

ECE 206 Advanced Calculus 2, Review Problems

1: Find an implicit equation, of the form $ax + by + cz = d$, for the tangent plane to the surface given parametrically by $(x, y, z) = \sigma(s, t) = (\sqrt{s}, (2-s)\cos t, (2-s)\sin t)$ for $0 \leq s \leq 5$ and $0 \leq t \leq 2\pi$ at the point where $(s, t) = (4, \frac{\pi}{6})$.

2: Let $(x, y) = f(r, \theta) = (r \cos \theta, r \sin \theta)$, and $z = g(x, y)$, and let $h(r, \theta) = g(f(r, \theta))$. Suppose that $h(r, \theta) = r^2 e^{\sqrt{3}(\theta - \frac{\pi}{6})}$. Use the Chain Rule to find $\nabla g(\sqrt{3}, 1)$.

3: Find the total charge in the solid tetrahedron with vertices at $(0, 1, 0)$, $(1, 0, 0)$, $(3, 1, 0)$ and $(3, 1, 3)$ where the charge density (charge per unit volume) is given by $\rho(x, y, z) = y$.

4: Find the total mass on the surface $S = \{(x, y, z) | x^2 + y^2 \leq 3, 2z = x^2 + y^2\}$ with density (mass per unit area) $\rho(x, y, z) = x^2$.

5: Let F be a force field given by $F(x, y, z) = (x + y, x - y, z)$ and let C be the curve given parametrically by $(x, y, z) = \alpha(t) = (3t^2 + 1, 3t^2 - 1, 2t^3)$ for $0 \leq t \leq 1$.

- Find the length of the curve C .
- Find work done by the force F acting on a small object which moves along C .

6: A fluid flows in space with velocity field $V(x, y, z) = (yz, xz, z^2)$. Find the rate (volume per unit time) at which the fluid flows upwards through the surface

$$S = \{(x, y, z) | (x - 1)^2 + y^2 \leq 1, z = \sqrt{x^2 + y^2}\}.$$
 The surface S can be given parametrically by $(x, y, z) = \sigma(r, \theta) = (r \cos \theta, r \sin \theta, r)$ with $-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$ and $0 \leq r \leq 2 \cos \theta$.

7: Find the flux of $F(x, y, z) = (x^2 + \sqrt{z}, y^2 + \sqrt{x}, 3 + x)$ outwards through the surface $S = \{(x, y, z) | x^2 + y^2 + (z - 1)^2 = 4, z \geq 0\}$.

8: The square $S = \{(x, y, z) | -1 \leq x \leq 1, -1 \leq y \leq 1, z = 0\}$ carries a charge distribution with charge density (charge per unit area) $\rho(x, y) = |xy|$. Find the electric field at all points along the z -axis.

9: A loop of wire follows the line segment $L = \{(x, y, z) | -1 \leq x \leq 1, y = z = 0\}$ and the semicircle $C = \{(x, y, z) | x^2 + y^2 = 1, y \geq 0, z = 0\}$, and it carries a constant current I . Find the magnetic field at all points along the z -axis.

10: A static charge distribution in space produces an electric field given by

$$E(x, y, z) = \sqrt{x^2 + y^2 + z^2} (x, y, z).$$

- Find the charge density $\rho = \rho(x, y, z)$.
- Find a scalar potential for E .
- Find the work done by E on an object of unit charge which moves along the curve given parametrically by $(x, y, z) = \alpha(t) = (t, t + 1, t^2 + t)$ for $1 \leq t \leq 2$.

11: A steady current distribution in space produces a magnetic field given by

$$B(x, y, z) = (2z - 2y, 2x - z, y - 2x).$$

- (a) Find the current density $J = J(x, y, z)$.
- (b) Find a vector potential for B .
- (c) Find the flux of B upwards through $S = \{(x, y, z) | x^2 + (y - 1)^2 + z^2 = 1, z \geq 0\}$.

12: (a) Show that a steady current density $J = J(x, y, z)$ must satisfy the requirement that whenever S is the boundary surface of a bounded region in \mathbf{R}^3 we have $\iint_S J \cdot N \, dA = 0$.

- (b) Given $k > 0$, find $\omega > 0$ such that the fields E and B given by

$$E(x, y, z, t) = (\omega \sin(kz - \omega t), 0, 0)$$

$$B(x, y, z, t) = (0, k \sin(kz - \omega t), 0)$$

are solutions to Maxwell's Equations in a vacuum.

13: Solve each of the following for $z \in \mathbf{C}$. Express your solutions in Cartesian form.

- (a) $z^6 + 8 = 0$
- (b) $iz^2 + (2 + i)z + (7 + i) = 0$
- (c) $z^3 + 6z + 2 = 0$ (hint: let $z = w - \frac{2}{w}$).

14: (a) Use the formula $\tanh z = \frac{e^z - e^{-z}}{e^z + e^{-z}}$ to show that $\tanh^{-1} z = \frac{1}{2} \log \left(\frac{1+z}{1-z} \right)$.

- (b) Solve $\tanh z = e^{i\pi/3}$.

$$(c) \text{ Solve } \sinh z = \frac{e^z}{1+i}.$$

15: (a) Find the image under $w = f(z) = z^2$ of the line $x = c$ where $c > 0$.

- (b) Show that $f(z) = z^2$ is equal to the composite $f = h \circ f \circ g$ where $g(z) = e^{-i\theta}z$ and $h(z) = e^{i2\theta}z$, and deduce that the image under $w = z^2$ of the line whose nearest point to the origin is the point $a = re^{i\theta}$ is equal to the parabola with vertex at $a^2 = r^2e^{i2\theta}$ which passes through the points $\pm i2a^2$.

- (c) Find the image under $f(z) = z^2 + 4iz$ of the triangle with vertices at $2, 1 - i$ and $2 - i$.

16: Let $f(r e^{i\theta}) = r^{2/3} e^{i2\theta/3}$ for $r > 0$ and $0 < \theta < 2\pi$. Find $f'(-2 + 2i)$ and $f''(-2 + 2i)$. Express your answers in Cartesian form.

17: Find the image under the map $f(z) = \frac{2z - 1}{2 - z}$ of the set $U = \{z \in \mathbf{C} | |z| < 1, z \neq \frac{1}{2}\}$.

18: (a) Find $\int_{\alpha} z(3z - 4) \, dz$ where $\alpha(t) = t + i$ for $0 \leq t \leq 1$.

- (b) Find $\int_{\alpha} f(z) \, dz$ where $f(r e^{i\theta}) = r^{1/3} e^{i\theta/3}$ for $r > 0$ and $-\pi < \theta < \pi$ and $\alpha(t) = 2 + it$ for $-2 \leq t \leq 2$.

19: Find $\int_{\alpha} \frac{4 \, dz}{(z+1)^2(z^2+1)}$ where $\alpha(t) = 1 + t(-3+i)$ for $0 \leq t \leq 1$.

20: Find $\int_{\alpha} \frac{\log(z-1)}{z(z+1)^3} \, dz$ where $\alpha(t) = \frac{1}{2} + \frac{1}{2}(1-3\cos t)e^{it}$ for $0 \leq t \leq 2\pi$, as shown below, and $\log(w)$ is given by $\log(r e^{i\theta}) = \ln(r) + i\theta$ for $r > 0$ and $0 < \theta < 2\pi$.

