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Chapter 1. Functions

1.1 Definition: Let D C R™. We say that f is a function or a map from D to R™, and
we write f: D C R™ — R™, when for every x € D there is a unique point y = f(z) € R™.
The set D is called the domain of the function f.

The graph of the function f is the set
Graph (f) = {(z, f(z))|z € D} C R"™™.

We say the graph of f is defined explicitly by the equation y = f(z).
The null set of f is the set

Null (f) = f~1(0) = {z € D|f(z) =0} CR".

More generally, given k € R™, the level set f~!(k), also called the inverse image of k
under f, is the set
f—l(k) = {;1: c D}f(.%’) = k-} C R".

More generally still, given a subset B C R", the inverse image of B under f is the set
f~HB)={z e D|f(z) e B} CR"

We say the level set f~!(k) is defined implicitly by the equation f(x) = k.
The range of f, also called the image of f, is the set

Range (f) = f(D) = {f(2))| € D} C R™.
More generally, given a set A C D, the image of A under f is the set
f(A) ={f(z)|]z € A} CR™

We say the range of f is defined parametrically by the equation y = f(z), and for
x = (x1,x2, ++,x,) € D, the variables x1,xo, -, x,, are called the parameters.

1.2 Note: The graph, the level sets and the range of a function f : D C R" — R™
are geometric objects such as points, curves, surfaces, or higher dimensional analogues of
these. In accordance with the above definitions, a curve in R? or in R3, or a surface in
R3, can be defined explicitly, implicitly, or parametrically.

A curve in R? can be defined explicitly as the graph of a function f : D C R — R,
implicitly as the null set (or a level set) of a function g : D C R? — R, or parametrically
as the range of a function a: D C R — R3.

A curve in R? can be defined explicitly as the graph of a function f : D C R — R?,
implicitly as the null set (or a level set) of a function g : D C R® — R?, or parametrically
as the range of amap ao: D C R — R32.

A surface in R? can be defined explicitly as the graph of a function f : R? — R, implicitly
as the null set (or as a level set) of a function g : D C R® — R, or parametrically as the
range of a function o : D C R? — R3.



1.3 Example: Consider the unit circle 22 +y? = 1 in R?. For f: [-1,1] C R — R given
by f(z) = V1 — a2, the graph of f, that is the curve y = f(z), is equal to the top half of
the unit circle. For g : R? — R given by g(z,y) = 2% + 3% — 1, the null set of g, that is the
curve 2 4+ y? = 1, is equal to the entire circle. For a : R — R given by «(t) = (cost,sint),
the range of «, that is the curve (z,y) = «(t), is equal to the entire circle.

1.4 Example: Consider the ellipse which is the intersection of the cylinder 22 + 3% = 1
with the plane z = x + v in R3. The ellipse is given implicitly by the two equations
22 +9y? =1 and z = x + y, which can be written in vector form as the single equation
(wz +y?—1,z2—x— y) = (0,0), and so it is the null set of the function g : R® — R?
given by g(x,y,z) = (mQ +y?—1,2—2— y) To obtain a parametric description of the
ellipse, note that to get 22 + 2 = 1 we can take x = cost and y = sint, and then to
get z = x + y we can take z = cost + sint, and so the ellipse is given parametrically by
(r,y,2) = (cos t,sint, cost-+sin t). In other words, the ellipse is the range of the function
a: R — R3 given by a(t) = (cost, sint, cost + sin t). To obtain an explicit description
for half of the ellipse, note that the top half of the circle z24y? = 1 is given by y = v/1 — 22
and then to get z = z+y we need z = z++/1 — 22, and so the right half of the ellipse (when
the y-axis points to the right) is given explicitly by (y,z) = (V1 —22, 2+ V1 —22). In
other words, the right half of the ellipse is the graph of the function g : [-1,1] C R — R?
given by g(z) = (V1 —2?, 2z + V1 —2?).

1.5 Example: Consider the unit sphere in R? given by 22432422 = 1. The top half of the
sphere is the graph z = f(x,y) where f : D C R? — R is given by f(z,y) = /1 — 22 — 32
with D = {(z,y) € RQ‘x2 +y? < 1}. The entire sphere is the null set g(z,y, z) = 0 where
g: R?® = R is given by g(z,y,2) = 22 + y?> + 22 — 1. The top half of the sphere can be
given parametrically by x = rcosf and y = rsinf and z = v/1 —r2, so it is the range
(z,y,2) = o(r,0) where o : D C R* — R? is given by o(r,0) = (rcost, rsint, v1—r?)
with D = {(r,0) e R*|0 < r < 1}.

1.6 Remark: A function is uniquely determined by its graph but not by its null set or
by its image. It follows that implicit and parametric descriptions of curves and surfaces
are not unique. For example, the parabola y = x? can be given implicitly by g(x,y) = 0
for any of the functions g(x,vy) =y — 22, g(z,y) = (y — 22)3 or g(x,y) = (y — 22) (22 + 1),
and it can be given parametrically by (z,y) = a(t) for any of the functions a(t) = (¢,t?),
a(t) = (t3,5) or a(t) = (sinht, sinh®t).

1.7 Remark: Given an explicit equation for a curve or surface it is easy to obtain an
implicit or parametric equation for the curve or surface. For example the curve y = f(z)
in R? can be given implicitly by g(x,y) = 0 where g(x,y) = y — f(x) and parametrically
by (z,y) = a(t) where «o(t) = (t,f(t)), Similarly the surface z = f(z,y) in R? can be
given implicitly by g(z,y,z) = 0 where g(z,y,2z) = z — f(z,y) and parametrically by
(x,y,2) = o(s,t) where o(s,t) = (s,t, f(s,t)). On the other hand, given an implicit or a
parametric equation for a curve or a surface it can be difficult or impossible to obtain an
explicit equation.

1.8 Exercise: The helix is given explicitly by © = cos z and y = sin z. Sketch the curve

and find an implicit and a parametric equation for the curve.

1.9 Exercise: The alpha curve is given implicitly by y? = 23 4+ z. Sketch the curve,
find explicit equations for the top and bottom halves of the curve, and find a parametric
equation for the entire curve.



1.10 Exercise: The curve which is given explicitly in polar coordinates by r = r(6) is
given parametrically in Cartesian coordinates by (z,y) = a(t) = (r(t)cost, r(t)sint).
Sketch the cardioid which is given in polar coordinates by r = () = 1 4 cos 6, then find
an implicit equation for the curve.

1.11 Exercise: The twisted cubic is given parametrically by (z,v, 2) = a(t) = (¢,12,t3).
Sketch the curve and find an implicit and an explicit equation for the curve.

1.12 Remark: In order to sketch a surface which is defined explicitly as a graph z =
f(z,y) or implicitly as a level set g(z,y,z) = k, it often helps to first sketch curves of
intersection of the surface with various planes x = ¢, y = ¢ or z = ¢. The intersection
of the graph z = f(z,y) with the plane z = ¢ is given implicitly by f(z,y) = ¢. The
intersection of the level set g(z,y,z) = k with the plane z = ¢ is given implicitly by
g (.CE Y, C) =k

1.13 Exercise: Sketch the curve of intersection of the cylinder z? + y?> = 1 with the
parabolic sheet z = 22 and find implicit, explicit, and parametric equations for the curve.

1.14 Exercise: Sketch the surface z = 22 + 7°.

1.15 Exercise: Sketch the surface z = 422 — 72.

1.16 Exercise: Sketch the surface 22 + 4y2 — 22 = 0.

1.17 Exercise: Sketch the surface (z,y,2) = o(u,v) = (u, v, u? + 4v? — 3).

1.18 Exercise: Find a parametric equation (z,y, z) = o(¢,0) for the sphere of radius r
centred at the origin, where the parameters ¢ and 6 are the angles of latitude and longitude.
In other words, find o (¢, #) so that when (z,y, z) = o(¢,0), ¢ is the angle between (0,0, 1)
and (z,y, z) and 0 is the angle from (1,0) counterclockwise to (z,y).

1.19 Exercise: Find implicit and parametric equations for the torus which is obtained
by rotating the circle (z,z) = (R+rcosf, rsinf) about the z-axis.

1.20 Definition: An affine space in R" is a set of the form p+V = {p + v|v € V'} for
some p € R™ and some vector space V' C R™. The dimension of the affine space p+V is
the same as the dimension of V. The set p+ V is called the affine space through p parallel
to V, or the affine space through p perpendicular to V+ (the orthogonal complement of
V).

1.21 Example: In R?, the only zero dimensional vector space is the origin {0}, the 1-
dimensional vector spaces are the lines through the origin, the 2-dimensional spaces are
the planes through the origin, and the only 3-dimensional vector space is all of R3. The 0-
dimensional affine spaces are the points in R?, the 1-dimensional affine spaces are the lines
in R3, the 2-dimensional affine spaces are the planes in R2, and the only 3-dimensional
affine space is all of R3.

1.22 Definition: Let f : R” — R™. The function f is called linear when it is of the
form f(x) = Az for some matrix A € M,,«,(R), and f is called affine when it is of the
form f(z) = Az + b for some matrix A € M,,«,(R) and some vector b € R™.



1.23 Note: Let A € M,,«, and let f be the linear map f(z) = Azx. Let uy,---,uy
be the column vectors of A and let vq,---,v,, be the row vectors of A so that we have

A= (ul,---,un) = (vl,---,vm)T. Let ¢ be a point in the range of f, say f(p) = ¢. Then

Range (f) = {Az|z e R"} = { i w;z;| each z; € R} = Spanf{uy, -+, u,} = Col(A),
i=1

Null (f) = Null (4) = {z € R"|Az =0} = {z € R"|v; » & = 0 for all i} = Row(A)",
F0 = {r e RYAr = ¢} = {r € R v = Ap} = {x  R"[A ) =0}
={p+y e R"[Ay =0} = p+ Null(4).

1.24 Note: Let A € M,,x»(R), let b € R™ and let f(x) = Az + b. Let ¢ be in the range
of f with say f(p) = c. Then

Range (f) = {Az + blz € R"} = b+ Col(A) , and
fHe)={zeR"Az+b=c=Ap+b} = {z € R"|A(z — p) =0} = p+ Null (A).
Note that if wy,uo, -, u, are the columns of A and ey, eo, -, e, are the standard basis

vectors for R”, then we have f(0) =0b and f(e;) = Ae; +b=wu; +b. If vy,---, v, are the
row vectors of A and k = ¢ — b, then since

flz)=c <= Az+b=c < Az =k < v; «x =k; for all 4,

it follows that the level set f(x) = c is the intersection of the affine spaces v; « = k;, and
we note that the space v; « x = k; is the affine space in R of dimension m — 1 through p
perpendicular to v;.

1.25 Exercise: Define f: R®* — R? by f(z,y,2) = (2 + 3y + 2z, 2z + by + 32) and let
(a,b) = (1,1). Find a parametric equation for the level set f(z,y,z2) = (a,b).

4 1 1 2
1.26 Exercise: Let A= 1 0 2 | andb= | 1 | and let f(x) = Az + b. Find an
5 2 -4 —1

implicit equation for the range of f.



Chapter 2. Differentiation

2.1 Definition: For a € R" and r > 0, we define the open ball of radius r centred at a
to be the set
B(a,r) = {z € R"||z —a| < r}.

For a set U C R", we say that U is open in R"™ when for every point a € U there exists
a radius r > 0 such that B(a,r) C U. Informally, a set U is open in R™ when it does not
include any of its boundary points.

2.2 Definition: Let U C R™ be open in R™, let f : U C R"™ — R™, and let a € U. We
say that f is differentiable at a when there exists an affine map L : R™ — R’ such that

Ve>035>0 vmeU(p; —a| < 6= |f(z) — L(x)| < efw — a|>.
We say that f is differentiable in U when f is differentiable at every point a € U.

2.3 Definition: Let U C R" be open in R", let f: U C R™ — R, and let at a € U, say
a= (a1, - -,a,). We define the k" partial derivative of f at a to be

aa_wfk(a) = gk/<a’k) s where gk(t) = f(ah e, Qk—1,t, gy, 'an) ’
or equivalently,
%(a} = hi'(0) , where hp(t) = f(ai, -, ap_1,ar +t, 0841, - ),

provided that the derivatives exist. Note that g and hj are functions of a single variable.

Sometimes 88f is written as f,, or as fr. When we write u = f(x), we can also write
% as 53;’“ , Ug, Or up. When n = 3 and we write z, y and z instead of x1, x2 and z3, the

; of of af of of of
partial derivatives So1’ Dug and 92, are written as 3, By and 37, or as f, fy and f..

o) d
When n = 1 so there is only one variable z = x; we have f ~(a) = dﬁ, (a) = f'(a).
2.4 Note: To calculate the partial derivative %(w), we can treat the variables x; with
i # k as constants, and differentiate f as if it were a function of the single variable zy.

2.5 Exercise: Let f(z,y) = 23y + 2zy?. Find %(1,2) and 2—5(1,2).
2.6 Exercise: Let f(x,y,2) = (z — 2?)sin(z%y + 2). Find %(m,y, z) and af ~(3,%,0).

2.7 Definition: Let U C R" be open in R", let f : U C R™ — R™ and let a € U.
Write u = f(z) = (fl(x),fg(x),~~,fm(x))T with # = (21,292, -, 2,)T. We define the

derivative matrix, or the Jacobian matrix, of f at a to be the matrix

S S o fh)
U2 (q) Q2(q) ... 22(g)
Ox1 Oxo Ox
Df(a) = . . )
of1 of1 of1
L) g8(a) - §8(a)

and we define the linearization of f at a to be the affine map L : R™ — R™ given by

L(z) = f(a) + Df(a)(x — a)
provided that all the partial derivatives a—f’“( ) exist.
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2.8 Definition: Let U be open in R™ and let f: U C R® — R™. We say that f is C! in
U when all the partial derivatives % exist and are continuous in U. The second order

partial derivatives of f are the functions

of;
5 ()
(9:13k6$l 6a;k )

9% f
Bmkaxl

2, 2,
We also write gm{ L = afk g; —. We say that f is C? when all the partial derivatives

exist and are continuous in U.

2.9 Definition: Let a € U where U be an open set in R, and let f : U C R — R™, say
z = f(t) = (z1(t), z2(t), -+, 1 (t)). Then we write f'(a) = Df(a) and we have

%1 (a) z1'(a)
f'(a) = Df(a) = : = :
9%m (q) Ty (a)

The vector f’(a) is called the tangent vector to the curve z = f(t) at the point f(a). In
the case that ¢ represents time and f(t) represents the position of a moving point, f/(a) is
also called the velocity of the moving point at time t = a.

2.10 Definition: Let a € U where U is an open set in R” and let f: U C R™ — R. We
define the gradient of f at a to be the vector

of af . \T (@
Vi(a) = Df(@)" = (g0 gm(@) = |
g-(a)

2.11 Theorem: Let U C R™ be open, let f : U C R™ — R™ and let a € U. Then

(1) If f is differentiable at a then the partial derivatives of f at a all exist, and the affine
map L which appears in the definition of the derivative is the linearization of f at a.

(2) If f is differentiable in U then f is continuous in U.

(3) If f is C! in U then f is differentiable in U.

(4) If f is C?> in U then aa2fj Ofi for all g, kL.

T 0] = Ox; 0T
2.12 Note: Let a € U where U is open in R" and let f : U C R"™ — R™ be differentiable
at a. The definition of the derivative, together with Part (1) of the above theorem, imply
that the function f is approximated by its linearization near x = a, that is when z = a we
have

f(z) = L(z) = f(a) + Df(a)(z — a).

The geometric objects (curves and surfaces etc) Graph (f), Null (f), f~*(k) and Range (f)
are all approximated by the affine spaces Graph (L), Null (L), L™ (k) and Range (L). Each
of these affine spaces is called the (affine) tangent space of its corresponding geometric
object: the space Graph (L) is called the (affine) tangent space of the set Graph (f) at
the point (a, f(a)); when f(a) = 0, the space Null (L) is called the (affine) tangent space
of Null (f) at the point a, and more generally when f(a) = k, so that a € f~1(k), the
space L™1(k) is called the (affine) tangent space to f~1(k) at the point a; and the space
Range (L) is called the (affine) tangent space of the set Range (f) at the point f(a). When
a tangent space is 1-dimensional we call it a tangent line and when a tangent space is
2-dimensional we call it a tangent plane.



2.13 Exercise: Find an explicit, an implicit and a parametric equation for the tangent
line to the curve in R? which is defined explicitly by the equation y = f(z), implicitly by
the equation g(z,y) = k, and parametrically by the equation (z,y) = a(t) = (z(t),y(t)).

2.14 Exercise: Find an explicit, an implicit, and a parametric equation for the tan-
gent line to the curve in R? which is defined explicitly by (x,y) = f(z) = (:L’(z),y(z)),
implicitly by u(x,y,z) = k and v(x,y,2) = [, and parametrically by (z,y,z) = a(t) =

(z(®),y(1), 2(1)).

2.15 Exercise: Find an explicit, an implicit and a parametric equation for the tan-
gent plane to the surface in R? which is defined explicitly by z = f(z,y), implicitly by
9(z,y, 2) = k, and parametrically by (z,y,z) = o(s,t) = (z(s,t),y(s, 1), 2(s,t)).

2.16 Exercise: Find a parametric equation for the tangent line to the helix given by
(x,y,2) = (2cost,2sint,t) at the point where ¢t = %, and find the point where this tangent
line crosses the xz-plane.

2
e +2zy

2+y

2.17 Exercise: Find an explicit equation for the tangent plane to the surface z =
at the point (2, —1).

2.18 Exercise: Flnd an implicit equation for the tangent line to the curve given by
2y + 2% +1In(y ) = 6 at the point (2,5).

2.19 Exercise: Find a parametric equation for the tangent line to the curve of intersection
of the paraboloid z = 2 — 22 — y? with the cone y = v/22 + 22 at the point p = (1, 1,0).

2.20 Exercise: Find an explicit equation for the tangent plane to the surface given by
(x,y,2) = (r cost, rsint, H%) at the point where (r,t) = (\/5, %)

2.21 Theorem: (The Chain Rule) Let f : U CR" -V CR™, let g: V C R™ — R/,
and let h(x) = g(f(z)). If f is differentiable at a and g is differentiable at f(a) then h is
differentiable at a and Dh(a) = Dg(f(a))Df(a).

2.22 Exercise: Let z = f(z,y) = 42 — 8zy + 5y, (u,v) = g(z) = (Vz—1, 5Inz) and
h(z,y) = g(f(z,y)). Find Dh(2,1).

2.23 Exercise: Let (z,y) = f(r,0) = (rcosf, rsinf), let z = g(x,y) and let z = h(r,0) =
g(f(r,0)). If h(r,0) =7 2¢V3(0=%) then find Vg(\/_ 1).

LR _ _ : ou
2.24 Exercise: Let (z,y,2) = f(s,t) and (u,v) = g(z,y, ). Find a formula for .



2.25 Definition: Let a € U where U is an open set in R", let f : U C R™ — R be
differentiable at a, and let v € R™. We define the directional derivative of f at a
with respect to v, written as D, f(a), as follows: pick any differentiable curve a(t) with
@(0) = a and o/(0) = v (for example, we could pick «(t) = a + vt), and define D, f(a)
to be the rate of change of the function f at ¢t = 0 as we move along the curve a. To be
precise, let 5(t) = f(a(t)), note that 5'(¢t) = Df (a(t))a’(t), and then define D, f(a) to be

D, f(a) = B'(0)
= Df((0)) &/(0)
= Df(a)v
=Vf(a)v.

Notice that the formula for D, f(a) does not depend on the choice of the curve a(t). The
(directional) derivative of f in the direction of v is defined to be the D,, f(a) where
w is the unit vector in the direction of v which is given by w = ﬁ

2.26 Exercise: Let f(z,y,2) = zsin(y* — 222) and let a(t) = (Vt, 3t, e*=4/4). Find
the rate of change of f as we move along the curve «(t) when ¢t = 4.

2.27 Theorem: Let f : U C R™ — R be differentiable at a € U. Say f(a) = b. The
gradient Vf(a) is perpendicular to the level set f(x) = b, it is in the direction in which f
increases most rapidly, and its length is the rate of increase of f in that direction.

Proof: Let a(t) be a curve in the level set f(z) = b, with a(0) = a. We wish to show that
Vf(a) L a/(0). Since «(t) lies in the level set f(z) = b, we have f(«(t)) = b for all t. Take
the derivative of both sides to get Df (a(t))a/(t) = 0. Put in t = 0 to get Df(a)a’(0) =0,
that is Vf(a) » ¢/(0) = 0. Thus Vf(a) is perpendicular to the level set f(z) = b.

Next, let u be a unit vector. Then D, f(a) = Vf(a) « u = |Vf(a)| cos§, where 0 is the
angle between u and Vf(a). So the maximum possible value of D,, f(a) is |Vf(a)|, and this
occurs when cosf = 1, that is when 6§ = 0, which happens when u is in the direction of

Vf(a).

2.28 Note: Let a € U where U is an open set in R”, and let f : U C R" — R"™ be
differentiable. The k' column vector of the derivative matrix Df(a) is the vector

for(@) = 2(a) = (2@ 2 (@) R,

which is the tangent vector to the curve By (t) = f(ax(t)) at t = 0, where oy, is the curve
through a in the direction of the standard basis vector ey given by a(t) = a + te.

The [*" column vector of the derivative matrix Df(a) is the vector

Vhia) = (). 2 (@)

which is orthogonal to the level set fj(x) = f;(a), pointing in the direction in which f;
increases most rapidly, and its length is the rate of increase of f; in that direction.



Chapter 3. Integration of Scalar-Valued Functions

3.1 Remark: For many sets D C R"™ and many functions f : D C R"™ — R one can
define the integral of f on D as a limit of Riemann sums, but we shall not give the
precise definition here. Instead, we quote a theorem which enables us to calculate these
integrals.

3.2 Theorem: When D = {z € Rla <z < b} and f : D C R — R is continuous, the
integral of f on D is written as

/Df dL:/Df(x) dL - :_af@)dx

When D = {(z,y) e R*|la <2 <b, g(z) <y < h(z)} and f : D C R* - R is continuous,
the integral of f on D is given by

[ raa= [ s dA=/Df<x,y>da:dy=/;a(/yii)f(as,y)dy)dx.

When D = {(:Jc,y) € R2|c <y<d,k(y) <z< l(:v)} and f: D C R? = R is continuous,
the integral of f on D is given by

far=[[ seuan= ([ remacay= [ ([ @y de)a
D D D y=c r=k(y)

More generally, when D C R? is a union D = U D; of sets D; C R? which only overlap
i=1

along their boundaries, with each set D; of one of the above two forms, the integral of f

onD is

/fdA z fdA

When D = {(x,y,z) € R3’a <z <b,glx) <y < hx), kir,y <z< l(:)s,y)} and
f: D C R3— R is continuous, the integral of f on D is given by

/de // f(x,y,2) dV = // f(z,y, 2) dedydz
B /z_a (/yi(;()x) (/Zl_(:(i)y) fay, )dz) dy) dz.

There are similar formulas in the case that the roles of x, y and z are permuted. More
n
generally, when D C R? is a union D = |J D; of sets D; C R?® which only overlap along

i=1
their boundaries, with each set D; of the above form or of a similar form with x, y and z

permuted, the integral of f on D is
/ fdA = Z f dA.
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3.3 Note: When D C R?, the integral of the constant function 1 on D measures the
area of the region D and, when f : D C R? — R, the integral of f on D measures the
signed volume of the region between the graph of f and the region D and, in the case
that D represents the shape of a flat object and the function f : D C D — R represents
its density (or the charge density), the integral of f on D measures the total mass (or
charge) of the object.

When D C R3, the integral of the constant function 1 on D measures the volume of
the region D and, when D represents the shape of a solid object and f : D C R® — R
represents its density (or charge density), the integral of f on D measures the total
mass (or charge) of the object.

3.4 Exercise: Let D be the triangle in R? with vertices at (0, —1), (2,1) and (2, 3). Find

/ 2xy dA.
D

3.5 Exercise: Find the volume of the region in R? which lies above the paraboloid
2z = 22 + 32 and below the plane z = 2z.

3.6 Exercise: Find the mass of the tetrahedron with vertices at (0, 0,0), (2,0,0), (2,2,0)
and (2,2,2) given that the density is given by p(z,y, 2) = 2zy(3 — 2).

3.7 Definition: For a set D C R", we say that D is bounded when there exists a radius
r > 0 such that D C B(0,r), and we say that D is closed in R™ when its complement
R" \ D is open in R™. For an open set U C R", the closure of U, denoted by U, is the
smallest closed set which contains U, and the boundary of U is the set OU = U \ U.

3.8 Definition: Let U and V be open sets in R”, let C = U and D = V. An orientation
preserving change of coordinates map from C' to D is a continuous map g : C' — D
such that the map g : U — V is invertible and C' with det (Dg(a)) > 0 for all a € U,
and a orientation reversing change of coordinates map from C' to D is a continuous
map g : C — D such that the map g : U — V is invertible and C! with det (Dg(a)) <0
forall a € U.

3.9 Example: Three important orientation preserving change of coordinates maps are
the polar coordinates map in R?, which is given by

(z,y) = g(r,0) = (r cos @, rsin 9) with det Dg(r,0) =1,
the cylindrical coordinates map in R?, which is given by
(x,y,2) =g(r,0,2) = (r cosf, rsiné, z) with det Dg(r,0,2) =,
and the spherical coordinates map in R?, which is given by

(z,y,2) = g(r,¢,0) = (r sing cosf, r sing sinf, r cos qb) with det Dg(r, ¢,0) = r*sin ¢.
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3.10 Theorem: (Change of Variables) When D = [a,b] CR, and g: C CR —- D C R
is a change of variables map from C to D given by x = g(u) with inverse u = h(x), and
f:D CR — R is continuous, we have

/ ;ﬂw)dw: | f@e= | rlotw)]act Dyt au~ | " ot)o/ ) du

When f: D C R? — R is continuous and g : C C R? — D C R? is a change of variables
map from C to D given by (z,y) = g(u,v), we have

/ f(z,y) d:vdx—// deth(u v)‘dudv.

When f: D C R® — R is continuous and g : C C R® — D C R? is a change of variables
map from C' to D given by (x,y,2) = g(u,v,w), we have

// flx,y, =z dxdydz—/// g(u,v,w) ’deth(u,v,w)’dudvdw.

3.11 Exercise: Find the area inside the cardioid r = 2 + 2 cos 6.
3.12 Exercise: Find the volume of the region which lies under the graph of z = e~ (@ +y?),

3.13 Exercise: Find the volume of the region which lies inside the sphere 22 +y%+2? = 4
and inside the cylinder 22 — 2z + 32 = 0.

3.14 Exercise: Find the mass of the ball 22 + y? + 22 < 4 given that the density is given
by p(z,y,2) = 1 — 5/2% +y? + 22,

3.15 Definition: Let n =2 or 3, let a : [a,b] C R — R"™ be continuous on [a,b] and C*
in (a,b), let C be the curve in R™ which is given parametrically by (z,y) = «(t) or by
(r,y,2) = a(t) for a <t < b, and let f: C C R™ — R be continuous on C' = Range («).
Then we write dL = |o/(t)| dt and we define the (curve) integral of f on C to be

/af dL:/Cf dL:/tiaf(a(t))‘a/(mdt'

When C'is a union C' = | Cj of curves Cj as above, we define [ fdA= > fck f dA.
k=1 c k=1

Let D be the closure of a bounded open set U in R?, let o : D C R? — R3 be continuous in
D and C'in U, let S be the surface in R? which is given parametrically by (z,y, 2) = o(s, t),
and let f: S C R® — R be continuous on S. Then we write dA = ‘05 X O't‘ ds dt and we
define the (surface) integral of f on S to be

//fdA //fdA // o (5,1)) |0 % 0| ds dt.

where o5 = (‘g—(s t) 22(s,t), 3 9z = (s, t)) and o; = (gx (5,t), % 9y 2 (s,1), ‘9Z(s t))T.

When S is a union S = U S of surfaces Sy as above, we define / fdA = Z fSk f dA.
k=1 s k=1

11



3.16 Note: When C' is a curve in R™ with n = 2 or 3, which is given by (z,y) = «a(t)
or by (x,y,2) = a(t) for a <t < b, the integral of the constant function 1 on C' measures
the length (or arclength) of the curve C, and in the case that C' represents the shape
of a physical object and the function f : C C R? — R represents its density (or charge
density), the integral of f on C' measures the total mass (or charge) of the object.

When S is a surface in R?® which is given by (z,y,2) = o(s,t) for (s,t) € D C R?,
the integral of the constant function 1 on S measures the area (or surface-area) of the
surface S, and in the case that S represents the shape of a physical object and the function
f S — R represents its density (or charge density), the integral of f on S measures
the total mass (or charge) of the surface.

3.17 Exercise: Find the arclength of the helix a(t) = (¢, cost,sint) for 0 < ¢ < 2.

3.18 Exercise: Find the surface area of the torus given by
(r,y,2) =0(0,¢) = ((2 + cos @) cosf, (24 cos¢)sinf, sin gb)

for 0 <0 <27 and 0 < ¢ < 27.

3.19 Exercise: Find the mass of the hollow sphere z? + 32 + 22 = 1 when the density
(mass per unit area) is given by p(z,y,z) =3 — 2.

3.20 Exercise: Find the mass of the curve of intersection of the paraboloid z = 2—z2 —2y?
with the parabolic sheet 2 = 2, when the density (mass per unit length) is given by

p(z,y, z) = |zyl.
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Chapter 4. Integration of Vector-Valued Functions

4.1 Definition: We define vector-valued integrals of vector-valued functions in the most
obvious way. For example, when C'is a curve in R" withn =2or3and F: C CR" - R™
is given by F' = (F1, Fs, -+, F,,), we define the (vector-valued) integral of F' on C' to be

/FdL:(/FldL,~-,/FmdL)
C C C

and when S is a surface in R3 and F' : § C R® — R™ is given by F = (Fy, Iy, -+, Fp),
we define the (vector-valued) integral of F' on S to be

//SFdA:(//SFldA,---,//SFmdA>.

4.2 Definition: Let U C R"™. A vector field on U is a function F : U C R" — R"™. An
integral curve (or field line or flow line) for a vector field F' on U is a curve in U along
which the tangent line at each point is in the direction of the field F.

4.3 Remark: We can draw a picture of a vector field in U C R? by choosing many points
(z,y) € U and, for each point, we draw the vector F'(x,y) at the point (x,y). An integral
curve will follow the direction of the vectors at all points.

4.4 Exercise: For each of the following vector fields F' on R?, draw a picture of the field
1 F and sketch some integral curves. In Parts (a) and (b), find an equation for the integral
curves.

(a) F(z,y) = (~y, ) (b) F(z,y) = (y,7) (c) F(z,y) = (z +y,z —y).
4.5 Definition: Let U be an open set in R3, let ¢ : U C R?® — R be a function and let
F:U CR3 — R3 be a vector field given by F = (P,Q, R). We write

0 99 OR _ 9Q
% o oP  0Q  OR % or
v={2 ). ve=|2| vor=0C+ P40 vxr= |-t
4 o or Oy 0z 50  op
9z 9z dr  y
2 2 2 V2P
v29:ag+8g+agand VQF: VQQ
or2  oy? 022 V2R

Vg is called the gradient of g, V « F' is called the divergence of F, V x F is called
the curl of F, V2g is called the (scalar) Laplacian of g, and V2F is called the vector
Laplacian of F'.

4.6 Theorem: (Vector Identities) Let U be an open set in R3, let g : U C R® — R be
C?inU and let F: U CR?® — R" beC? in U. Then

(1) V -+ (Vg) = V7,

(2) V x (Vg) =0,

(3) V- (VxF)=0,

(4) V x (V x F) = V(V « F) — V2F,

(5)V + (gF)=Vg+F+g(V+F), and

(6) V x (gF) = (Vg) x F+g(V x F).
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4.7 Definition: Let U be an open set in R” and let F': U C R™ — R" be a vector field
in U. When there is a function g : U C R™ — R such that F' = Vg, we say that F'is a
conservative vector field and that g is a scalar potential for F. In the case that n = 3,
when there is a vector field G : U € R® — R" such that F' = V x G we say that G is a
vector potential for F'.

4.8 Remark: Scalar and vector potentials, if they exist, are not unique. If g is a scalar
potential for F' then so is the function g 4+ ¢ for any constant ¢ € R. If G is a vector
potential for F' then so is the vector field G + Vg for any C? function g.

4.9 Remark: Let F be a C' vector field on an open set U in R3. If F' has a scalar
potential, say F' = Vg, then V x FF =V x (Vg) = 0. If F has a vector potential, say
F=VxG,then V. F=V.(VxG)=0.

4.10 Theorem: Let F be a C' vector field on an open set U in R3.

(1) If V x F =0 then F has a scalar potential g : V C R3> — R in any open ball V C U.
(2) If V « F =0 then F has a vector potential G : V. C R® — R? in any open ball V C U.

4.11 Exercise: Determine which of the vector fields in Exercise 4.3 are conservative.

4.12 Exercise: Let F(x,y,z) = (IL'2 +yz, —2xy — 2yz, xy + z2). Note that V « F' = 0.
Find a vector potential for F'.

4.13 Definition: Let n =2 or 3, let a : [a,b] C R — R"™ be continuous on [a,b] and C*
in (a,b), let C be the curve in R™ which is given parametrically by (z,y) = «(t) or by
(r,y,2) = a(t) for a <t <b,and let F: C C R™ — R" be a continuous vector field on

C = Range (). We write T = %, dL = |a(t)|dt and da = T'dL, and we define the

integral (or the circulation) of F' along C to be

/aF-doz:/aF-TdL:/CF-TdL:/:aF(a(t))-o/(t)dt.

When «(t) = (z(t),y(t)) and F(z,y) = (P(z,y), Q(z,y)) we also use the notation

/F-daz/Pd:B+Qdy,

and when «a(t) = (m(t),y(t), z(t)) and F(z,y,z) = (P(m,y, 2),Q(x,y, z), R(x,y, z)) we also
write

/F-da:/Pda:+Qdy+Rdz.

When C = |J Cf where each C is a curve as above, / F.TdL=>) F+«TdL.
k=1 c k=1.JC),
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Let D be the closure of an open set U in R?, let ¢ : D C R? — R3 be continuous on D
and C! in U, let S be the surface in R?® which is given parametrically by (z,y, 2) = o(s, ),
and let F : S C R® — R? be continuous on S = Range (0). We write N = Z2X%t

|osXo|?
dA = |og x O't’ and do = (05 X 0¢) ds dt, and we define the integral (or flux) of F' across
S to be

/UF-do://UF-NdA://SF-NdA://DF(o-(s,t))-(osxat)dsdt.

When o(s,t) = (z(s,t),y(s,t),2(s,t)) and F(z,y,2) = (P(z,y,2),Q(z,y,2), R(z,y,2))

we also write

/F-da:/dedz+dedx+Rdxdy.

When S = [J Sk where each Si is a surface as above, / F+«NdA= > F - N dA.
k=1 s k=1J S,

4.14 Definition: For a curve C in R™ where n = 2 or 3, we say that C is C! when it is

defined parametrically by a map « : [a,b] € R — R"™ such that « is continuous on [a, b

and « is C* with bounded derivative in (a,b). We say that C is piecewise C' when it is

a union C' = ;" Cy, of C! curves C.

For a surface S in R3, we say that S is C! when it is defined parametrically by a map
o:D=U CR? = R? where U is an open set in R?, such that ¢ is continuous in D and
o is C' with bounded partial derivatives in U, and we say that S is piecewise C' when it
is a union S = UZLZI Sk of C! surfaces S.

When S is a C' surface in R? given parametrically by ¢ : D = U C R? — R3, the
boundary curve of S is the curve S = ¢(9U). In practice, the boundary curve 05 is
often piecewise C'.

4.15 Remark: It can be shown, using the Change of Variables Theorem, that the integral
of a vector field along a C' curve, or across a C! surface, does not depend, except perhaps
for a sign change, on the choice of parametric equation for the curve or surface. For a
curve, the sign depends on the direction we travel along the curve, that is on the direction
of the tangent vector T', and for a surface, the sign depends on whether the normal vector
N lies on one side of the tangent plane or the other. For a piecewise C! curve C' = Ui, Cy
(or a piecewise C* surface S = |J;-, Sk) the integral of a vector field along C' (or across
S) depends on the direction in which we move along each curve Cj, (or the direction of the
normal vector to each surface Sy).

4.16 Note: When «a(t) represents the position of an object which moves along the curve
C' and the vector field F' represents the force at each point on the curve C, the integral
of F' along C measures the work done by the force on the object along the curve.

When S represents the shape of a surface in space, and F' represents the velocity field of
a fluid which moves through the surface S, the flux of F' across S measures the rate (the
volume per unit time) at which the fluid flows across the surface S, with the sign of the
flux indicating whether the fluid flows in the direction of the normal vector N or in the
opposite direction.

4.17 Exercise: Let F(z,y) = (—y,7), let a(t) = (cost,sint) for 0 < ¢t < 37 and let

2
B(t) =(2—t,1+2t) for 0 <t < 2. Find the integrals/F-TdL and/F-TdL.

B
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4.18 Exercise: Let F(z,y) = <ﬁ, ﬁ) and let a(t) = (r(t) cos0(t), r(t)sinf(t))

for a <t < b. Find /F « T dL. In particular, find / F T dL when C is the line
a C

segment from (2,1) to (1, 3).

4.19 Exercise: Let F(xz,y,z) = (—xy, z,2%). Find the flux of F across the portion of the

paraboloid z = x2 + y? which lies above the square given by —1 <z <1 and -1 <y < 1.

4.20 Theorem: (The Conservative Field Theorem) Let U be an open set in R3, let C be
a piecewise C! curve from p to ¢ in U, let f : U C R®> =+ R be C! in U, and let F = V.
Then

[ FeTdL= i@~ )
C

4.21 Theorem: (Green’s Theorem) Let C' be a piecewise C! curve in R? which goes
once, counterclockwise, around the boundary C' = G_U of a bounded open set U in R?.
Let F = (P,Q) be a continuous vector field on D = U which is C! with bounded partial

derivatives in U. Then
/F T dL = // 8—Q—8—PdA
D

4.22 Theorem: (The Divergence Theorem, or Gauss’ Theorem) Let S be a piecewise
C! surface in R® which envelopes the boundary S = OU of a bounded open set U in
R3, wrapping once around U with the normal vector N pointing outwards. Let F be a
continuous vector field on D = U which is C' with bounded partial derivatives in U. Then

//SF-NdA:///DV-FdV.

4.23 Theorem: (Stokes’ Theorem) Let S be a C! surface in R? given parametrically by
o:D =U C R? = R? where U is open in R?. Let C be a piecewise C' curve in R® which
wraps once around the boundary curve C' = S in the direction compatible with the right
hand rule (when the fingers of the right hand point in the direction of the tangent vector
T to the curve, the thumb points in the direction of the normal vector N to the surface).
Let F be a continuous vector field on S such that F(o(s,t)) is C* with bounded partial

derivatives in U. Then
/F-TdL://(VXF)-NdA.
c s

4.24 Exercise: Let C be the circle z2+y? = 1, let D be the disc D = {(z,y)|z*+y? < 1},
and let F(z,y) = (z%y, —wy?). Verify that the conclusion of Green’s Theorem holds.

4.25 Exercise: Let D be the tetrahedron with vertices at (0,0,0, (1,0,0), (0,2,0) and
(0,0,2) and let S be the boundary surface of D. Let f(z,y,2) = zy + 22 and let F = Vf.
Verify the conclusion of Gauss’ Theorem.

4.26 Exercise: Let C be the curve given by z = 22 and 22 + 92 = 1, let S be the surface
given by z = x? with 22 +y? < 1, and let F(z,y,2) = (y, —x, 2%). Verify the conclusion of
Stokes’ Theorem.
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4.27 Exercise: Let (z,y) = a(t) be a C' curve which goes once, counterclockwise, around
the boundary C' = AU of an open set U in R? and let D = U. Show that the area of D is

given by
A:/dA:/xdy—yda:.
D o

4.28 Exercise: Find the circulation of F along C' when F(z,y) = (z — y*, 2® + ¢*) and
C is the boundary curve of the quarter-disc given by z > 0, y > 0 and 2% 4+ y? < 1.

4.29 Exercise: Find the flux of F' across S when F(z,y,z) = (zy?, 2%y, (224+y?)z?) and
S is the boundary surface of the cylinder given by (z,y, 2) = (sin t,0, cos t) for 0 <t < 2.

4.30 Exercise: Find the circulation of F' along C' when F' is the vector field given by
F(z,y,2) = (2?2 4+ Va® + 22+ 2, zy, 2y + V2% + 22+ 2) and C is the circle given by
y=0and 22+ 22 =1,

4.31 Note: Let U be an open set in R? and let F be a C! vector field in U. If Vx F =0
in U then it follows from Stokes’ Theorem that

(1) / F T dL =0 for every loop C which is the boundary curve of a surface in U.
C

(2) / F.TdL= / F T dL whenever C' and D are curves from p to ¢ in U such that
C D

there exists a continuous deformation of curves in U from C to D which fixes the points p
and ¢, and

(3) / F.TdL= / F « T dL whenever C and D are loops in U such that there exists a
C D
continuous deformation of loops in U from C to D.

4.32 Definition: A surface in R? is called closed when it is the boundary surface of
some bounded open set in R3.

4.33 Note: Let U be an open set in R? and let F be a C! vector field in U. If V.« F =0
in U then it follows from the Divergence Theorem that

(1) / / F « N dA =0 for every surface S which is the boundary of a region in U,
S

(2) // F.+.NdA = // F + N dA whenever S and T are surfaces in U with the same
S T

boundary curve C' = 39S = 0T such that there exists a continuous deformation of surfaces
in U from S to T in U which fixes C', and

(3) / / F.NdA = / / F « N dA whenever S and T are closed surfaces in U such that
s T
there exists a continuous deformation of closed surfaces in U from S to T.

4.34 Exercise: The electric field surrounding a long thin vertical wire along the z-axis,
with charge density (charge per unit length) p, is given by

E(l’,y,Z) :2kp<332L+y2a x2yTyZaO)

Find the work done by the electric field on a small object of unit charge when it moves
along the line segment from the point (1,0,1) to the point (0,2,4).

4.35 Exercise: Find the flux of F' across S when F(z,y,z) = (:L' +22,0, —2— 3) and S
is the portion of the ellipsoid z2 + y? + 322 = 4 with z < 1.
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4.36 Theorem: (Divergence as a Flux Density and Curl as a Circulation Density) Let F
be a C! vector field in an open set U in R? and let a € U. Then

(1) When D is the closed ball of radius r centred at a and S is the boundary sphere of D,
we have

. 1
(V- F)a) = lim s //SF-NdA.

(2) When D the disc of radius r centered at a with normal vector N and C' is the boundary
circle of D, we have

18



Chapter 5. Maxwell’s Equations

5.1 Note: The Lorentz Force Law states that when a small object of charge ¢ moves
at velocity v, the force exerted on the object by an electric field E and a magnetic field B
is given by

F =q(E+wvx B).

Electric and magnetic fields, in turn, are produced by charges and currents and they
influence each other.

5.2 Definition: Electrostatics is the study of electric fields which are produced by a
static charge distribution.

5.3 Note: Coulomb’s Law states that for a small object of charge ¢ at position s € R3.
the electric field E(r) and the electric potential u(r) at the point r € R3 are given by

By = 9 (r—s)

q 1
= Treg 3P and u(r) =

" dreq |r—s|

For a static charge distribution on a curve C' in R? of charge density (charge per unit
length) p we have

E(r):/c P =9 0p and u(r)z/c ro. L g

drey  |r—s|3 ey |r—s|

For a static charge distribution on a surface S in R?® of charge density (charge per unit
area) p we have

E(r):// P ~(T_SldA and u(r):// L dA.
g dmeg | — | g dmeg | — |

For a static charge distribution in a region D C R? of charge density (charge per unit
volume) p, we have

E(r):///D 4:€O~|(:__j|l dV and u(r):///D 4:60 .ﬁdv.

5.4 Exercise: Show that the electric field and electric potential surrounding a long straight
wire along the z-axis with charge density (charge per unit length) p are given by

P z Y P 2 2

5.5 Exercise: Find the electric field and the electric potential at all points inside and
around the solid ball D = {(z,y, 2) ‘xz +y?+2? < R} with constant charge density (charge
per unit volume) p at all points in D.
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5.6 Theorem: For a static charge distribution on a curve, surface or region, the electric
field and the electric potential are related by

FE = —Vu.
It follows that
VxE=0.

5.7 Theorem: (Gauss’ Law) Let D be the closure of a bounded open set in R3 and let
S = 0D be its boundary surface. Then for a static charge distribution in R3, we have

Jlmeraa= fIf, 5w

where () is the total charge in D.
5.8 Corollary: For a static charge distribution in R® we have

v.E=2.
€0

5.9 Exercise: Redo exercises 5.3 and 5.4 using Gauss’ Law.

5.10 Definition: The differential equations

V-E=" and VxE=0
€0

are called Maxwell’s Equations of Electrostatics.

5.11 Definition: Magnetostatics is the study of magnetic fields which are produced by
a steady state current.

5.12 Note: Let C be a curve which lies on a surface S in R3. When a current distribution
flows along the surface S with current density (vector-valued current per unit cross-
sectional length) J, the current (charge per unit time) which flows across the curve C' is
given by

I:/J-MdL
C

where M is a unit vector which is tangent to S and normal to C' (we can take M = N x T
where N is the unit normal vector for S and 7 is the unit normal vector for C).

Let S be a surface in R3. When a current distribution flows in R? with current density
(vector-valued current per unit cross-sectional area) J, the current (charge per unit time)
which flows across the surface S is given by

I:/ J « N dA.
S

5.13 Exercise: A hollow plexiglass sphere of radius R centred at the origin carries a
uniform charge distribution of charge density (charge per unit area) p, and it rotates
about the z-axis at a rate of w radians per unit time. Find the resulting current density J
at each point on the sphere, and calculate the current (charge per unit time) which crosses
the curve given by (z,y,2) = a(t) = (R sint, 0, R cos t) for 0 <t <.
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5.14 Note: The Biot-Savard Law states that the element of magnetic field dB(r) and
the element of magnetic potential dA(r) at » € R3, which are produced by a small element
of current dI = I'TdL = I &/(t) dt flowing along the curve given by s = «(t), are given by

o Al x (r—s) po  dI
dB(r) = —+-——=— and dA(r)=— - ——.
) 47 lr —s|3 o (r) A7 |r — s
For a steady current I flowing along the curve C we have
dl — dl
B(r) = Bo & X —9%) (r—s) and A(r) = / o &
o 4r lr —s|3 o4 |r—s]

For a steady current distribution flowing on a surface S with current density (vector-valued
current per unit cross-sectional length) J we have

=] i '|r—s|3)dAa“dA =[] g

For a steady current distribution flowing in a region D C R? with current density (vector-
valued current per unit cross-sectional area) J we have

A N (I

5.15 Exercise: Show that the magnetic field and magnetic potential surrounding a long
straight wire along the z-axis carrying the current I are given by

MOI —Y x /LQI
B(%,y,Z) = It (.CU2 +y2 ) +y2 ’ O) and A(l‘,y,Z) = _E<070;1n(z‘2 +y2>)

5.16 Exercise: Find the magnetic field and magnetic potential at each point along the
z-axis, produced by a square loop of wire in the zy-plane which follows the boundary of
the region D = {(a:, y)} —a<z<a -a<y< a} and carries a constant current I.

5.17 Exercise: Find the magnetic field and the magnetic potential at all points (x,y, 2)
inside a long cylindrical Wire2 of 21"a,dius R centred along the z-axis whose current density is
given by J(u,v,w) = ae”*® +v7)(0,0,1).

5.18 Exercise: Find the magnetic field and the magnetic potential at the origin which is
produced by the plexiglass sphere from Exercise 5.13.

5.19 Theorem: For a steady state current on a curve, surface or region, the magnetic
field and the magnetic potential are related by

B =V x A.

It follows that
V.:B=0.

5.20 Theorem: (Ampére’s Circuital Law) Let S be a bounded surface in R3 and let
C = 0S be its boundary curve. Then for a steady current distribution in R we have

/B-TdL://qu-NdAzuof
C S

where I is the total current flowing through the surface S.
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5.21 Corollary: For a steady current distribution in R3 we have
V X B = polJ.
5.22 Exercise: Redo Exercises 5.15 and 5.16 using Ampere’s Circuital Law.
5.23 Definition: The differential equations
VeB=0 and V x B = ppJ
are called Maxwell’s Equations of Magnetostatics.

5.24 Note: It has been found, experimentally, that the two equations V « F = 6— and
V « B = 0 both hold even when E and B vary with time. By contrast, the other two
equations V x E =0 and V x B = ugJ need to be modified.

5.25 Note: Faraday’s Law states that, when S is a bounded surface in R?® and C' = 9§
is the boundary curve then, for any charge and current distributions in R?, we have

/E TdL———//B « N dA.
C

5.26 Corollary: For any charge and current distribution in R3 we have

8B

5.27 Theorem: (The Continuity Equation) For any charge and current distribution in
R3 we have

dp
VedJ=——.
ot
5.28 Note: When the magnetostatics equation V x B = ugJ holds, we have
0
0=V (VxB)=V- () =V +J =~

so that % = 0. Thus the magnetostatics equation V x B = pgJ cannot possibly hold
when the charge density p varies with time.

Since V « J = —@ and V - E = £, we have
8p 0 OF
__r_ _ = E _
Veld= T 5 (Gov ) eV e B
so that O
v @+m&):&

This observation led Maxwell to propose that we replace the equation V x B = pgJ by
the equation

OF
V x B = puoJ
X o + po€o—4 o
5.29 Definition: The four differential equations
v.p=2" vxp_ 98
€0 ot
OF
V.B=0 V xB= /J,()J—|—€()M0 -

are called Maxwell’s Equations of Electromagnetism. It has been found, experimen-
tally, that these equations hold to a high degree of accuracy.
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