

ECE 206 Advanced Calculus 2, Solutions to Assignment 7

1: Express each of the following complex numbers in cartesian form.

(a) $(2+i)(3+2i) - (5+3i)$

Solution: We have $(2+i)(3+2i) - (5+3i) = (6+4i+3i-2) - (5+3i) = (4+7i) - (5+3i) = -1+4i$.

(b) $\frac{1}{(\sqrt{2}+i)(1+i\sqrt{2})}$

Solution: We have $\frac{1}{(\sqrt{2}+i)(1+i\sqrt{2})} = \frac{1}{\sqrt{2}+2i+i-\sqrt{2}} = \frac{1}{3i} = -\frac{1}{3}i$.

(c) $\frac{(1+2i)^3}{(3+i)^2}$

Solution: We have

$$\begin{aligned} \frac{(1+2i)^3}{(3+i)^2} &= \frac{1+6i+12i^2+8i^3}{9+6i+i^2} = \frac{1+6i-12-8i}{9+6i-1} = \frac{-11-2i}{8+6i} \\ &= \frac{-11-2i}{2(4+3i)} \cdot \frac{4-3i}{4-3i} = \frac{-44+33i-8i-6}{2(16+9)} = \frac{-50+25i}{50} = -1 + \frac{1}{2}i. \end{aligned}$$

2: Solve each of the following equations for $z \in \mathbf{C}$. Express your answers in cartesian form.

(a) $\frac{z+1}{z+i} = 3+i$

Solution: We have

$$\begin{aligned} \frac{z+1}{z+i} = 3+i &\iff (z+1) = (3+i)(z+i) \iff z+1 = 3z+3i+iz-1 \iff 2-3i = (2+i)z \\ &\iff z = \frac{2-3i}{2+i} = \frac{2-3i}{2+i} \cdot \frac{2-i}{2-i} = \frac{1-8i}{5} \iff z = \frac{1}{5} - \frac{8}{5}i. \end{aligned}$$

(b) $z^2 = \bar{z}$

Solution: Write $z = x+iy$ with $x, y \in \mathbf{R}$. Then we have

$$z^2 = \bar{z} \iff (x+iy)^2 = x-iy \iff (x^2-y^2) + i(2xy) = x-iy \iff (x^2-y^2 = x \text{ and } 2xy = -y).$$

To get $2xy = -y$ we need $y = 0$ or $2x = -\frac{1}{2}$. When $y = 0$, the equation $x^2 - y^2 = x$ gives $x^2 = x$ so $x = 0$ or 1 . When $2x = -\frac{1}{2}$ so $x = -\frac{1}{4}$, the equation $x^2 - y^2 = x$ gives $\frac{1}{4} - y^2 = -\frac{1}{2}$ so $y^2 = \frac{3}{4}$, that is $y = \pm\frac{\sqrt{3}}{2}$. Thus $z = x+iy = 0, 1, -\frac{1}{4} + \frac{\sqrt{3}}{2}i$ or $-\frac{1}{4} - \frac{\sqrt{3}}{2}i$.

(c) $z^2 = 4+3i$

Solution: This can be solved immediately using the formula from Example 1.13 in the complex analysis lecture notes. Here is an alternate solution. Write $z = x+iy$ with $x, y \in \mathbf{R}$. Then we have

$$z^2 = 4+3i \iff (x+iy)^2 = 4+3i \iff (x^2-y^2) + i(2xy) = 4+3i \iff (x^2-y^2 = 4 \text{ and } 2xy = 3).$$

From $2xy = 3$ we get $y = \frac{3}{2x}$. Put this into the equation $x^2 - y^2 = 4$ to get

$$x^2 - \frac{9}{4x^2} = 4 \implies 4x^4 - 9 = 16x^2 \implies 4x^4 - 16x^2 - 9 = 0 \implies (2x^2 - 9)(2x^2 + 1) = 0 \implies (x^2 = \frac{9}{2} \text{ or } x^2 = -\frac{1}{2}).$$

Since $x \in \mathbf{R}$ we must have $x^2 = \frac{9}{2}$ so $x = \pm\frac{3}{\sqrt{2}}$. When $x = \frac{3}{\sqrt{2}}$ we have $y = \frac{3}{2x} = \frac{3}{2} \cdot \frac{\sqrt{2}}{3} = \frac{1}{\sqrt{2}}$, and when $x = -\frac{3}{\sqrt{2}}$ we have $y = \frac{3}{2x} = -\frac{1}{\sqrt{2}}$. Thus $z = \pm\left(\frac{3}{\sqrt{2}} + \frac{1}{\sqrt{2}}i\right)$.

3: Draw a picture of each of the following subsets of the plane.

(a) $\{z \in \mathbf{C} \mid 1 < |z - 1| \leq \sqrt{5}\}$

Solution: We have $1 < |z - 1| < \sqrt{5}$ when the distance between z and 1 is greater than 1, so z lies outside the unit circle centred at 1, and is less than or equal to 5, so z lies inside or on the circle of radius $\sqrt{5}$ centred at 1.

(b) $\{z \in \mathbf{C} \mid |z - 2i| = |z - 4|\}$

Solution: We have $|z - 2i| = |z - 4|$ when z is equidistant from the points $2i$ and 4 , that is when z lies on the perpendicular bisector of the line segment from $2i$ to 4 .

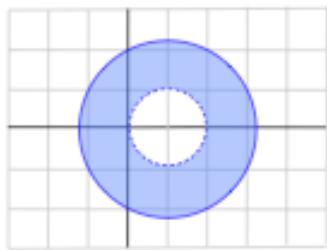
(c) $\{z \in \mathbf{C} \mid |z| + |z - 4| = 8\}$

Solution: We have $|z| + |z - 4| = 8$ when the sum of the distance from 0 to z with the distance from z to 4 is equal to 8. This happens when z is on the ellipse, with focii at 0 and 4, which passes through the points $-2, \pm 3i, 4 \pm 3i$, and 6.

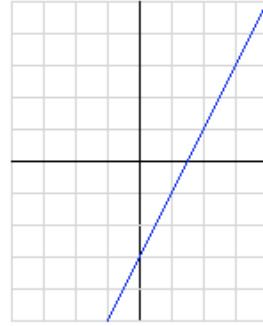
Alternatively, writing $z = x + iy$ with $x, y \in \mathbf{R}$ we can see that this set is the above ellipse as follows.

$$\begin{aligned} |z| + |z - 4| = 8 &\iff \sqrt{x^2 + y^2} + \sqrt{(x - 4)^2 + y^2} = 8 \iff \sqrt{x^2 - 8x + 16 + y^2} = 8 - \sqrt{x^2 + y^2} \\ &\iff x^2 - 8x + 16 + y^2 = 64 - 16\sqrt{x^2 + y^2} + x^2 + y^2 \iff 16\sqrt{x^2 + y^2} = 8x + 48 \\ &\iff 2\sqrt{x^2 + y^2} = x + 6 \iff 4(x^2 + y^2) = x^2 + 12x + 36 \iff 3x^2 - 12x + 4y^2 = 36 \\ &\iff 3(x - 2)^2 + 4y^2 = 48 \iff \frac{(x - 2)^2}{16} + \frac{y^2}{12} = 1. \end{aligned}$$

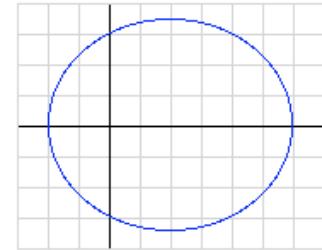
(a)



(b)



(c)



4: Express each of the following complex numbers in cartesian form.

(a) $4 e^{i 5\pi/3}$

Solution: We have $4 e^{i 5\pi/3} = 4 \left(\cos \frac{5\pi}{3} + i \sin \frac{5\pi}{3} \right) = 4 \left(\frac{1}{2} - \frac{\sqrt{3}}{2} i \right) = 2 - 2\sqrt{3} i$

(b) $(1 + i\sqrt{3})^{10}$

Solution: We have

$$\begin{aligned} (1 + i\sqrt{3})^{10} &= \left(2e^{i\pi/3} \right)^{10} = 2^{10} e^{i 10\pi/3} = 2^{10} \left(\cos \frac{10\pi}{3} + i \sin \frac{10\pi}{3} \right) \\ &= 1024 \left(-\frac{1}{2} - \frac{\sqrt{3}}{2} i \right) = -512 - 512\sqrt{3} i. \end{aligned}$$

(c) $5 e^{i\theta}$, where $\theta = \tan^{-1} 2$

Solution: We have $5 e^{i\theta} = 5 (\cos \theta + i \sin \theta) = 5 \left(\frac{1}{\sqrt{5}} + \frac{2}{\sqrt{5}} i \right) = \sqrt{5} + 2\sqrt{5} i$.

5: Express each of the following complex numbers in the polar form $re^{i\theta}$.

(a) $-2 + 2i$

Solution: We have $-2 + 2i = 2\sqrt{2} e^{i 3\pi/4}$.

(b) $\frac{(1-i)^2}{(1+i\sqrt{3})}$

Solution: We have $\frac{(1-i)^2}{(1+i\sqrt{3})} = \frac{(\sqrt{2} e^{-i\pi/4})^2}{2 e^{i\pi/3}} = \frac{2 e^{-i\pi/2}}{2 e^{i\pi/2}} = e^{-i(\frac{\pi}{2} + \frac{\pi}{3})} = e^{-i5\pi/6}$.

(c) $-3 - i$

Solution: We have $-3 - i = \sqrt{10} e^{i\theta}$, where $\theta = \pi + \tan^{-1} \frac{1}{3}$.