ECE 206 Advanced Calculus 2, Solutions to Assignment 6

: A long cylindrical wire of radius R, centred along the z-axis, carries a uniform charge distribution of charge
density (charge per unit volume) p. Find the electric field E at all points (x,y,2) € R3.

Solution: By symmetry, we assume that E points radially outwards from the z-axis and that the magnitude
of E at (x,y,2) depends only on r = y/22 + y2, and we shall write |E(r)| to denote the magnitude of E at

all points (z,y,2) with /22 +y2 = r. Let S be the boundary surface of a solid cylinder of length L and
radius r centred along the z-axis. Let ® be the flux of E across S. Since E is always horizontal, we see that
the flux across the top and bottom parts of S are equal to zero, so ® is equal to the flux across the vertical
wall of the cylinder. Since F points radially outwards (in the direction of the normal vector to the vertical
wall of the cylinder), the flux is

cI)://SE-N dA://S|E(r)\ dA = 27 L|E(r)].

On the other hand, by Gauss’ Law we have ¢ = % where @ is the total charge inside S. When r > R we
have Q = p7R?L and so
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and when 7 < R we have Q = p7r?L and so

B = 90 _ prr’L _ pr

2nrL 27rLey 2€

To express F in Cartesian coordinates, we replace r by y/x2 + y2 and note that the unit vector which points

radially outwards from the z-axis is given by \/%(x, y,0), and so
x2+y

R2
g—( 2ac 2,%0) if 22 + 9% > R?, and
—(x,y,O) if 0 < 2?2 4+9y*<R.

260



2: (a) A circular loop of wire of radius r lies in the zy-plane centred at the origin. The wire carries a constant
current I in the counterclockwise direction (looking down from above). Find the magnetic field B at all
points on the z-axis.

Solution: The wire follows the curve C given by ¢ = (u,v,w) = «a(t) = (rcost,rsint,0) for 0 < ¢ < 2.
Writing p = (0,0, z) and dI = Ia/(t) dt, the Biot-Savard Law gives
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(b) A circular disc of radius R lies in the zy-plane centred at the origin. The disc carries a uniform charge
distribution of charge density (charge per unit area) p, and it rotates counterclockwise (looking down from
above) at a rate of w radians per unit time. Find the magnetic field B at the origin.

Solution: Imagine that the disc is cut up into thin circles (or annuli) centred at the origin. Each thin circle
acts as a circuit carrying charge. Consider a thin circle of radius r and thickness dr. In the time interval
dt, the disc turns through the angle df = w dt radians. An arc of df radians along the thin circle has area
dA = rdfdr = wr drdt and carries a charge dQ = pdA = pwr dr dt, and so the thin circle acts as a circuit
of current dI = % = pwr dr. By Part (a), the thin circle of radius r and thickness dr makes a contribution
to the magnetic field at the origin which is vertical with z-component

_ podl r? ~ podl  popwrdr

b=y yepr = o T gy ekomedr

and the total magnetic field at the origin is vertical with z-component

R R
B, = / dB, = / %uopw dr = %,uopr.
z=0 r=0

Thus
B(0,0,0) = L10pwR (0,0,1).



3: A long thin straight wire lies along the z-axis and carries a constant current I in the positive z direction.
The magnetic field surrounding the wire is given by
LY e Y

B(x,y,z) = o x2+y27m70

(a) Find/B-N dA where (z,y,z) = o(s,t) = (s,0,t) for 1 <s<3and 0 <t < 2.

Solution: We have B(o(s,t)) = 42 ! (0,1,0) and o x 0y = (1,0,0) x (0,0,1) = (0,—1,0) and so

27
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s=1Ji=0 27 ?

3
:/ / —Ldtds:/ _&IdSZ_M.
s=1Jt=0 275 s=1 TS n

(b) Find / BT dL where (z,y,2) = a(t) = (4¢,t* — 1,#%) for -1 <t < 2.

Solution: As in Problem 6(a) on Assignment 5, if we express «(t) in cylindrical coordinates as a(t) =
(r(t) cosO(t),r(t)sind(t), z(t)) for —1 <t < 2 then we have

B(a(t)) =

@(_rsin@ rcosf 0)
2m r2 o2 7
(t) = (r'cosf —rsinf@' v’ sinf +rcosf o', 2")
Bla(t)) -a'(t) = /;70 (_ r’ ¢in 6 cos 6 tsin200 + r’ sin 6 cos 6 +008299,> _ &Ie,
s r r 27
so that

/B.T dL—/2 %JG’(t)dt:éLI(G(Q)—G(fl)).
a t=—1 &7 1

Since the top view of the curve a(t) is the parabola (z,y) = 8(t) = (4t,t?>—1) which starts at 3(—1) = (—4,0)
and curves counterclockwise around the origin going through 5(0) = (0, —1) and B(1) = (4,0) and ending at
B(2) = (8,3), we can take §(—1) = —m, 6(0) = —7F, 6(1) = 0 and §(2) = tan"' 2 and we obtain
MOI NOI
B.T dL = 0(2)—0(-1)) = —
/ ol (o) (1)) = 4

- (tan_1 % +7T).



4: The cone given by z = /2 + y? with 22 + y? < 4 carries a nonuniform charge distribution with charge
density (charge per unit area) given by p(x,y, z) = z. Find the electric field E at the point (0,0, 2).

Solution: In general, when a surface S has charge density p a small piece of the surface at position ¢ = (u, v, w)
of area dA carries a charge of dQQ = pdA and makes a contribution to the electric field E at the point
p = (z,y, z) equal to
dA - -
dE — 14 2-p q:p.p quA,
dmeolp —q* [p—q| 4meo |p—dl

P pP—q
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Now let S be the given cone. Note that S is given parametrically by

and the total electric field at p is

q = (u,v,w) =o(r,0) = (rcos@,rsin@,r) with0<r<2,0<60<2r
and we have
oy x 0| = |(cosb,sinf,1) x (—rsinf,rcosd,0)| = |(—rcosf, —rsinf,r)| = V2r.

By symmetry, the electric field at p = (0,0, 2) is vertical. The z-component of E is

w 2—w
E, = . dA
// ey (u2 +v2 + (2 —w)?2)3/2
9 _

/ / . " 373 V2 r ddr
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V2r2(2 —

/ / - A i T)S - dodr

r=0 0 47760 2T +4 4T) /

_/ V2r?(2—r) d?ﬂ_/2 1 Mdr
" Joeo 260 2f(r2 —2r+2)32 7 Ji_gdeo ((r—1)2+1)32 7
We make the substitution tan¢ = r — 1 so that sec ¢ = \/m to get
£ /”/4 1 (1 + tan ¢)2(1 — tan ¢) sec® ¢ do
¢

——n/a 4€0 sec? ¢

/4
:/ 1 (1+tan¢—tan ¢ — tan® @) cos o do
P=

— 71./4 460
By symmetry, since cos ¢ and tan? ¢ cos ¢ are even and tan ¢ cos ¢ and tan® ¢ cos ¢ are odd, we have

1 [T/4 1 [ sin” ¢
= % o (1 — tan? ¢)cos¢d¢7260 /¢—0 (1 ¢) cos ¢ d¢

1 7\'/4 2 o 2 1 7T/4 1 . 2 .2
:7/ (COS ¢ Sin ¢> COS¢ d¢: 7/ ( SH; ¢) COS¢ d¢
2¢0 Jr—o cos? ¢ 260 Jp=0 \ 1—sin“¢

We make the substitution u = sin ¢, du = cos ¢ d¢ to get

1 V2 _ 9,2 1 1/v2 1 1
E,=— 7udu:— 2—-—2 2 4y
260 Ju—o 1—u? 260 Ju—o I1+u 1-—wu
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— QL(\@— In(v2 +1)).
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Thus £(0,0,2) = 5= (v2 — In(v2 + 1)) (0,0, 1).



5: Recall that for a scalar-valued function f : U € R® — R the Laplacian of f is given by V2f = (%2 fyo 1 8y +
For a vector-valued function F': U C R3 — R3, given by F = (P, Q, R), we define the Laplacian of F to be

V2F = (VQP, V20, V2R).
(a) Show that for F': U C R?® — R3 we have V x (V x F) = V(V-F) — V2F
Solution: When F' = (P, Q, R) we have

— OR _ 9Q 9P _9R 09Q _ 9P
Vx(VxF)7Vx(a—y W’ﬁfaﬁ’%*afy)

_ @(GQ_OP)_@(aP_SR)
— \ oy T dy 9z \ 0z ox /)
= (2@ _2°p _ 2°P 4 &R
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and
V(V-F) - V?F = v(‘gf +2 ay + 28) — (V2P,V?Q, V*R)

( gjaz7.”) (8w2+8y +%z§’)
_ 6262 2?R _ 9*P _ 9P
_(amay Bzaz_TyQ_W7”.)'

This shows that the z-components of V x (V x F') and V(V-F ) — V2F are equal, and similar calculations
show that the y- and z- components are also equal.

(b) Show that in a vacuum (where p = 0 and J = 0) the electric and magnetic fields F and B both satisfy

the wave equation
2 2

2p
Frl and V*B = ugeg FrR

. . . _ 1 ‘e . .
.2 °
(We remark that it follows from this that pgeg = = where c is the speed of light)

V?E = poeg

Solution: Using the formula from Part (a) together with Maxwell’s Equations V<E =0, V X E = f%—?,
VeB=0and V x B = ,LLOGO% we obtain

V2E:v(v.E)—vX(VXE):V(O)—VX(—%—?)

(V x B) = (,uo€0 %If) = Moﬁo%%
and similarly
V2B =V(V+B) =V x (VxB)=V(0) -V x (ueg2Z)

: ) ,
= —uoeo%(v x E) = _M(]EO%( — %Jf) - uoeo%%



6: Find a formula for the gradient of a scalar-valued function in spherical coordinates.

Solution: In case there is not enough time to present this material in the lectures, we provide a solution
which may be applied to other orthogonal coordinate systems. Let (z,y,z) = g(u,v,w) be a change of
coordinate map. Let g,, g, and g, denote the columns of the derivative matrix Dg so we have Dg =
(Gu> v, gw)- Suppose that {g., gv, gw} 18 an orthogonal set. Let e, = Igﬁ’ €y = ﬁ and e, = |z—:‘ Note
that {ey, €y, €y} is an orthonormal set so we have (ey, €y, €w)” (€y,€v,ew) = I. Let f: U CR3> — R be a
smooth scalar-valued function. When we use the map g to change coordinates, we replace f(x,y,z) by the
map h(u,v,w) = f(g(u,v,w)). By the Chain Rule, we have Dh = Df Dg and so

Df = Dh-(Dg)~" = Dh - (gus Go Gu) "

—1

1
‘gu‘ [gul 1 euT
= Dh - | (eu, €y, €w) |go| = Dh ool eyt
|gw| Igl I ewT
and so
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In particular, when g is the spherical coordinates map given by

(z,y,2) = g(r,¢,0) = (r sin ¢ cos 0, r sin ¢ sin 6, r cos qﬁ)

we have
singcosf rcos¢cos) —rsingsinf
Dg= | singsinf rcos¢gsinf rsin¢gcost
cos ¢ —rsin ¢ 0

so that |g,| = 1, |gg| = 7 and |gy| = rsin ¢, and so

— 9oh 10h 1__0h
Vf = ar6r + r8¢>e¢ + rsin ¢ a0 €6



