - \sqrt{z^2 + 2} - |z| \right). \end{aligned}$$

**9:** A loop of wire follows the line segment  $L = \{(x, y, z) \mid -1 \leq x \leq 1, y = z = 0\}$  and the semicircle  $C = \{(x, y, z) \mid x^2 + y^2 = 1, y \geq 0, z = 0\}$ , and it carries a constant current  $I$ . Find the magnetic field at all points along the  $z$ -axis.

Solution: First we find the contribution to the magnetic field made by the straight portion of the wire. For  $r = (0, 0, z)$  and  $s = \alpha(t) = (t, 0, 0)$  for  $-1 \leq t \leq 1$  we have

$$dB(r) = \frac{\mu_0}{4\pi} \cdot \frac{dI \times (r - s)}{|r - s|^3} = \frac{\mu_0 I}{4\pi} \frac{\alpha'(t) \times (r - s)}{|r - s|^3} dt = \frac{\mu_0}{4\pi} \cdot \frac{(1, 0, 0) \times (-t, 0, z)}{(t^2 + z^2)^{3/2}} dt = \frac{\mu_0 I}{4\pi} \cdot \frac{(0, -z, 0)}{(t^2 + z^2)^{3/2}} dt.$$

Making the substitution  $z \tan \theta = dt$  so that  $z \sec \theta = \sqrt{t^2 + z^2}$  and  $z \sec^2 \theta d\theta = dt$ , the  $y$ -component of this contribution is

$$\begin{aligned} B_y(r) &= \int_{t=-1}^1 \frac{\mu_0}{4\pi} \cdot \frac{-z}{(t^2 + z^2)^{3/2}} dt = -\frac{\mu_0 I}{4\pi} \int_{t=-1}^1 \frac{z \cdot z \sec^2 \theta d\theta}{(z \sec \theta)^{3/2}} = -\frac{\mu_0 I}{4\pi} \int_{t=-1}^1 \frac{1}{z} \cos \theta d\theta \\ &= -\frac{\mu_0 I}{4\pi z} \left[ \sin \theta \right]_{t=-1}^1 = -\frac{\mu_0 I}{4\pi z} \left[ \frac{t}{\sqrt{t^2 + z^2}} \right]_{t=-1}^1 = -\frac{\mu_0 I}{2\pi z} \frac{1}{\sqrt{1 + z^2}}. \end{aligned}$$

Next we find the contribution made by the semicircular portion of the wire. For  $r = (0, 0, z)$  and  $s = \alpha(t) = (\cos t, \sin t, 0)$  for  $0 \leq t \leq \pi$  we have

$$dB(r) = \frac{\mu_0 I}{4\pi} \cdot \frac{\alpha'(t) \times (r - s)}{|r - s|^3} = \frac{\mu_0 I}{4\pi} \cdot \frac{(-\sin t, \cos t, 0) \times (-\cos t, \sin t, z)}{(\cos^2 t + \sin^2 t + z^2)^{3/2}} dt = \frac{\mu_0 I}{4\pi} \cdot \frac{(z \cos t, z \sin t, 1)}{(1 + z^2)^{3/2}} dt.$$

We calculate each component of this contribution: we have

$$\begin{aligned} B_x(r) &= \frac{\mu_0 I}{4\pi} \cdot \frac{z}{1 + z^2} \int_0^\pi \cos t dt = 0, \\ B_y(r) &= \frac{\mu_0 I}{4\pi} \cdot \frac{z}{1 + z^2} \int_0^\pi \sin t dt = \frac{\mu_0 I}{2\pi} \cdot \frac{z}{1 + z^2}, \\ B_z(r) &= \frac{\mu_0 I}{4\pi} \cdot \frac{1}{1 + z^2} \int_{t=0}^\pi 1 dt = \frac{\mu_0 I}{4} \cdot \frac{1}{1 + z^2}. \end{aligned}$$

Thus the total magnetic field induced by the loop of wire is

$$B(r) = \left( 0, \frac{\mu_0 I}{2\pi} \left( \frac{z}{1 + z^2} - \frac{1}{z\sqrt{1 + z^2}} \right), \frac{\mu_0 I}{4} \cdot \frac{1}{1 + z^2} \right) = \frac{\mu_0 I}{4\pi z(1 + z^2)} \left( 0, 2(z^2 - \sqrt{1 + z^2}), \pi z \right).$$

**10:** A static charge distribution in space produces an electric field given by

$$E(x, y, z) = \sqrt{x^2 + y^2 + z^2} (x, y, z).$$

(a) Find the charge density  $\rho = \rho(x, y, z)$ .

Solution: We have

$$\frac{\partial}{\partial x} (x \sqrt{x^2 + y^2 + z^2}) = \sqrt{x^2 + y^2 + z^2} + x \cdot \frac{x}{\sqrt{x^2 + y^2 + z^2}} = \frac{2x^2 + y^2 + z^2}{\sqrt{x^2 + y^2 + z^2}}$$

and similarly  $\frac{\partial}{\partial y} (y \sqrt{x^2 + y^2 + z^2}) = \frac{x^2 + 2y^2 + z^2}{\sqrt{x^2 + y^2 + z^2}}$  and  $\frac{\partial}{\partial z} (z \sqrt{x^2 + y^2 + z^2}) = \frac{x^2 + y^2 + 2z^2}{\sqrt{x^2 + y^2 + z^2}}$  so, by Maxwell's first equations (or Gauss' Law), the density is

$$\rho = \epsilon_0 \nabla \cdot E = \epsilon_0 \left( \frac{2x^2 + y^2 + z^2}{\sqrt{x^2 + y^2 + z^2}} + \frac{x^2 + 2y^2 + z^2}{\sqrt{x^2 + y^2 + z^2}} + \frac{x^2 + y^2 + 2z^2}{\sqrt{x^2 + y^2 + z^2}} \right) = \frac{4\epsilon_0(x^2 + y^2 + z^2)}{\sqrt{x^2 + y^2 + z^2}} = 4\epsilon_0 \sqrt{x^2 + y^2 + z^2}.$$

(b) Find a scalar potential for  $E$ .

Solution: By inspection, if we let  $g(x) = \frac{1}{3}(x^2 + y^2 + z^2)^{3/2}$  then we have  $\nabla g = F$ .

(c) Find the work done by  $E$  on an object of unit charge which moves along the curve given parametrically by  $(x, y, z) = \alpha(t) = (t, t + 1, t^2 + t)$  for  $1 \leq t \leq 2$ .

Solution: By the Conservative Fields Theorem, the work is

$$\begin{aligned} W &= \int_{\alpha} F \cdot T dL = \int_{\alpha} (\nabla g) \cdot T dL = g(\alpha(2)) - g(\alpha(1)) \\ &= g(2, 3, 6) - g(1, 2, 2) = \frac{1}{3} 49^{3/2} - \frac{1}{3} 9^{3/2} = \frac{343 - 27}{3} = \frac{356}{3}. \end{aligned}$$

**11:** A steady current distribution in space produces a magnetic field given by

$$B(x, y, z) = (2z - 2y, 2x - z, y - 2x).$$

(a) Find the current density  $J = J(x, y, z)$ .

Solution: By Maxwell's fourth equation, the current density is

$$J = \frac{1}{\mu_0} \nabla \times B = \frac{1}{\mu_0} (1+1, 2+2, 2+2) = \frac{1}{\mu_0} (3, 4, 4).$$

(b) Find a vector potential for  $B$ .

Solution: By inspection, if we let  $A = (2xy + 2xz, xy + 2yz, xz + 2yz)$  then we have  $\nabla \times A = B$ .

(c) Find the flux of  $B$  upwards through  $S = \{(x, y, z) | x^2 + (y-1)^2 + z^2 = 1, z \geq 0\}$ .

Solution: Let  $D$  be the half-ball  $D = \{(x, y, z) | x^2 + (y-1)^2 + z^2 \leq 1, z \geq 0\}$ . The boundary surface of  $D$  consists of the given surface  $S$  together with the flat disc  $T = \{(x, y, z) | x^2 + (y-1)^2 \leq 1, z = 0\}$ . Since  $\nabla \cdot B = 0$ , by the Divergence Theorem we have

$$\iint_S B \cdot N \, dA + \iint_T B \cdot N \, dA = \iiint_D \nabla \cdot B \, dV = 0$$

where we use the upwards flux through  $S$  and the downwards flux through  $T$ . Thus the required flux is

$$\begin{aligned} \Phi &= \iint_S B \cdot N \, dA = - \iint_T B \cdot N \, dA = - \iint_T (2z - 2y, 2x - z, y - 2x) \cdot (0, 0, -1) \, dA \\ &= \iint_T y - 2x \, dA = \iint_T y \, dA = \frac{1}{2} \text{Volume}(C) = \frac{1}{2}(2\pi) = \pi, \end{aligned}$$

where we noticed that  $\iint_T x \, dA = 0$  by symmetry, and then we found the value of  $\iint_T y \, dA$  by inspection by noticing that this integral measures the volume of the solid given by  $(x, y) \in T, 0 \leq z \leq y$ , which is equal half of the volume of the cylinder  $C = \{(x, y, z) | x^2 + (y-1)^2 \leq 1, 0 \leq z \leq 1\}$ .

**12:** (a) Show that a steady current density  $J = J(x, y, z)$  must satisfy the requirement that whenever  $S$  is the boundary surface of a bounded region in  $\mathbf{R}^3$  we have  $\iint_S J \cdot N \, dA = 0$ .

Solution: Let  $S$  be the boundary surface of the region  $D$ . Then by the Divergence Theorem and Maxwell's fourth equation we have

$$\iint_S J \cdot N \, dA = \iiint_D \nabla \cdot J \, dV = \iiint_D \nabla \cdot (\nabla \times \frac{1}{\mu_0} B) \, dV = \frac{1}{\mu_0} \iiint_D \nabla \cdot (\nabla \times B) \, dV = 0$$

since we have  $\nabla \cdot (\nabla \times B) = 0$  (indeed  $\nabla \cdot (\nabla \times F) = 0$  for every smooth vector field  $F$ ).

(b) Given  $k > 0$ , find  $\omega > 0$  such that the fields  $E$  and  $B$  given by

$$E(x, y, z, t) = (\omega \sin(kz - \omega t), 0, 0)$$

$$B(x, y, z, t) = (0, k \sin(kz - \omega t), 0)$$

are solutions to Maxwell's Equations in a vacuum.

Solution: For the given fields  $E$  and  $B$  we have

$$\nabla \cdot E = 0$$

$$\nabla \cdot B = 0$$

$$\nabla \times E = (0, k\omega \cos(kz - \omega t), 0)$$

$$\nabla \times B = (-k^2 \cos(kz - \omega t), 0, 0)$$

$$\frac{\partial E}{\partial t} = (-\omega^2 \cos(kz - \omega t), 0, 0)$$

$$\frac{\partial B}{\partial t} = (0, -k\omega \cos(kz - \omega t), 0)$$

Thus the first three of Maxwell's equations, namely  $\nabla \cdot E = 0$ ,  $\nabla \times E = -\frac{\partial B}{\partial t}$  and  $\nabla \cdot B = 0$ , are all satisfied, and Maxwell's fourth equation  $\nabla \times B = \epsilon_0 \mu_0 \frac{\partial E}{\partial t}$  is satisfied when  $k^2 = \epsilon_0 \mu_0 \omega^2$ , that is when  $\omega = k/\sqrt{\epsilon_0 \mu_0}$ .

13: Solve each of the following for  $z \in \mathbf{C}$ . Express your solutions in Cartesian form.

(a)  $z^6 + 8 = 0$

Solution: For  $z = re^{i\theta}$  we have

$$\begin{aligned} z^6 + 8 = 0 &\iff (re^{i\theta})^6 = -8 \iff r^6 e^{i6\theta} = 8e^{i\pi} \iff (r^6 = 8 \text{ and } 6\theta = \pi + 2\pi k \text{ for some } k \in \mathbf{Z}) \\ &\iff (r = \sqrt{2} \text{ and } \theta = \frac{\pi}{6} + \frac{k\pi}{3} \text{ for some } k \in \{0, 1, 2, 3, 4, 5\}) \\ &\iff z = re^{i\theta} \in \{\sqrt{2}e^{i\pi/6}, \sqrt{2}e^{i\pi/2}, \sqrt{2}e^{i5\pi/6}, \sqrt{2}e^{i7\pi/6}, \sqrt{2}e^{i3\pi/2}, \sqrt{2}e^{i11\pi/6}\}. \end{aligned}$$

In Cartesian form, the 6 solutions are  $z \in \{\pm \frac{\sqrt{3}}{2} \pm \frac{1}{\sqrt{2}}i, \pm \sqrt{2}i\}$ .

(b)  $iz^2 + (2+i)z + (7+i) = 0$

Solution: Using the Quadratic Formula, and noting that  $(4-3i)^2 = (7-24i)$ , the solutions are given by

$$z = \frac{-(2+i) \pm \sqrt{(3+4i) - 4i(7+i)}}{2i} = \frac{-(2+i) \pm \sqrt{7-24i}}{2i} = \frac{-(2+i) \pm (4-3i)}{2i}$$

that is  $z \in \{\frac{2-4i}{2i}, \frac{-6+2i}{2i}\} = \{-i(1-2i), -i(-3+i)\} = \{-2-i, 1+3i\}$ .

(c)  $z^3 + 6z + 2 = 0$  (hint: let  $z = w - \frac{2}{w}$ ).

Solution: Let  $z = w - \frac{2}{w}$ . Then

$$\begin{aligned} z^3 + 6z + 2 = 0 &\iff \left(w - \frac{2}{w}\right)^3 + 6\left(w - \frac{2}{w}\right) + 2 = 0 \iff w^3 - \frac{8}{w^3} + 2 = 0 \\ &\iff w^6 + 2w^3 - 8 = 0 \iff (w^3 + 4)(w^3 - 2) = 0 \iff w^3 = 2 \text{ or } w^3 = -4. \end{aligned}$$

Consider the case that  $w^3 = 2$ . Then  $w \in \{\sqrt[3]{2}, \sqrt[3]{2}e^{i2\pi/3}, \sqrt[3]{2}e^{-i2\pi/3}\}$  and so

$$\begin{aligned} z = w - \frac{2}{w} &\in \left\{ \sqrt[3]{2} - \sqrt[3]{4}, \sqrt[3]{2}e^{i2\pi/3} - \sqrt[3]{4}e^{-i2\pi/3}, \sqrt[3]{2}e^{-i2\pi/3} - \sqrt[3]{4}e^{i2\pi/3} \right\} \\ &= \left\{ \sqrt[3]{2} - \sqrt[3]{4}, \sqrt[3]{2} \left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right) - \sqrt[3]{4} \left(-\frac{1}{2} - \frac{\sqrt{3}}{2}i\right), \sqrt[3]{2} \left(-\frac{1}{2} - \frac{\sqrt{3}}{2}i\right) - \sqrt[3]{4} \left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right) \right\} \\ &= \left\{ -(\sqrt[3]{4} - \sqrt[3]{2}), \frac{1}{2}(\sqrt[3]{4} - \sqrt[3]{2}) \pm \frac{\sqrt{3}}{2}(\sqrt[3]{4} - \sqrt[3]{2})i \right\} \end{aligned}$$

Since a cubic polynomial has at most 3 roots, we have found all 3 solutions (so we do not need to consider the case that  $w^3 = -4$ ).

14: (a) Use the formula  $\tanh z = \frac{e^z - e^{-z}}{e^z + e^{-z}}$  to show that  $\tanh^{-1} z = \frac{1}{2} \log \left( \frac{1+z}{1-z} \right)$ .

Solution: We have

$$\begin{aligned} z = \tanh w &\iff z = \frac{e^w - e^{-w}}{e^w + e^{-w}} \iff ze^w + ze^{-w} = e^w - e^{-w} \iff ze^{2w} + z = e^{2w} - 1 \\ &\iff z + 1 = (1-z)e^{2w} \iff e^{2w} = \frac{1+z}{1-z} \iff 2w = \log \frac{1+z}{1-z} \iff w = \frac{1}{2} \log \frac{1+z}{1-z}. \end{aligned}$$

(b) Solve  $\tanh z = e^{i\pi/3}$ .

Solution: By Part (a), we have  $\tanh z = e^{i\pi/3}$  when

$$\begin{aligned} z = \tanh^{-1}(e^{i\pi/3}) &= \tanh^{-1}\left(\frac{1}{2} + \frac{\sqrt{3}}{2}i\right) = \frac{1}{2} \log \frac{1+\frac{1}{2}+\frac{\sqrt{3}}{2}i}{1-\frac{1}{2}-\frac{\sqrt{3}}{2}i} = \frac{1}{2} \log \frac{3+\sqrt{3}i}{1-\sqrt{3}i} = \frac{1}{2} \log \frac{(3+\sqrt{3}i)(1+\sqrt{3}i)}{4} \\ &= \frac{1}{2} \log \frac{4\sqrt{3}i}{4} = \frac{1}{2} \log (\sqrt{3}e^{i\pi/2}) = \frac{1}{2} \left( \ln \sqrt{3} + i\left(\frac{\pi}{2} + 2\pi k\right) \right) = \frac{1}{4} \ln 3 + i\left(\frac{\pi}{4} + \pi k\right) \text{ for some } k \in \mathbf{Z}. \end{aligned}$$

(c) Solve  $\sinh z = \frac{e^z}{1+i}$ .

Solution: We have

$$\begin{aligned} \sinh z = \frac{e^z}{1+i} &\iff \frac{e^z - e^{-z}}{2} = \frac{e^z}{1+i} \iff (1+i)(e^z - e^{-z}) = 2e^z \iff (-1+i)e^z = (1+i)e^{-z} \\ &\iff e^{2z} = \frac{1+i}{-1+i} = \frac{-2i}{2} = -i = e^{-i\pi/2} \iff 2z = \log(-i) = \log(e^{-i\pi/2}) = i\left(-\frac{\pi}{2} + 2\pi k\right) \\ &\iff z = i\left(-\frac{\pi}{4} + k\pi\right) \text{ for some } k \in \mathbf{Z}. \end{aligned}$$

15: (a) Find the image under  $w = f(z) = z^2$  of the line  $x = c$  where  $c > 0$ .

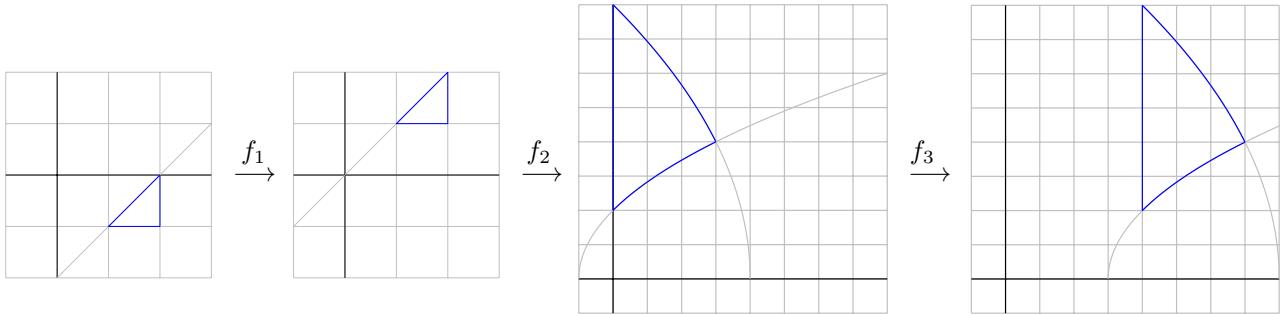
Solution: The line  $x = c$  is given by  $z = c + it$ . It is mapped to the curve  $w = z^2 = (c+it)^2 = (c^2-t^2) + i(2ct)$ , that is the curve given by  $u = c^2 - t^2$  (1) and  $v = 2ct$  (2). From (2) we get  $t = \frac{v}{2c}$  then from (1) we get  $u = c^2 - \left(\frac{v}{2c}\right)^2$ . Thus the image is the parabola  $u = c^2 - \frac{1}{4c^2}v^2$ , that is the parabola with vertex on the positive real axis at  $w = c^2$  which opens to the left passing through the points  $w = \pm i2c^2$ .

(b) Show that  $f(z) = z^2$  is equal to the composite  $f = h \circ f \circ g$  where  $g(z) = e^{-i\theta}z$  and  $h(z) = e^{i2\theta}z$ , and deduce that the image under  $w = z^2$  of the line whose nearest point to the origin is the point  $a = re^{i\theta}$  is equal to the parabola with vertex at  $a^2 = r^2e^{i2\theta}$  which passes through the points  $\pm i2a^2$ .

Solution: Since  $h(f(g(z))) = h(f(e^{-i\theta}z)) = h((e^{-i\theta}z)^2) = h(e^{i2\theta}z^2) = e^{i2\theta}e^{-i2\theta}z^2 = z^2 = f(z)$ , it follows that  $f = h \circ f \circ g$ . The line whose nearest point to 0 is the point  $a = re^{i\theta}$  is sent by the map  $g$  (which rotates clockwise by  $\theta$ ) to the line  $x = r$ . By Part (a), the map  $x = r$  is then sent by the map  $f$  to the parabola with vertex at  $r^2$  which passes through  $\pm i2r^2$ . This parabola is then sent by the map  $h$  (which rotates counterclockwise by  $2\theta$ ) to the parabola with vertex at  $r^2e^{i2\theta} = a^2$  which passes through the points  $\pm i2r^2e^{i2\theta} = \pm i2a^2$ , as required.

(c) Find the image under  $f(z) = z^2 + 4iz$  of the triangle with vertices at  $2, 1-i$  and  $2-i$ .

Solution: Let  $a = 2$ ,  $b = 1-i$  and  $c = 2-i$ . Note that  $f(z) = z^2 + 4iz = (z+2i)^2 + 4 = f_3(f_2(f_1(z)))$  where  $f_1(z) = z+2i$ ,  $f_2(z_1) = z_1^2$  and  $f_3(z_2) = z_2 + 4$ . The first map  $f_1(z) = z+2i$  translates the given triangle up 2 units to the triangle with vertices at  $a_1 = 2+2i$ ,  $b_1 = 1+i$  and  $c_1 = 2+i$ . The second map  $f_2(z_1) = z_1^2$  sends the three vertices to  $a_2 = a_1^2 = 8i$ ,  $b_2 = b_1^2 = 2i$  and  $c_2 = c_1^2 = 3+4i$ . The map  $f_2(z) = z^2$  sends the ray from the origin in the direction of  $e^{i\theta}$  to the ray through the origin in the direction of  $e^{i2\theta}$ , and it sends the line whose nearest point to the origin is the point  $0 \neq u \in \mathbf{C}$  to the parabola with vertex at the point  $u^2$  which passes through the points  $u^2$  and  $\pm 2iu^2$ . Since the line segment  $a_1b_1$  lies on the ray through the origin in the direction of  $e^{i\pi/4}$ , it is mapped to the line segment  $a_2b_2$  which lies along the positive imaginary axis. The line segment  $b_1c_1$  lies along the line whose nearest point to the origin is  $i$ . This line is mapped by  $f_2$  to the parabola with vertex at  $i^2 = -1$  which passes through the points  $-1$  and  $\pm 2i$ . Thus the line segment  $b_1c_1$  is mapped by  $f_2$  to the arc along this parabola from  $b_2 = 2i$  to  $c_2 = 3+4i$ . Similarly, the line segment  $c_1a_1$  lies on the line whose nearest point to the origin is  $2$ , and it is mapped by  $f_2$  to the arc along the parabola with vertex at  $4$  from the point  $b_2 = 3+4i$  to the point  $a_2 = 8i$ . Finally, the map  $f_3$  translates the image 4 units to the right. The images are shown below.



16: Let  $f(re^{i\theta}) = r^{2/3}e^{i2\theta/3}$  for  $r > 0$  and  $0 < \theta < 2\pi$ . Find  $f'(-2+2i)$  and  $f''(-2+2i)$ . Express your answers in Cartesian form.

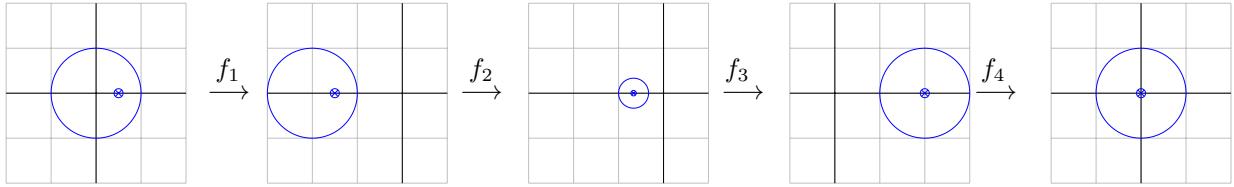
Solution: Note that  $f(z)^3 = z^2$ . Differentiate both sides, using the Chain Rule on the left side, to get  $3f(z)^2f'(z) = 2z$  and so  $f'(z) = \frac{2z}{3f(z)^2}$  and  $f''(z) = \frac{2}{3} \cdot \frac{f(z)^2 - 2zf(z)f'(z)}{f(z)^4} = \frac{2}{3} \cdot \frac{f(z) - 2zf'(z)}{f(z)^3}$ . When  $z = -2+2i = 2\sqrt{2}e^{i3\pi/4}$  we have  $f(z) = 2e^{i\pi/2} = 2i$  and so

$$f'(z) = \frac{2z}{3f(z)^2} = \frac{2(-2+2i)}{3(2i)^2} = \frac{1-i}{3}, \text{ and}$$

$$f''(z) = \frac{2}{3} \cdot \frac{f(z) - 2zf'(z)}{f(z)^3} = \frac{2}{3} \cdot \frac{(2i) - 2(-2+2i)\left(\frac{1-i}{3}\right)}{(2i)^3} = \frac{2}{3} \cdot \frac{6i - 2(4i)}{3(-8i)} = \frac{1}{36}.$$

17: Find the image under the map  $f(z) = \frac{2z-1}{2-z}$  of the set  $U = \{z \in \mathbf{C} \mid |z| < 1, z \neq \frac{1}{2}\}$ .

Solution: Note that  $f(z) = \frac{2z-1}{2-z} = \frac{2z-4+3}{2-z} = -2 - \frac{3}{z-2} = f_4(f_3(f_2(f_1(z))))$  where  $f_1(z) = z-2$ ,  $f_2(z_1) = \frac{1}{z_1}$ ,  $f_3(z_2) = -3z_2$  and  $f_4(z_3) = z_3 - 2$ . The map  $f_1$  translates 2 units to the left and sends  $U$  to the set  $U_1 = \{z_1 \mid |z_1 + 2| < 1, z_1 \neq -\frac{3}{2}\}$ . Recall from a homework problem (Assignment 9, Problem 6) that the map  $f_2(z_1) = \frac{1}{z_1}$  sends the circle with diameter  $a, ta$  to the circle with diameter  $\frac{1}{a}, \frac{1}{ta}$ , so it sends the circle with diameter  $-1, -3$  to the circle with diameter  $-1, -\frac{1}{3}$  (which is centered at  $-\frac{2}{3}$  and has radius  $\frac{1}{3}$ , and hence it sends the set  $U_1$  to the set  $U_2 = \{z_2 \mid |z_2 + \frac{2}{3}| < \frac{1}{3}, z_2 \neq -\frac{2}{3}\}$ . The map  $f_3(z_2) = -3z_2$  rotates about the origin by the angle  $\pi$  and scales by the factor 3, and so it sends  $U_2$  to the set  $U_3 = \{z_2 \mid |z_2 - 2| < 1, z_2 \neq 2\}$ . Finally, the map  $f_4$  translates 2 units to the left sending  $U_3$  to the set  $V = \{w \mid |w| < 1, w \neq 0\}$ . The images are shown below.



18: (a) Find  $\int_{\alpha} z(3z-4) dz$  where  $\alpha(t) = t+i$  for  $0 \leq t \leq 1$ .

Solution: Using the Fundamental Theorem of Calculus we have

$$\begin{aligned} \int_{\alpha} f = \int_{\alpha} 3z^2 - 4z \, dz &= \left[ z^3 - 2z \right]_{\alpha(0)}^{\alpha(1)} = \left[ z^3 - 2z^2 \right]_i^{1+i} = (1+i)^3 - 2(1+i)^2 - (i)^3 + 2(i)^2 \\ &= (1+i)(2i) - 2(2i) + i - 2 = -4 - i. \end{aligned}$$

(b) Find  $\int_{\alpha} f(z) dz$  where  $f(re^{i\theta}) = r^{1/3}e^{i\theta/3}$  for  $r > 0$  and  $-\pi < \theta < \pi$  and  $\alpha(t) = 2+it$  for  $-2 \leq t \leq 2$ .

Solution: Since  $f(z)$  is a branch of  $z^{1/3}$ , we expect that an antiderivative  $g(z)$  is given by a branch of  $\frac{3}{4}z^{4/3}$ , but let us take some care in deciding exactly which branch to use. Let  $U = \{re^{i\theta} \mid r > 0, -\frac{3\pi}{4} < \theta < \frac{3\pi}{4}\}$  and note that when  $-\frac{3\pi}{4} < \theta < \frac{3\pi}{4}$  we have  $-\pi < \frac{4\theta}{3} < \pi$ . Define  $g : U \rightarrow \mathbf{C}$  by

$$g(re^{i\theta}) = \frac{3}{4}r^{4/3}e^{i4\theta/3} \text{ for } r > 0 \text{ and } -\frac{3\pi}{4} < \theta < \frac{3\pi}{4}.$$

Note that  $g(z)^3 = \frac{27}{64}z^4$  so that  $3g(z)^2g'(z) = \frac{27}{16}z^3$ , that is  $g'(z) = 9z^3/16g(z)^2$ . For  $z = re^{i\theta}$  we have

$$g'(z) = \frac{9z^3}{16g(z)^2} = \frac{9r^3e^{i3\theta}}{16(\frac{3}{4}r^{4/3}e^{i4\theta/3})^2} = \frac{r^3e^{i3\theta}}{r^{8/3}e^{i8\theta/3}} = r^{1/3}e^{i\theta/3} = f(z)$$

and so  $g$  is indeed an antiderivative of  $f$  in the set  $U$ . By the Fundamental Theorem of Calculus,

$$\begin{aligned} \int_{\alpha} f &= \left[ g(z) \right]_{\alpha(-2)}^{\alpha(2)} = \left[ g(z) \right]_{-2-2i}^{2+2i} = g(2+2i) - g(2-2i) = g(2\sqrt{2}e^{i\pi/4}) - g(2\sqrt{2}e^{-i\pi/4}) \\ &= \frac{3}{4} \cdot 4e^{i\pi/3} - \frac{3}{4} \cdot 4e^{-i\pi/3} = 3(e^{i\pi/3} - e^{-i\pi/3}) = 3 \cdot 2i \sin \frac{\pi}{3} = 3\sqrt{3}i. \end{aligned}$$

19: Find  $\int_{\alpha} \frac{4 dz}{(z+1)^2(z^2+1)}$  where  $\alpha(t) = 1 + t(-3+i)$  for  $0 \leq t \leq 1$ .

Solution: To get  $\frac{A}{z+1} + \frac{B}{(z+1)^2} + \frac{C}{z+i} + \frac{D}{z-i} = \frac{4}{(z+1)^2(z^2+1)}$  we need

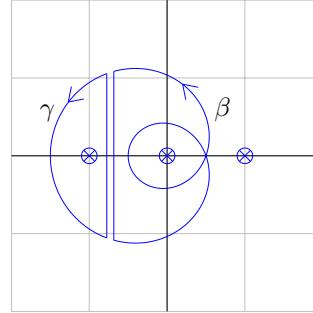
$$A(z+1)(z^2+1) + B(z^2+1) + C(z+1)^2(z-i) + D(z+1)^2(z+i) = 4.$$

Putting in  $z = -1$  gives  $2B = 4$  so  $B = 2$ . Putting in  $z = i$  gives  $-4D = 4$  so  $D = -1$ . Putting in  $z = -i$  gives  $-4C = 4$  so  $C = -1$ . Equating coefficients of  $z^3$  gives  $A + C + D = 0$  so  $A = -C - D = 2$ . By the Fundamental Theorem of Calculus and the Winding Number Theorem (it helps to make a sketch of  $\alpha(t)$ , which is the line segment from  $\alpha(0) = 1$  to  $\alpha(1) = -2+i$  to determine the values of  $r(0)$ ,  $r(1)$ ,  $\theta(0)$  and  $\theta(1)$  when using the Winding Number Theorem), we have

$$\begin{aligned} \int_{\alpha} \frac{4 dz}{(z+1)^2(z^2+1)} &= \int_{\alpha} \frac{2}{z+1} + \frac{2}{(z+1)^2} - \frac{1}{z+i} - \frac{1}{z-i} dz \\ &= 2 \left( \ln \frac{\sqrt{2}}{2} + i \frac{3\pi}{4} \right) + 2 \left[ \frac{-1}{z+1} \right]_1^{-2+i} - \left( \ln \frac{2\sqrt{2}}{\sqrt{2}} + i \frac{\pi}{2} \right) - \left( \ln \frac{2}{\sqrt{2}} - i \frac{3\pi}{4} \right) \\ &= \left( -\ln 2 + i \frac{3\pi}{2} \right) + 2 \left( \frac{-1}{-1+i} + \frac{1}{2} \right) - \left( \ln 2 + i \frac{\pi}{2} \right) - \left( \frac{1}{2} \ln 2 - i \frac{3\pi}{4} \right) \\ &= -\frac{5}{2} \ln 2 + i \frac{7\pi}{4} + 2 \left( \frac{1+i}{2} + \frac{1}{2} \right) = \left( 2 - \frac{5 \ln 2}{2} \right) + i \left( 1 + \frac{7\pi}{4} \right). \end{aligned}$$

20: Find  $\int_{\alpha} \frac{\log(z-1)}{z(z+1)^3} dz$  where  $\alpha(t) = \frac{1}{2} + \frac{1}{2}(1-3\cos t)e^{it}$  for  $0 \leq t \leq 2\pi$ , as shown below, and  $\log(w)$  is given by  $\log(r e^{i\theta}) = \ln(r) + i\theta$  for  $r > 0$  and  $0 < \theta < 2\pi$ .

Solution: We decompose  $\alpha$ , say along the line  $\operatorname{Re}(z) = -\frac{3}{4}$ , into two loops  $\beta$  and  $\gamma$  so that  $\beta$  winds twice around  $z = 0$  (but does not surround  $z = -1$ ) and  $\gamma$  winds once around  $z = -1$  (but does not surround  $z = 0$ ), as shown below.



By Cauchy's Integral Formulas we have

$$\int_{\alpha} \frac{\log(z-1)}{z(z+1)^3} dz = \int_{\beta} \frac{F(z)}{z} dz + \int_{\gamma} \frac{G(z)}{(z+1)^3} dz = 2\pi i \cdot 2 \cdot F(0) + 2\pi i \cdot 1 \cdot \frac{G''(-1)}{2!}$$

where  $F(z) = \frac{\log(z-1)}{(z+1)^3}$  and  $G(z) = \frac{\log(z-1)}{z}$ . Note that we have  $F(0) = \log(-1) = i\pi$  and we have

$$G'(z) = \frac{\frac{z}{z-1} - \log(z-1)}{z^2} - \frac{1}{z^2-z} - \frac{\log(z-1)}{z^2} \text{ and } G''(z) = \frac{-(2z-1)}{(z^2-z)^2} - \frac{\frac{z^2}{z-1} - 2z \log(z-1)}{z^4} \text{ so that } G''(-1) = \frac{3}{4} - \left( -\frac{1}{2} + 2 \log(-2) \right) = \frac{5}{4} - 2(\ln 2 + i\pi). \text{ Thus}$$

$$\int_{\alpha} \frac{\log(z-1)}{z(z+1)^3} dz = 4\pi i (i\pi) + \pi i \left( \frac{5}{4} - 2 \ln 2 - i 2\pi \right) = -2\pi^2 + i \pi \left( \frac{5}{4} - 2 \ln 2 \right).$$