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Chapter 1. Functions

1.1 Definition: Let D ⊆ Rn. We say that f is a function or a map from D to Rm, and
we write f : D ⊆ Rn → Rm, when for every x ∈ D there is a unique point y = f(x) ∈ Rm.
The set D is called the domain of the function f .

The graph of the function f is the set

Graph (f) =
{

(x, f(x))
∣∣x ∈ D} ⊆ Rn+m.

We say the graph of f is defined explicitly by the equation y = f(x).

The null set of f is the set

Null (f) = f−1(0) =
{
x ∈ D

∣∣f(x) = 0
}
⊆ Rn.

More generally, given k ∈ Rm, the level set f−1(k), also called the inverse image of k
under f , is the set

f−1(k) =
{
x ∈ D

∣∣f(x) = k
}
⊆ Rn.

More generally still, given a subset B ⊆ Rn, the inverse image of B under f is the set

f−1(B) =
{
x ∈ D

∣∣f(x) ∈ B
}
⊆ Rn.

We say the level set f−1(k) is defined implicitly by the equation f(x) = k.

The range of f , also called the image of f , is the set

Range (f) = f(D) =
{
f(x))

∣∣x ∈ D} ⊆ Rm.

More generally, given a set A ⊆ D, the image of A under f is the set

f(A) =
{
f(x)

∣∣x ∈ A} ⊆ Rm.

We say the range of f is defined parametrically by the equation y = f(x), and for
x = (x1, x2, · · · , xn) ∈ D, the variables x1, x2, · · · , xn are called the parameters.

1.2 Note: The graph, the level sets and the range of a function f : D ⊆ Rn → Rm

are geometric objects such as points, curves, surfaces, or higher dimensional analogues of
these. In accordance with the above definitions, a curve in R2 or in R3, or a surface in
R3, can be defined explicitly, implicitly, or parametrically.

A curve in R2 can be defined explicitly as the graph of a function f : D ⊆ R → R,
implicitly as the null set (or a level set) of a function g : D ⊆ R2 → R, or parametrically
as the range of a function α : D ⊆ R→ R3.

A curve in R3 can be defined explicitly as the graph of a function f : D ⊆ R → R2,
implicitly as the null set (or a level set) of a function g : D ⊆ R3 → R2, or parametrically
as the range of a map α : D ⊆ R→ R3.

A surface in R3 can be defined explicitly as the graph of a function f : R2 → R, implicitly
as the null set (or as a level set) of a function g : D ⊆ R3 → R, or parametrically as the
range of a function σ : D ⊆ R2 → R3.
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1.3 Example: Consider the unit circle x2 + y2 = 1 in R2. For f : [−1, 1] ⊆ R→ R given
by f(x) =

√
1− x2, the graph of f , that is the curve y = f(x), is equal to the top half of

the unit circle. For g : R2 → R given by g(x, y) = x2 + y2− 1, the null set of g, that is the
curve x2 +y2 = 1, is equal to the entire circle. For α : R→ R given by α(t) = (cos t, sin t),
the range of α, that is the curve (x, y) = α(t), is equal to the entire circle.

1.4 Example: Consider the ellipse which is the intersection of the cylinder x2 + y2 = 1
with the plane z = x + y in R3. The ellipse is given implicitly by the two equations
x2 + y2 = 1 and z = x + y, which can be written in vector form as the single equation(
x2 + y2 − 1 , z − x − y

)
= (0, 0), and so it is the null set of the function g : R3 → R2

given by g(x, y, z) =
(
x2 + y2 − 1 , z − x − y

)
. To obtain a parametric description of the

ellipse, note that to get x2 + y2 = 1 we can take x = cos t and y = sin t, and then to
get z = x + y we can take z = cos t + sin t, and so the ellipse is given parametrically by
(x, y, z) =

(
cos t , sin t , cos t+sin t

)
. In other words, the ellipse is the range of the function

α : R → R3 given by α(t) =
(

cos t , sin t , cos t + sin t
)
. To obtain an explicit description

for half of the ellipse, note that the top half of the circle x2+y2 = 1 is given by y =
√

1− x2
and then to get z = x+y we need z = x+

√
1− x2, and so the right half of the ellipse (when

the y-axis points to the right) is given explicitly by (y, z) =
(√

1− x2 , x +
√

1− x2
)
. In

other words, the right half of the ellipse is the graph of the function g : [−1, 1] ⊆ R→ R2

given by g(x) =
(√

1− x2 , x+
√

1− x2
)
.

1.5 Example: Consider the unit sphere in R3 given by x2+y2+z2 = 1. The top half of the
sphere is the graph z = f(x, y) where f : D ⊆ R2 → R is given by f(x, y) =

√
1− x2 − y2

with D =
{

(x, y) ∈ R2
∣∣x2 + y2 ≤ 1

}
. The entire sphere is the null set g(x, y, z) = 0 where

g : R3 → R is given by g(x, y, z) = x2 + y2 + z2 − 1. The top half of the sphere can be
given parametrically by x = r cos θ and y = r sin θ and z =

√
1− r2, so it is the range

(x, y, z) = σ(r, θ) where σ : D ⊆ R2 → R3 is given by σ(r, θ) =
(
r cos t , r sin t ,

√
1− r2

)
with D =

{
(r, θ) ∈ R2

∣∣0 ≤ r ≤ 1
}

.

1.6 Remark: A function is uniquely determined by its graph but not by its null set or
by its image. It follows that implicit and parametric descriptions of curves and surfaces
are not unique. For example, the parabola y = x2 can be given implicitly by g(x, y) = 0
for any of the functions g(x, y) = y − x2, g(x, y) = (y − x2)3 or g(x, y) = (y − x2)(x2 + 1),
and it can be given parametrically by (x, y) = α(t) for any of the functions α(t) = (t, t2),
α(t) = (t3, t6) or α(t) = (sinh t , sinh2 t).

1.7 Remark: Given an explicit equation for a curve or surface it is easy to obtain an
implicit or parametric equation for the curve or surface. For example the curve y = f(x)
in R2 can be given implicitly by g(x, y) = 0 where g(x, y) = y − f(x) and parametrically
by (x, y) = α(t) where α(t) =

(
t, f(t)

)
, Similarly the surface z = f(x, y) in R3 can be

given implicitly by g(x, y, z) = 0 where g(x, y, z) = z − f(x, y) and parametrically by
(x, y, z) = σ(s, t) where σ(s, t) =

(
s, t, f(s, t)

)
. On the other hand, given an implicit or a

parametric equation for a curve or a surface it can be difficult or impossible to obtain an
explicit equation.

1.8 Exercise: The helix is given explicitly by x = cos z and y = sin z. Sketch the curve
and find an implicit and a parametric equation for the curve.

1.9 Exercise: The alpha curve is given implicitly by y2 = x3 + x. Sketch the curve,
find explicit equations for the top and bottom halves of the curve, and find a parametric
equation for the entire curve.
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1.10 Exercise: The curve which is given explicitly in polar coordinates by r = r(θ) is
given parametrically in Cartesian coordinates by (x, y) = α(t) =

(
r(t) cos t , r(t) sin t

)
.

Sketch the cardioid which is given in polar coordinates by r = r(θ) = 1 + cos θ, then find
an implicit equation for the curve.

1.11 Exercise: The twisted cubic is given parametrically by (x, y, z) = α(t) = (t, t2, t3).
Sketch the curve and find an implicit and an explicit equation for the curve.

1.12 Remark: In order to sketch a surface which is defined explicitly as a graph z =
f(x, y) or implicitly as a level set g(x, y, z) = k, it often helps to first sketch curves of
intersection of the surface with various planes x = c, y = c or z = c. The intersection
of the graph z = f(x, y) with the plane z = c is given implicitly by f(x, y) = c. The
intersection of the level set g(x, y, z) = k with the plane z = c is given implicitly by
g(x, y, c) = k

1.13 Exercise: Sketch the curve of intersection of the cylinder x2 + y2 = 1 with the
parabolic sheet z = x2 and find implicit, explicit, and parametric equations for the curve.

1.14 Exercise: Sketch the surface z = x2 + y2.

1.15 Exercise: Sketch the surface z = 4x2 − y2.

1.16 Exercise: Sketch the surface x2 + 4y2 − z2 = 0.

1.17 Exercise: Sketch the surface (x, y, z) = σ(u, v) =
(
u, v, u2 + 4v2 − 3

)
.

1.18 Exercise: Find a parametric equation (x, y, z) = σ(φ, θ) for the sphere of radius r
centred at the origin, where the parameters φ and θ are the angles of latitude and longitude.
In other words, find σ(φ, θ) so that when (x, y, z) = σ(φ, θ), φ is the angle between (0, 0, 1)
and (x, y, z) and θ is the angle from (1, 0) counterclockwise to (x, y).

1.19 Exercise: Find implicit and parametric equations for the torus which is obtained
by rotating the circle (x, z) =

(
R+ r cos θ , r sin θ

)
about the z-axis.

1.20 Definition: An affine space in Rn is a set of the form p+ V = {p+ v|v ∈ V } for
some p ∈ Rn and some vector space V ⊆ Rn. The dimension of the affine space p+V is
the same as the dimension of V . The set p+V is called the affine space through p parallel
to V , or the affine space through p perpendicular to V ⊥ (the orthogonal complement of
V ).

1.21 Example: In R3, the only zero dimensional vector space is the origin {0}, the 1-
dimensional vector spaces are the lines through the origin, the 2-dimensional spaces are
the planes through the origin, and the only 3-dimensional vector space is all of R3. The 0-
dimensional affine spaces are the points in R3, the 1-dimensional affine spaces are the lines
in R3, the 2-dimensional affine spaces are the planes in R3, and the only 3-dimensional
affine space is all of R3.

1.22 Definition: Let f : Rn → Rm. The function f is called linear when it is of the
form f(x) = Ax for some matrix A ∈ Mm×n(R), and f is called affine when it is of the
form f(x) = Ax+ b for some matrix A ∈Mm×n(R) and some vector b ∈ Rm.
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1.23 Note: Let A ∈ Mm×n and let f be the linear map f(x) = Ax. Let u1, · · · , un
be the column vectors of A and let v1, · · · , vm be the row vectors of A so that we have

A =
(
u1, · · · , un

)
=
(
v1, · · · , vm

)T
. Let c be a point in the range of f , say f(p) = c. Then

Range (f) =
{
Ax
∣∣x ∈ Rn

}
=
{ n∑
i=1

uixi
∣∣ each xi ∈ R

}
= Span{u1, · · · , un} = Col(A),

Null (f) = Null (A) =
{
x ∈ Rn

∣∣Ax = 0
}

=
{
x ∈ Rn

∣∣vi .x = 0 for all i
}

= Row(A)⊥,

f−1(c) =
{
x ∈ Rn

∣∣Ax = c
}

=
{
x ∈ Rn

∣∣Ax = Ap
}

=
{
x ∈ Rn

∣∣A(x− p) = 0
}

=
{
p+ y ∈ Rn

∣∣Ay = 0
}

= p+ Null (A).

1.24 Note: Let A ∈Mm×n(R), let b ∈ Rm and let f(x) = Ax+ b. Let c be in the range
of f with say f(p) = c. Then

Range (f) =
{
Ax+ b

∣∣x ∈ Rn
}

= b+ Col(A) , and

f−1(c) =
{
x ∈ Rn

∣∣Ax+ b = c = Ap+ b
}

=
{
x ∈ Rn

∣∣A(x− p) = 0
}

= p+ Null (A).

Note that if u1, u2, · · · , un are the columns of A and e1, e2, · · · , en are the standard basis
vectors for Rn, then we have f(0) = b and f(ei) = Aei + b = ui + b. If v1, · · · , vm are the
row vectors of A and k = c− b, then since

f(x) = c ⇐⇒ Ax+ b = c ⇐⇒ Ax = k ⇐⇒ vi .x = ki for all i,

it follows that the level set f(x) = c is the intersection of the affine spaces vi .x = ki, and
we note that the space vi .x = ki is the affine space in Rm of dimension m− 1 through p
perpendicular to vi.

1.25 Exercise: Define f : R3 → R2 by f(x, y, z) =
(
x + 3y + 2z , 2z + 5y + 3z

)
and let

(a, b) = (1, 1). Find a parametric equation for the level set f(x, y, z) = (a, b).

1.26 Exercise: Let A =

 4 1 1
1 0 2
5 2 −4

 and b =

 2
1
−1

 and let f(x) = Ax + b. Find an

implicit equation for the range of f .
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Chapter 2. Differentiation

2.1 Definition: For a ∈ Rn and r > 0, we define the open ball of radius r centred at a
to be the set

B(a, r) =
{
x ∈ Rn

∣∣|x− a| < r
}
.

For a set U ⊆ Rn, we say that U is open in Rn when for every point a ∈ U there exists
a radius r > 0 such that B(a, r) ⊆ U . Informally, a set U is open in Rn when it does not
include any of its boundary points.

2.2 Definition: Let U ⊆ Rn be open in Rn, let f : U ⊆ Rn → Rm, and let a ∈ U . We
say that f is differentiable at a when there exists an affine map L : Rm → Rn such that

∀ε>0 ∃δ>0 ∀x∈U
(
|x− a| ≤ δ=⇒

∣∣f(x)− L(x)
∣∣ ≤ ε|x− a|).

We say that f is differentiable in U when f is differentiable at every point a ∈ U .

2.3 Definition: Let U ⊆ Rn be open in Rn, let f : U ⊆ Rn → R, and let at a ∈ U , say
a = (a1, · · · , an). We define the kth partial derivative of f at a to be

∂f
∂xk

(a) = gk
′(ak) , where gk(t) = f(a1, · · · , ak−1, t, ak+1, · · · an) ,

or equivalently,
∂f
∂xk

(a) = hk
′(0) , where hk(t) = f(a1, · · · , ak−1, ak + t, ak+1, · · · an) ,

provided that the derivatives exist. Note that gk and hk are functions of a single variable.
Sometimes ∂f

∂xk
is written as fxk or as fk. When we write u = f(x), we can also write

∂f
∂xk

as ∂u
∂xk

, uxk or uk. When n = 3 and we write x, y and z instead of x1, x2 and x3, the

partial derivatives ∂f
∂x1

, ∂f
∂x2

and ∂f
∂x3

are written as ∂f
∂x , ∂f

∂y and ∂f
∂z , or as fx, fy and fz.

When n = 1 so there is only one variable x = x1 we have ∂f
∂x (a) = df

dx (a) = f ′(a).

2.4 Note: To calculate the partial derivative ∂f
∂xk

(x), we can treat the variables xi with
i 6= k as constants, and differentiate f as if it were a function of the single variable xk.

2.5 Exercise: Let f(x, y) = x3y + 2xy2. Find ∂f
∂x (1, 2) and ∂f

∂y (1, 2).

2.6 Exercise: Let f(x, y, z) = (x− z2) sin(x2y + z). Find ∂f
∂x (x, y, z) and ∂f

∂x (3, π2 , 0).

2.7 Definition: Let U ⊆ Rn be open in Rn, let f : U ⊆ Rn → Rm and let a ∈ U .

Write u = f(x) =
(
f1(x), f2(x), · · · , fm(x)

)T
with x = (x1, x2, · · · , xn)T . We define the

derivative matrix, or the Jacobian matrix, of f at a to be the matrix

Df(a) =


∂f1
∂x1

(a) ∂f1
∂x2

(a) · · · ∂f1
∂xk

(a)
∂f2
∂x1

(a) ∂f2
∂x2

(a) · · · ∂f2
∂xk

(a)

...
...

...
∂f1
∂x1

(a) ∂f1
∂x2

(a) · · · ∂f1
∂xk

(a)


and we define the linearization of f at a to be the affine map L : Rn → Rm given by

L(x) = f(a) +Df(a)(x− a)

provided that all the partial derivatives ∂fk
∂xl

(a) exist.

5



2.8 Definition: Let U be open in Rn and let f : U ⊆ Rn → Rm. We say that f is C1 in
U when all the partial derivatives ∂fk

∂fl
exist and are continuous in U . The second order

partial derivatives of f are the functions

∂2fj
∂xk∂xl

=
∂
(∂fj
∂xl

)
∂xk

.

We also write
∂2fj
∂xk2 =

∂2fj
∂xk∂xk

. We say that f is C2 when all the partial derivatives
∂2fj
∂xk∂xl

exist and are continuous in U .

2.9 Definition: Let a ∈ U where U be an open set in R, and let f : U ⊆ R → Rm, say
x = f(t) =

(
x1(t), x2(t), · · · , xm(t)

)
. Then we write f ′(a) = Df(a) and we have

f ′(a) = Df(a) =


∂x1

∂t (a)
...

∂xm
∂t (a)

 =

 x1
′(a)
...

xm
′(a)

 .

The vector f ′(a) is called the tangent vector to the curve x = f(t) at the point f(a). In
the case that t represents time and f(t) represents the position of a moving point, f ′(a) is
also called the velocity of the moving point at time t = a.

2.10 Definition: Let a ∈ U where U is an open set in Rn and let f : U ⊆ Rn → R. We
define the gradient of f at a to be the vector

∇f(a) = Df(a)T =
( ∂f
∂x1

(a), · · · , ∂f
∂xn

(a)
)T

=


∂f
∂x1

(a)

...
∂f
∂xn

(a)

 .

2.11 Theorem: Let U ⊆ Rn be open, let f : U ⊆ Rn → Rm and let a ∈ U . Then

(1) If f is differentiable at a then the partial derivatives of f at a all exist, and the affine
map L which appears in the definition of the derivative is the linearization of f at a.
(2) If f is differentiable in U then f is continuous in U .
(3) If f is C1 in U then f is differentiable in U .

(4) If f is C2 in U then
∂2fj
∂xk∂xl

=
∂2fj
∂xl∂xk

for all j, k, l.

2.12 Note: Let a ∈ U where U is open in Rn and let f : U ⊆ Rn → Rm be differentiable
at a. The definition of the derivative, together with Part (1) of the above theorem, imply
that the function f is approximated by its linearization near x = a, that is when x ∼= a we
have

f(x) ∼= L(x) = f(a) +Df(a)(x− a) .

The geometric objects (curves and surfaces etc) Graph (f), Null (f), f−1(k) and Range (f)
are all approximated by the affine spaces Graph (L), Null (L), L−1(k) and Range (L). Each
of these affine spaces is called the (affine) tangent space of its corresponding geometric
object: the space Graph (L) is called the (affine) tangent space of the set Graph (f) at
the point

(
a, f(a)

)
; when f(a) = 0, the space Null (L) is called the (affine) tangent space

of Null (f) at the point a, and more generally when f(a) = k, so that a ∈ f−1(k), the
space L−1(k) is called the (affine) tangent space to f−1(k) at the point a; and the space
Range (L) is called the (affine) tangent space of the set Range (f) at the point f(a). When
a tangent space is 1-dimensional we call it a tangent line and when a tangent space is
2-dimensional we call it a tangent plane.
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2.13 Exercise: Find an explicit, an implicit and a parametric equation for the tangent
line to the curve in R2 which is defined explicitly by the equation y = f(x), implicitly by
the equation g(x, y) = k, and parametrically by the equation (x, y) = α(t) =

(
x(t), y(t)

)
.

2.14 Exercise: Find an explicit, an implicit, and a parametric equation for the tan-
gent line to the curve in R3 which is defined explicitly by (x, y) = f(z) =

(
x(z), y(z)

)
,

implicitly by u(x, y, z) = k and v(x, y, z) = l, and parametrically by (x, y, z) = α(t) =(
x(t), y(t), z(t)

)
.

2.15 Exercise: Find an explicit, an implicit and a parametric equation for the tan-
gent plane to the surface in R3 which is defined explicitly by z = f(x, y), implicitly by
g(x, y, z) = k, and parametrically by (x, y, z) = σ(s, t) =

(
x(s, t), y(s, t), z(s, t)

)
.

2.16 Exercise: Find a parametric equation for the tangent line to the helix given by
(x, y, z) = (2 cos t, 2 sin t, t) at the point where t = π

3 , and find the point where this tangent
line crosses the xz-plane.

2.17 Exercise: Find an explicit equation for the tangent plane to the surface z =
ex

2+2xy

√
2 + y

at the point (2,−1).

2.18 Exercise: Find an implicit equation for the tangent line to the curve given by
2
√
y + x2 + ln(y − x2) = 6 at the point (2, 5).

2.19 Exercise: Find a parametric equation for the tangent line to the curve of intersection
of the paraboloid z = 2− x2 − y2 with the cone y =

√
x2 + z2 at the point p = (1, 1, 0).

2.20 Exercise: Find an explicit equation for the tangent plane to the surface given by
(x, y, z) =

(
r cos t , r sin t , 3

1+r2

)
at the point where (r, t) =

(√
2, π4

)
.

2.21 Theorem: (The Chain Rule) Let f : U ⊆ Rn → V ⊆ Rm, let g : V ⊆ Rm → Rl,
and let h(x) = g(f(x)). If f is differentiable at a and g is differentiable at f(a) then h is
differentiable at a and Dh(a) = Dg(f(a))Df(a).

2.22 Exercise: Let z = f(x, y) = 4x2 − 8xy + 5y2, (u, v) = g(z) =
(√
z − 1 , 5 ln z

)
and

h(x, y) = g
(
f(x, y)

)
. Find Dh(2, 1).

2.23 Exercise: Let (x, y) = f(r, θ) =
(
r cos θ , r sin θ

)
, let z = g(x, y) and let z = h(r, θ) =

g
(
f(r, θ)

)
. If h(r, θ) = r2e

√
3(θ−π6 ) then find ∇g(

√
3, 1).

2.24 Exercise: Let (x, y, z) = f(s, t) and (u, v) = g(x, y, z). Find a formula for ∂u
∂t .
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2.25 Definition: Let a ∈ U where U is an open set in Rn, let f : U ⊆ Rn → R be
differentiable at a, and let v ∈ Rn. We define the directional derivative of f at a
with respect to v, written as Dvf(a), as follows: pick any differentiable curve α(t) with
α(0) = a and α′(0) = v

(
for example, we could pick α(t) = a + v t

)
, and define Dvf(a)

to be the rate of change of the function f at t = 0 as we move along the curve α. To be
precise, let β(t) = f

(
α(t)

)
, note that β′(t) = Df

(
α(t)

)
α′(t), and then define Dvf(a) to be

Dvf(a) = β′(0)

= Df(α(0))α′(0)

= Df(a) v

= ∇f(a). v .
Notice that the formula for Dvf(a) does not depend on the choice of the curve α(t). The
(directional) derivative of f in the direction of v is defined to be the Dwf(a) where
w is the unit vector in the direction of v which is given by w = v

|v| .

2.26 Exercise: Let f(x, y, z) = x sin(y2 − 2xz) and let α(t) =
(√
t , 1

2 t , e
(t−4)/4). Find

the rate of change of f as we move along the curve α(t) when t = 4.

2.27 Theorem: Let f : U ⊆ Rn → R be differentiable at a ∈ U . Say f(a) = b. The
gradient ∇f(a) is perpendicular to the level set f(x) = b, it is in the direction in which f
increases most rapidly, and its length is the rate of increase of f in that direction.

Proof: Let α(t) be a curve in the level set f(x) = b, with α(0) = a. We wish to show that
∇f(a) ⊥ α′(0). Since α(t) lies in the level set f(x) = b, we have f(α(t)) = b for all t. Take
the derivative of both sides to get Df(α(t))α′(t) = 0. Put in t = 0 to get Df(a)α′(0) = 0,
that is ∇f(a).α′(0) = 0. Thus ∇f(a) is perpendicular to the level set f(x) = b.

Next, let u be a unit vector. Then Duf(a) = ∇f(a).u = |∇f(a)| cos θ, where θ is the
angle between u and ∇f(a). So the maximum possible value of Duf(a) is |∇f(a)|, and this
occurs when cos θ = 1, that is when θ = 0, which happens when u is in the direction of
∇f(a).

2.28 Note: Let a ∈ U where U is an open set in Rn, and let f : U ⊆ Rn → Rm be
differentiable. The kth column vector of the derivative matrix Df(a) is the vector

fxk(a) = ∂f
∂xk

(a) =
(
∂f1
∂xk

(a), · · · , ∂fm∂xk
(a)
)T
∈ Rm,

which is the tangent vector to the curve βk(t) = f
(
αk(t)

)
at t = 0, where αk is the curve

through a in the direction of the standard basis vector ek given by αk(t) = a+ tek.

The lth column vector of the derivative matrix Df(a) is the vector

∇fl(a) =
(
∂fl
∂x1

(a), · · · , ∂fl∂xn
(a)
)T

which is orthogonal to the level set fl(x) = fl(a), pointing in the direction in which fl
increases most rapidly, and its length is the rate of increase of fl in that direction.

8



Chapter 3. Integration of Scalar-Valued Functions

3.1 Remark: For many sets D ⊆ Rn and many functions f : D ⊆ Rn → R one can
define the integral of f on D as a limit of Riemann sums, but we shall not give the
precise definition here. Instead, we quote a theorem which enables us to calculate these
integrals.

3.2 Theorem: When D =
{
x ∈ R|a ≤ x ≤ b} and f : D ⊆ R → R is continuous, the

integral of f on D is written as∫
D

f dL =

∫
D

f(x) dL =

∫ b

x=a

f(x) dx.

When D =
{

(x, y) ∈ R2
∣∣a ≤ x ≤ b , g(x) ≤ y ≤ h(x)

}
and f : D ⊆ R2 → R is continuous,

the integral of f on D is given by∫
D

f dA =

∫∫
D

f(x, y) dA =

∫∫
D

f(x, y) dx dy =

∫ b

x=a

(∫ h(x)

y=g(x)

f(x, y) dy

)
dx.

When D =
{

(x, y) ∈ R2
∣∣c ≤ y ≤ d , k(y) ≤ x ≤ l(x)

}
and f : D ⊆ R2 → R is continuous,

the integral of f on D is given by∫
D

f dA =

∫∫
D

f(x, y) dA =

∫∫
D

f(x, y) dx dy =

∫ d

y=c

(∫ l(y)

x=k(y)

f(x, y) dx

)
dy.

More generally, when D ⊆ R2 is a union D =
n⋃
i=1

Di of sets Di ⊆ R2 which only overlap

along their boundaries, with each set Di of one of the above two forms, the integral of f
on D is ∫

D

f dA =
n∑
i=1

∫
Di

f dA.

When D =
{

(x, y, z) ∈ R3
∣∣a ≤ x ≤ b , g(x) ≤ y ≤ h(x) , k(x, y) ≤ z ≤ l(x, y)

}
and

f : D ⊆ R3 → R is continuous, the integral of f on D is given by∫
D

f dV =

∫∫∫
D

f(x, y, z) dV =

∫∫∫
D

f(x, y, z) dx dy dz

=

∫ b

x=a

(∫ h(x)

y=g(x)

(∫ l(x,y)

z=k(x,y)

f(x, y, z) dz

)
dy

)
dx.

There are similar formulas in the case that the roles of x, y and z are permuted. More

generally, when D ⊆ R3 is a union D =
n⋃
i=1

Di of sets Di ⊆ R3 which only overlap along

their boundaries, with each set Di of the above form or of a similar form with x, y and z
permuted, the integral of f on D is∫

D

f dA =
n∑
i=1

∫
Di

f dA.
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3.3 Note: When D ⊆ R2, the integral of the constant function 1 on D measures the
area of the region D and, when f : D ⊆ R2 → R, the integral of f on D measures the
signed volume of the region between the graph of f and the region D and, in the case
that D represents the shape of a flat object and the function f : D ⊆ D → R represents
its density (or the charge density), the integral of f on D measures the total mass (or
charge) of the object.

When D ⊆ R3, the integral of the constant function 1 on D measures the volume of
the region D and, when D represents the shape of a solid object and f : D ⊆ R3 → R
represents its density (or charge density), the integral of f on D measures the total
mass (or charge) of the object.

3.4 Exercise: Let D be the triangle in R2 with vertices at (0,−1), (2, 1) and (2, 3). Find∫
D

2xy dA.

3.5 Exercise: Find the volume of the region in R3 which lies above the paraboloid
z = x2 + y2 and below the plane z = 2x.

3.6 Exercise: Find the mass of the tetrahedron with vertices at (0, 0, 0), (2, 0, 0), (2, 2, 0)
and (2, 2, 2) given that the density is given by ρ(x, y, z) = 2xy(3− z).

3.7 Definition: For a set D ⊆ Rn, we say that D is bounded when there exists a radius
r > 0 such that D ⊆ B(0, r), and we say that D is closed in Rn when its complement
Rn \D is open in Rn. For an open set U ⊆ Rn, the closure of U , denoted by U , is the
smallest closed set which contains U , and the boundary of U is the set ∂U = U \ U .

3.8 Definition: Let U and V be open sets in Rn, let C = U and D = V . An orientation
preserving change of coordinates map from C to D is a continuous map g : C → D
such that the map g : U → V is invertible and C1 with det

(
Dg(a)

)
> 0 for all a ∈ U ,

and a orientation reversing change of coordinates map from C to D is a continuous
map g : C → D such that the map g : U → V is invertible and C1 with det

(
Dg(a)

)
< 0

for all a ∈ U .

3.9 Example: Three important orientation preserving change of coordinates maps are
the polar coordinates map in R2, which is given by

(x, y) = g(r, θ) =
(
r cos θ , r sin θ

)
with detDg(r, θ) = r ,

the cylindrical coordinates map in R3, which is given by

(x, y, z) = g(r, θ, z) =
(
r cos θ , r sin θ , z

)
with detDg(r, θ, z) = r,

and the spherical coordinates map in R3, which is given by

(x, y, z) = g(r, φ, θ) =
(
r sinφ cos θ , r sinφ sin θ , r cosφ

)
with detDg(r, φ, θ) = r2 sinφ.
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3.10 Theorem: (Change of Variables) When D = [a, b] ⊆ R, and g : C ⊆ R → D ⊆ R
is a change of variables map from C to D given by x = g(u) with inverse u = h(x), and
f : D ⊆ R→ R is continuous, we have∫ b

x=a

f(x) dx =

∫
D

f(x)dx =

∫
C

f
(
g(u)

)∣∣∣ detDg(u)
∣∣∣ du =

∫ h(b)

u=h(a)

f
(
g(u)

)
g′(u) du.

When f : D ⊆ R2 → R is continuous and g : C ⊆ R2 → D ⊆ R2 is a change of variables
map from C to D given by (x, y) = g(u, v), we have∫∫

D

f(x, y) dx dx =

∫∫
C

f
(
g(u, v)

)∣∣∣ detDg(u, v)
∣∣∣ du dv.

When f : D ⊆ R3 → R is continuous and g : C ⊆ R3 → D ⊆ R3 is a change of variables
map from C to D given by (x, y, z) = g(u, v, w), we have∫∫∫

D

f(x, y, z) dx dy dz =

∫∫∫
C

f
(
g(u, v, w)

)∣∣∣detDg(u, v, w)
∣∣∣ du dv dw.

3.11 Exercise: Find the area inside the cardioid r = 2 + 2 cos θ.

3.12 Exercise: Find the volume of the region which lies under the graph of z = e−(x
2+y2).

3.13 Exercise: Find the volume of the region which lies inside the sphere x2 +y2 +z2 = 4
and inside the cylinder x2 − 2x+ y2 = 0.

3.14 Exercise: Find the mass of the ball x2 + y2 + z2 ≤ 4 given that the density is given
by ρ(x, y, z) = 1− 1

2

√
x2 + y2 + z2.

3.15 Definition: Let n = 2 or 3, let α : [a, b] ⊆ R → Rn be continuous on [a, b] and C1
in (a, b), let C be the curve in Rn which is given parametrically by (x, y) = α(t) or by
(x, y, z) = α(t) for a ≤ t ≤ b, and let f : C ⊆ Rn → R be continuous on C = Range (α).
Then we write dL =

∣∣α′(t)∣∣ dt and we define the (curve) integral of f on C to be∫
α

f dL =

∫
C

f dL =

∫ b

t=a

f
(
α(t)

)∣∣α′(t)∣∣ dt.
When C is a union C =

m⋃
k=1

Ck of curves Ck as above, we define

∫
C

fdA =
m∑
k=1

∫
Ck
f dA.

Let D be the closure of a bounded open set U in R2, let σ : D ⊆ R2 → R3 be continuous in
D and C1 in U , let S be the surface in R3 which is given parametrically by (x, y, z) = σ(s, t),
and let f : S ⊆ R3 → R be continuous on S. Then we write dA =

∣∣σs × σt∣∣ ds dt and we
define the (surface) integral of f on S to be∫∫

σ

f dA =

∫∫
S

f dA =

∫∫
D

f
(
σ(s, t)

)∣∣σs × σt∣∣ ds dt.
where σs =

(
∂x
∂s (s, t), ∂y∂s (s, t), ∂z∂s (s, t)

)T
and σt =

(
∂x
∂s (s, t), ∂y∂s (s, t), ∂z∂s (s, t)

)T
.

When S is a union S =
m⋃
k=1

Sk of surfaces Sk as above, we define

∫
S

fdA =
m∑
k=1

∫
Sk
f dA.
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3.16 Note: When C is a curve in Rn with n = 2 or 3, which is given by (x, y) = α(t)
or by (x, y, z) = α(t) for a ≤ t ≤ b, the integral of the constant function 1 on C measures
the length (or arclength) of the curve C, and in the case that C represents the shape
of a physical object and the function f : C ⊆ R2 → R represents its density (or charge
density), the integral of f on C measures the total mass (or charge) of the object.

When S is a surface in R3 which is given by (x, y, z) = σ(s, t) for (s, t) ∈ D ⊆ R2,
the integral of the constant function 1 on S measures the area (or surface-area) of the
surface S, and in the case that S represents the shape of a physical object and the function
f : S → R represents its density (or charge density), the integral of f on S measures
the total mass (or charge) of the surface.

3.17 Exercise: Find the arclength of the helix α(t) =
(
t, cos t, sin t) for 0 ≤ t ≤ 2π.

3.18 Exercise: Find the surface area of the torus given by

(x, y, z) = σ(θ, φ) =
(

(2 + cosφ) cos θ , (2 + cosφ) sin θ , sinφ
)

for 0 ≤ θ ≤ 2π and 0 ≤ φ ≤ 2π.

3.19 Exercise: Find the mass of the hollow sphere x2 + y2 + z2 = 1 when the density
(mass per unit area) is given by ρ(x, y, z) = 3− z.

3.20 Exercise: Find the mass of the curve of intersection of the paraboloid z = 2−x2−2y2

with the parabolic sheet z = x2, when the density (mass per unit length) is given by
ρ(x, y, z) = |xy|.
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Chapter 4. Integration of Vector-Valued Functions

4.1 Definition: We define vector-valued integrals of vector-valued functions in the most
obvious way. For example, when C is a curve in Rn with n = 2 or 3 and F : C ⊆ Rn → Rm

is given by F = (F1, F2, · · · , Fm), we define the (vector-valued) integral of F on C to be∫
C

F dL =

(∫
C

F1 dL , · · · ,
∫
C

Fm dL

)
and when S is a surface in R3 and F : S ⊆ R3 → Rm is given by F = (F1, F2, · · · , Fm),
we define the (vector-valued) integral of F on S to be∫∫

S

F dA =

(∫∫
S

F1 dA , · · · ,
∫∫

S

Fm dA

)
.

4.2 Definition: Let U ⊆ Rn. A vector field on U is a function F : U ⊆ Rn → Rn. An
integral curve (or field line or flow line) for a vector field F on U is a curve in U along
which the tangent line at each point is in the direction of the field F .

4.3 Remark: We can draw a picture of a vector field in U ⊆ R2 by choosing many points
(x, y) ∈ U and, for each point, we draw the vector F (x, y) at the point (x, y). An integral
curve will follow the direction of the vectors at all points.

4.4 Exercise: For each of the following vector fields F on R2, draw a picture of the field
1
4F and sketch some integral curves. In Parts (a) and (b), find an equation for the integral
curves.

(a) F (x, y) = (−y, x) (b) F (x, y) = (y, x) (c) F (x, y) = (x+ y, x− y).

4.5 Definition: Let U be an open set in R3, let g : U ⊆ R3 → R be a function and let
F : U ⊆ R3 → R3 be a vector field given by F = (P,Q,R). We write

∇ =

 ∂
∂x
∂
∂y
∂
∂z

 , ∇g =

 ∂g
∂x
∂g
∂y
∂g
∂z

 , ∇.F =
∂P

∂x
+
∂Q

∂y
+
∂R

∂z
, ∇× F =


∂R
∂y −

∂Q
∂z

∂F
∂z −

∂R
∂x

∂Q
∂x −

∂P
∂y

 ,

∇2g =
∂2g

∂x2
+
∂2g

∂y2
+
∂2g

∂z2
and ∇2F =

∇2P
∇2Q
∇2R

 .

∇g is called the gradient of g, ∇.F is called the divergence of F , ∇ × F is called
the curl of F , ∇2g is called the (scalar) Laplacian of g, and ∇2F is called the vector
Laplacian of F .

4.6 Theorem: (Vector Identities) Let U be an open set in R3, let g : U ⊆ R3 → R be
C2 in U and let F : U ⊆ R3 → Rn be C2 in U . Then

(1) ∇. (∇g) = ∇2g,
(2) ∇× (∇g) = 0,
(3) ∇. (∇× F ) = 0,
(4) ∇× (∇× F ) = ∇(∇.F )−∇2F ,
(5) ∇. (gF ) = ∇g .F + g(∇.F ), and
(6) ∇× (gF ) = (∇g)× F + g(∇× F ).
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4.7 Definition: Let U be an open set in Rn and let F : U ⊆ Rn → Rn be a vector field
in U . When there is a function g : U ⊆ Rn → R such that F = ∇g, we say that F is a
conservative vector field and that g is a scalar potential for F . In the case that n = 3,
when there is a vector field G : U ⊆ R3 → Rn such that F = ∇ × G we say that G is a
vector potential for F .

4.8 Remark: Scalar and vector potentials, if they exist, are not unique. If g is a scalar
potential for F then so is the function g + c for any constant c ∈ R. If G is a vector
potential for F then so is the vector field G+∇g for any C2 function g.

4.9 Remark: Let F be a C1 vector field on an open set U in R3. If F has a scalar
potential, say F = ∇g, then ∇ × F = ∇ × (∇g) = 0. If F has a vector potential, say
F = ∇×G, then ∇.F = ∇. (∇×G) = 0.

4.10 Theorem: Let F be a C1 vector field on an open set U in R3.

(1) If ∇× F = 0 then F has a scalar potential g : V ⊆ R3 → R in any open ball V ⊆ U .
(2) If ∇.F = 0 then F has a vector potential G : V ⊆ R3 → R3 in any open ball V ⊆ U .

4.11 Exercise: Determine which of the vector fields in Exercise 4.3 are conservative.

4.12 Exercise: Let F (x, y, z) =
(
x2 + yz , −2xy − 2yz , xy + z2

)
. Note that ∇.F = 0.

Find a vector potential for F .

4.13 Definition: Let n = 2 or 3, let α : [a, b] ⊆ R → Rn be continuous on [a, b] and C1
in (a, b), let C be the curve in Rn which is given parametrically by (x, y) = α(t) or by
(x, y, z) = α(t) for a ≤ t ≤ b, and let F : C ⊆ Rn → Rn be a continuous vector field on

C = Range (α). We write T = α′(t)
|α′(t)| , dL =

∣∣α(t)
∣∣ dt and dα = T dL, and we define the

integral (or the circulation) of F along C to be∫
α

F . dα =

∫
α

F .T dL =

∫
C

F .T dL =

∫ b

t=a

F
(
α(t)

).α′(t) dt.
When α(t) =

(
x(t), y(t)

)
and F (x, y) =

(
P (x, y), Q(x, y)

)
we also use the notation∫

α

F . dα =

∫
α

Pdx+Qdy,

and when α(t) =
(
x(t), y(t), z(t)

)
and F (x, y, z) =

(
P (x, y, z), Q(x, y, z), R(x, y, z)) we also

write ∫
α

F . dα =

∫
α

Pdx+Qdy +Rdz.

When C =
m⋃
k=1

Ck where each Ck is a curve as above,

∫
C

F .T dL =
m∑
k=1

∫
Ck

F .T dL.

14



Let D be the closure of an open set U in R2, let σ : D ⊆ R2 → R3 be continuous on D
and C1 in U , let S be the surface in R3 which is given parametrically by (x, y, z) = σ(s, t),
and let F : S ⊆ R3 → R3 be continuous on S = Range (σ). We write N = σs×σt

|σs×σt| ,

dA =
∣∣σs×σt∣∣ and dσ = (σs×σt) ds dt, and we define the integral (or flux) of F across

S to be∫
σ

F . dσ =

∫∫
σ

F .N dA =

∫∫
S

F .N dA =

∫∫
D

F
(
σ(s, t)

). (σs × σt) ds dt.

When σ(s, t) =
(
x(s, t), y(s, t), z(s, t)

)
and F (x, y, z) =

(
P (x, y, z), Q(x, y, z), R(x, y, z)

)
we also write ∫

σ

F . dσ =

∫
σ

P dy dz +Qdz dx+Rdxdy.

When S =
m⋃
k=1

Sk where each Sk is a surface as above,

∫
S

F .N dA =
m∑
k=1

∫
Sk

F .N dA.

4.14 Definition: For a curve C in Rn where n = 2 or 3, we say that C is C1 when it is
defined parametrically by a map α : [a, b] ⊆ R → Rn such that α is continuous on [a, b]
and α is C1 with bounded derivative in (a, b). We say that C is piecewise C1 when it is
a union C =

⋃m
k=1 Ck of C1 curves Ck.

For a surface S in R3, we say that S is C1 when it is defined parametrically by a map
σ : D = U ⊆ R2 → R3, where U is an open set in R2, such that σ is continuous in D and
σ is C1 with bounded partial derivatives in U , and we say that S is piecewise C1 when it
is a union S =

⋃m
k=1 Sk of C1 surfaces Sk.

When S is a C1 surface in R3 given parametrically by σ : D = U ⊆ R2 → R3, the
boundary curve of S is the curve ∂S = σ(∂U). In practice, the boundary curve ∂S is
often piecewise C1.

4.15 Remark: It can be shown, using the Change of Variables Theorem, that the integral
of a vector field along a C1 curve, or across a C1 surface, does not depend, except perhaps
for a sign change, on the choice of parametric equation for the curve or surface. For a
curve, the sign depends on the direction we travel along the curve, that is on the direction
of the tangent vector T , and for a surface, the sign depends on whether the normal vector
N lies on one side of the tangent plane or the other. For a piecewise C1 curve C =

⋃m
k=1 Ck

(or a piecewise C1 surface S =
⋃m
k=1 Sk

)
the integral of a vector field along C (or across

S) depends on the direction in which we move along each curve Ck (or the direction of the
normal vector to each surface Sk).

4.16 Note: When α(t) represents the position of an object which moves along the curve
C and the vector field F represents the force at each point on the curve C, the integral
of F along C measures the work done by the force on the object along the curve.

When S represents the shape of a surface in space, and F represents the velocity field of
a fluid which moves through the surface S, the flux of F across S measures the rate (the
volume per unit time) at which the fluid flows across the surface S, with the sign of the
flux indicating whether the fluid flows in the direction of the normal vector N or in the
opposite direction.

4.17 Exercise: Let F (x, y) = (−y, x), let α(t) = (cos t, sin t) for 0 ≤ t ≤ 3π
2 , and let

β(t) = (2− t, 1 + 2t) for 0 ≤ t ≤ 2. Find the integrals

∫
α

F .T dL and

∫
β

F .T dL.
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4.18 Exercise: Let F (x, y) =
(
−y

x2+y2 ,
x

x2+y2

)
and let α(t) =

(
r(t) cos θ(t) , r(t) sin θ(t)

)
for a ≤ t ≤ b. Find

∫
α

F .T dL. In particular, find

∫
C

F .T dL when C is the line

segment from (2, 1) to (1, 3).

4.19 Exercise: Let F (x, y, z) = (−xy, z, x2). Find the flux of F across the portion of the
paraboloid z = x2 + y2 which lies above the square given by −1 ≤ x ≤ 1 and −1 ≤ y ≤ 1.

4.20 Theorem: (The Conservative Field Theorem) Let U be an open set in R3, let C be
a piecewise C1 curve from p to q in U , let f : U ⊆ R3 → R be C1 in U , and let F = ∇f .
Then ∫

C

F .T dL = f(q)− f(p).

4.21 Theorem: (Green’s Theorem) Let C be a piecewise C1 curve in R2 which goes
once, counterclockwise, around the boundary C = ∂U of a bounded open set U in R2.
Let F = (P,Q) be a continuous vector field on D = U which is C1 with bounded partial
derivatives in U . Then ∫

C

F .T dL =

∫∫
D

∂Q

∂x
− ∂P

∂y
dA.

4.22 Theorem: (The Divergence Theorem, or Gauss’ Theorem) Let S be a piecewise
C1 surface in R3 which envelopes the boundary S = ∂U of a bounded open set U in
R3, wrapping once around U with the normal vector N pointing outwards. Let F be a
continuous vector field on D = U which is C1 with bounded partial derivatives in U . Then∫∫

S

F .N dA =

∫∫∫
D

∇.F dV.

4.23 Theorem: (Stokes’ Theorem) Let S be a C1 surface in R3 given parametrically by
σ : D = U ⊆ R2 → R3 where U is open in R2. Let C be a piecewise C1 curve in R3 which
wraps once around the boundary curve C = ∂S in the direction compatible with the right
hand rule (when the fingers of the right hand point in the direction of the tangent vector
T to the curve, the thumb points in the direction of the normal vector N to the surface).
Let F be a continuous vector field on S such that F

(
σ(s, t)

)
is C1 with bounded partial

derivatives in U . Then ∫
C

F .T dL =

∫∫
S

(∇× F ).N dA.

4.24 Exercise: Let C be the circle x2+y2 = 1, let D be the disc D =
{

(x, y)
∣∣x2+y2 ≤ 1

}
,

and let F (x, y) = (x2y,−xy2). Verify that the conclusion of Green’s Theorem holds.

4.25 Exercise: Let D be the tetrahedron with vertices at (0, 0, 0, (1, 0, 0), (0, 2, 0) and
(0, 0, 2) and let S be the boundary surface of D. Let f(x, y, z) = xy + z2 and let F = ∇f .
Verify the conclusion of Gauss’ Theorem.

4.26 Exercise: Let C be the curve given by z = x2 and x2 + y2 = 1, let S be the surface
given by z = x2 with x2 + y2 ≤ 1, and let F (x, y, z) = (y,−x, z2). Verify the conclusion of
Stokes’ Theorem.
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4.27 Exercise: Let (x, y) = α(t) be a C1 curve which goes once, counterclockwise, around
the boundary C = ∂U of an open set U in R2 and let D = U . Show that the area of D is
given by

A =

∫
D

dA =

∫
α

x dy − y dx.

4.28 Exercise: Find the circulation of F along C when F (x, y) =
(
x− y3 , x3 + y3

)
and

C is the boundary curve of the quarter-disc given by x ≥ 0, y ≥ 0 and x2 + y2 ≤ 1.

4.29 Exercise: Find the flux of F across S when F (x, y, z) =
(
xy2 , x2y , (x2+y2)z2

)
and

S is the boundary surface of the cylinder given by (x, y, z) =
(

sin t, 0, cos t
)

for 0 ≤ t ≤ 2π.

4.30 Exercise: Find the circulation of F along C when F is the vector field given by
F (x, y, z) =

(
x2z +

√
x3 + x2 + 2 , xy , xy +

√
z3 + z2 + 2

)
and C is the circle given by

y = 0 and x2 + z2 = 1.

4.31 Note: Let U be an open set in R3 and let F be a C1 vector field in U . If ∇×F = 0
in U then it follows from Stokes’ Theorem that

(1)

∫
C

F .T dL = 0 for every loop C which is the boundary curve of a surface in U .

(2)

∫
C

F .T dL =

∫
D

F .T dL whenever C and D are curves from p to q in U such that

there exists a continuous deformation of curves in U from C to D which fixes the points p
and q, and

(3)

∫
C

F .T dL =

∫
D

F .T dL whenever C and D are loops in U such that there exists a

continuous deformation of loops in U from C to D.

4.32 Definition: A surface in R3 is called closed when it is the boundary surface of
some bounded open set in R3.

4.33 Note: Let U be an open set in R3 and let F be a C1 vector field in U . If ∇.F = 0
in U then it follows from the Divergence Theorem that

(1)

∫∫
S

F .N dA = 0 for every surface S which is the boundary of a region in U ,

(2)

∫∫
S

F .N dA =

∫∫
T

F .N dA whenever S and T are surfaces in U with the same

boundary curve C = ∂S = ∂T such that there exists a continuous deformation of surfaces
in U from S to T in U which fixes C, and

(3)

∫∫
S

F .N dA =

∫∫
T

F .N dA whenever S and T are closed surfaces in U such that

there exists a continuous deformation of closed surfaces in U from S to T .

4.34 Exercise: The electric field surrounding a long thin vertical wire along the z-axis,
with charge density (charge per unit length) ρ, is given by

E(x, y, z) = 2kρ
(

x
x2+y2 ,

y
x2+y2 , 0

)
.

Find the work done by the electric field on a small object of unit charge when it moves
along the line segment from the point (1, 0, 1) to the point (0, 2, 4).

4.35 Exercise: Find the flux of F across S when F (x, y, z) =
(
x+ z2 , 0 , −z − 3

)
and S

is the portion of the ellipsoid x2 + y2 + 3z2 = 4 with z ≤ 1.
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4.36 Theorem: (Divergence as a Flux Density and Curl as a Circulation Density) Let F
be a C1 vector field in an open set U in R3 and let a ∈ U . Then

(1) When D is the closed ball of radius r centred at a and S is the boundary sphere of D,
we have

(∇.F )(a) = lim
r→0

1

Vol(D)

∫∫
S

F .N dA.

(2) When D the disc of radius r centered at a with normal vector N and C is the boundary
circle of D, we have

(∇× F )(a).N = lim
r→0

1

Area(D)

∫
C

F .T dL.
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Chapter 5. Maxwell’s Equations

5.1 Note: The Lorentz Force Law states that when a small object of charge q moves
at velocity v, the force exerted on the object by an electric field E and a magnetic field B
is given by

F = q
(
E + v ×B

)
.

Electric and magnetic fields, in turn, are produced by charges and currents and they
influence each other.

5.2 Definition: Electrostatics is the study of electric fields which are produced by a
static charge distribution.

5.3 Note: Coulomb’s Law states that for a small object of charge q at position s ∈ R3.
the electric field E(r) and the electric potential u(r) at the point r ∈ R3 are given by

E(r) =
q

4πε0
· (r − s)
|r − s|3

and u(r) =
q

4πε0
· 1

|r − s|
.

For a static charge distribution on a curve C in R3 of charge density (charge per unit
length) ρ we have

E(r) =

∫
C

ρ

4πε0
· (r − s)
|r − s|3

dL and u(r) =

∫
C

ρ

4πε0
· 1

|r − s|
dL .

For a static charge distribution on a surface S in R3 of charge density (charge per unit
area) ρ we have

E(r) =

∫∫
S

ρ

4πε0
· (r − s)
|r − s|3

dA and u(r) =

∫∫
S

ρ

4πε0
· 1

|r − s|
dA.

For a static charge distribution in a region D ⊆ R3 of charge density (charge per unit
volume) ρ, we have

E(r) =

∫∫∫
D

ρ

4πε0
· (r − s)
|r − s|3

dV and u(r) =

∫∫∫
D

ρ

4πε0
· 1

|r − s|
dV .

5.4 Exercise: Show that the electric field and electric potential surrounding a long straight
wire along the z-axis with charge density (charge per unit length) ρ are given by

E(x, y, z) =
ρ

2πε0

(
x

x2 + y2
,

y

x2 + y2
, 0

)
, u(x, y, z) = − ρ

4πε0
ln(x2 + y2).

5.5 Exercise: Find the electric field and the electric potential at all points inside and
around the solid ball D =

{
(x, y, z)

∣∣x2+y2+z2 ≤ R
}

with constant charge density (charge
per unit volume) ρ at all points in D.
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5.6 Theorem: For a static charge distribution on a curve, surface or region, the electric
field and the electric potential are related by

E = −∇u.

It follows that
∇× E = 0.

5.7 Theorem: (Gauss’ Law) Let D be the closure of a bounded open set in R3 and let
S = ∂D be its boundary surface. Then for a static charge distribution in R3, we have∫∫

S

E .N dA =

∫∫∫
D

ρ

ε0
dV =

Q

ε0

where Q is the total charge in D.

5.8 Corollary: For a static charge distribution in R3 we have

∇.E =
ρ

ε0
.

5.9 Exercise: Redo exercises 5.3 and 5.4 using Gauss’ Law.

5.10 Definition: The differential equations

∇.E =
ρ

ε0
and ∇× E = 0

are called Maxwell’s Equations of Electrostatics.

5.11 Definition: Magnetostatics is the study of magnetic fields which are produced by
a steady state current.

5.12 Note: Let C be a curve which lies on a surface S in R3. When a current distribution
flows along the surface S with current density (vector-valued current per unit cross-
sectional length) J , the current (charge per unit time) which flows across the curve C is
given by

I =

∫
C

J .M dL

where M is a unit vector which is tangent to S and normal to C (we can take M = N ×T
where N is the unit normal vector for S and T is the unit normal vector for C).

Let S be a surface in R3. When a current distribution flows in R3 with current density
(vector-valued current per unit cross-sectional area) J , the current (charge per unit time)
which flows across the surface S is given by

I =

∫∫
S

J .N dA.

5.13 Exercise: A hollow plexiglass sphere of radius R centred at the origin carries a
uniform charge distribution of charge density (charge per unit area) ρ, and it rotates
about the z-axis at a rate of ω radians per unit time. Find the resulting current density J
at each point on the sphere, and calculate the current (charge per unit time) which crosses
the curve given by (x, y, z) = α(t) =

(
R sin t, 0, R cos t

)
for 0 ≤ t ≤ π.
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5.14 Note: The Biot-Savard Law states that the element of magnetic field dB(r) and
the element of magnetic potential dA(r) at r ∈ R3, which are produced by a small element
of current dI = I T dL = I α′(t) dt flowing along the curve given by s = α(t), are given by

dB(r) =
µ0

4π
· dI × (r − s)
|r − s|3

and dA(r) =
µ0

4π
· dI

|r − s|
.

For a steady current I flowing along the curve C we have

B(r) =

∫
C

µ0

4π
· dI × (r − s)
|r − s|3

and A(r) =

∫
C

µ0

4π
· dI

|r − s|
.

For a steady current distribution flowing on a surface S with current density (vector-valued
current per unit cross-sectional length) J we have

B(r) =

∫∫
S

µ0

4π
· J × (r − s)
|r − s|3

dA and A(r) =

∫∫
S

µ0

4π
· J

|r − s|
dA .

For a steady current distribution flowing in a region D ⊆ R3 with current density (vector-
valued current per unit cross-sectional area) J we have

B(r) =

∫∫∫
D

µ0

4π
· J × (r − s)
|r − s|3

dV and A(r) =

∫∫∫
D

µ0

4π
· J

|r − s|
dV .

5.15 Exercise: Show that the magnetic field and magnetic potential surrounding a long
straight wire along the z-axis carrying the current I are given by

B(x, y, z) =
µ0I

2π

(
−y

x2 + y2
,

x

x2 + y2
, 0

)
and A(x, y, z) = −µ0I

4π

(
0, 0, ln(x2 + y2)

)
.

5.16 Exercise: Find the magnetic field and magnetic potential at each point along the
z-axis, produced by a square loop of wire in the xy-plane which follows the boundary of
the region D =

{
(x, y)

∣∣− a ≤ x ≤ a,−a ≤ y ≤ a} and carries a constant current I.

5.17 Exercise: Find the magnetic field and the magnetic potential at all points (x, y, z)
inside a long cylindrical wire of radius R centred along the z-axis whose current density is
given by J(u, v, w) = ae−k(u

2+v2)(0, 0, 1).

5.18 Exercise: Find the magnetic field and the magnetic potential at the origin which is
produced by the plexiglass sphere from Exercise 5.13.

5.19 Theorem: For a steady state current on a curve, surface or region, the magnetic
field and the magnetic potential are related by

B = ∇×A.

It follows that
∇.B = 0 .

5.20 Theorem: (Ampère’s Circuital Law) Let S be a bounded surface in R3 and let
C = ∂S be its boundary curve. Then for a steady current distribution in R3 we have∫

C

B .T dL =

∫∫
S

µ0J .N dA = µ0I

where I is the total current flowing through the surface S.
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5.21 Corollary: For a steady current distribution in R3 we have

∇×B = µ0J.

5.22 Exercise: Redo Exercises 5.15 and 5.16 using Ampère’s Circuital Law.

5.23 Definition: The differential equations

∇.B = 0 and ∇×B = µ0J

are called Maxwell’s Equations of Magnetostatics.

5.24 Note: It has been found, experimentally, that the two equations ∇.E = ρ
ε0

and
∇.B = 0 both hold even when E and B vary with time. By contrast, the other two
equations ∇× E = 0 and ∇×B = µ0J need to be modified.

5.25 Note: Faraday’s Law states that, when S is a bounded surface in R3 and C = ∂S
is the boundary curve then, for any charge and current distributions in R3, we have∫

C

E .T dL = − ∂

∂t

∫∫
S

B .N dA.

5.26 Corollary: For any charge and current distribution in R3 we have

∇× E = −∂B
∂t
.

5.27 Theorem: (The Continuity Equation) For any charge and current distribution in
R3 we have

∇. J = −∂ρ
∂t
.

5.28 Note: When the magnetostatics equation ∇×B = µ0J holds, we have

0 = ∇. (∇×B) = ∇. (µ0J) = µ0∇. J = −µ0
∂ρ

∂t

so that ∂ρ
∂t = 0. Thus the magnetostatics equation ∇ × B = µ0J cannot possibly hold

when the charge density ρ varies with time.
Since ∇. J = −∂ρ∂t and ∇.E = ρ

ε0
, we have

∇. J = −∂ρ
∂t

= − ∂

∂t

(
ε0∇.E) = −ε0∇. ∂E

∂t

so that

∇.(J + ε0
∂E

∂t

)
= 0.

This observation led Maxwell to propose that we replace the equation ∇ × B = µ0J by
the equation

∇×B = µ0J + µ0ε0
∂E

∂t
.

5.29 Definition: The four differential equations

∇.E =
ρ

ε0
∇× E = −∂B

∂t

∇.B = 0 ∇×B = µ0 J + ε0µ0
∂E

∂t
.

are called Maxwell’s Equations of Electromagnetism. It has been found, experimen-
tally, that these equations hold to a high degree of accuracy.
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