
ECE 206 Advanced Calculus 2, Solutions to Assignment 6

1: A long cylindrical wire of radius R, centred along the z-axis, carries a uniform charge distribution of charge
density (charge per unit volume) ρ. Find the electric field E at all points (x, y, z) ∈ R3.

Solution: By symmetry, we assume that E points radially outwards from the z-axis and that the magnitude
of E at (x, y, z) depends only on r =

√
x2 + y2, and we shall write |E(r)| to denote the magnitude of E at

all points (x, y, z) with
√
x2 + y2 = r. Let S be the boundary surface of a solid cylinder of length L and

radius r centred along the z-axis. Let Φ be the flux of E across S. Since E is always horizontal, we see that
the flux across the top and bottom parts of S are equal to zero, so Φ is equal to the flux across the vertical
wall of the cylinder. Since E points radially outwards (in the direction of the normal vector to the vertical
wall of the cylinder), the flux is

Φ =

∫∫
S

E.N dA =

∫∫
S

|E(r)| dA = 2πr L|E(r)|.

On the other hand, by Gauss’ Law we have Φ = Q
ε0

where Q is the total charge inside S. When r ≥ R we

have Q = ρ πR2L and so

|E(r)| = Φ

2πrL
=
Q/ε0
2πrL

=
ρ πR2L

2πrLε0
=
ρR2

2ε0r

and when r ≤ R we have Q = ρ πr2L and so

|E(r)| = Q/ε0
2πrL

=
ρ πr2L

2πrLε0
=
ρ r

2ε0
.

To express E in Cartesian coordinates, we replace r by
√
x2 + y2 and note that the unit vector which points

radially outwards from the z-axis is given by 1√
x2+y2

(x, y, 0), and so

E(x, y, z) =


ρR2

2ε0

( x

x2 + y2
,

y

x2 + y2
0
)

if x2 + y2 ≥ R2, and

ρ

2ε0

(
x, y, 0

)
if 0 < x2 + y2 ≤ R.



2: (a) A circular loop of wire of radius r lies in the xy-plane centred at the origin. The wire carries a constant
current I in the counterclockwise direction (looking down from above). Find the magnetic field B at all
points on the z-axis.

Solution: The wire follows the curve C given by q = (u, v, w) = α(t) = (r cos t, r sin t, 0) for 0 ≤ t ≤ 2π.
Writing p = (0, 0, z) and dI = Iα′(t) dt, the Biot-Savard Law gives

B(p) =

∫
C

µ0

4π
· dI × (p− q)
|p− q|3

=

∫ 2π

t=0

µ0I

4π
· (−r sin t, r cos t, 0)× (−r cos t,−r sin t, z)(

(r cos t)2 + (r sin t)2 + z2
)3/2 dt

=

∫ 2π

t=0

µ0I

4π
·
(
rz cos t, rz sin t, r2)

(r2 + z2)3/2
dt

=
µ0I

2
· r2

(r2 + z2)3/2
· (0, 0, 1)

since

∫ 2π

0

rz cos t dt = 0 =

∫ 2π

0

rz sin t dt and

∫ 2π

0

r2 dt = 2π r2.

(b) A circular disc of radius R lies in the xy-plane centred at the origin. The disc carries a uniform charge
distribution of charge density (charge per unit area) ρ, and it rotates counterclockwise (looking down from
above) at a rate of ω radians per unit time. Find the magnetic field B at the origin.

Solution: Imagine that the disc is cut up into thin circles (or annuli) centred at the origin. Each thin circle
acts as a circuit carrying charge. Consider a thin circle of radius r and thickness dr. In the time interval
dt, the disc turns through the angle dθ = ω dt radians. An arc of dθ radians along the thin circle has area
dA = r dθ dr = ωr dr dt and carries a charge dQ = ρdA = ρωr dr dt, and so the thin circle acts as a circuit
of current dI = dQ

dt = ρωr dr. By Part (a), the thin circle of radius r and thickness dr makes a contribution
to the magnetic field at the origin which is vertical with z-component

dBz =
µ0dI

2
· r2

(r2 + 02)3/2
=
µ0dI

2r
=
µ0ρωr dr

2r
= 1

2µ0ρω dr

and the total magnetic field at the origin is vertical with z-component

Bz =

∫ R

z=0

dBz =

∫ R

r=0

1
2µ0ρω dr = 1

2µ0ρωR.

Thus
B(0, 0, 0) = 1

2µ0ρωR (0, 0, 1).



3: A long thin straight wire lies along the z-axis and carries a constant current I in the positive z direction.
The magnetic field surrounding the wire is given by

B(x, y, z) =
µ0I

2π

( −y
x2 + y2

,
x

x2 + y2
, 0
)
.

(a) Find

∫
σ

B.N dA where (x, y, z) = σ(s, t) =
(
s, 0, t

)
for 1 ≤ s ≤ 3 and 0 ≤ t ≤ 2.

Solution: We have B
(
σ(s, t)

)
= µ0I

2π

(
0, 1s , 0

)
and σs × σt = (1, 0, 0)× (0, 0, 1) = (0,−1, 0) and so∫

σ

B.N dA =

∫ 3

s=1

∫ 3

t=0

µ0I

2π

(
0, 1s , 0

).(0,−1, 0) dt ds

=

∫ 3

s=1

∫ 2

t=0

− µ0I

2π s
dt ds =

∫ 3

s=1

−µ0I

πs
ds = −µ0I ln 3

π
.

(b) Find

∫
α

B.T dL where (x, y, z) = α(t) =
(
4t, t2 − 1, t3

)
for −1 ≤ t ≤ 2.

Solution: As in Problem 6(a) on Assignment 5, if we express α(t) in cylindrical coordinates as α(t) =(
r(t) cos θ(t), r(t) sin θ(t), z(t)

)
for −1 ≤ t ≤ 2 then we have

B
(
α(t)

)
=
µ0

2π

(
− r sin θ

r2
,
r cos θ

r2
, 0
)

α′(t) =
(
r′ cos θ − r sin θ θ′, r′ sin θ + r cos θ θ′, z′

)
B
(
α(t)

).α′(t) =
µ0

2π

(
− r′ sin θ cos θ

r
+ sin2 θ θ′ +

r′ sin θ cos θ

r
+ cos2 θ θ′

)
=
µ0I

2π
θ′

so that ∫
α

B.T dL =

∫ 2

t=−1

µ0I

2π
θ′(t) dt =

µ0I

2π

(
θ(2)− θ(−1)

)
.

Since the top view of the curve α(t) is the parabola (x, y) = β(t) = (4t, t2−1) which starts at β(−1) = (−4, 0)
and curves counterclockwise around the origin going through β(0) = (0,−1) and β(1) = (4, 0) and ending at
β(2) = (8, 3), we can take θ(−1) = −π, θ(0) = −π2 , θ(1) = 0 and θ(2) = tan−1 3

8 and we obtain∫
α

B.T dL =
µ0I

2π

(
θ(2)− θ(−1)

)
=
µ0I

2π

(
tan−1 3

8 + π
)
.



4: The cone given by z =
√
x2 + y2 with x2 + y2 ≤ 4 carries a nonuniform charge distribution with charge

density (charge per unit area) given by ρ(x, y, z) = z. Find the electric field E at the point (0, 0, 2).

Solution: In general, when a surface S has charge density ρ a small piece of the surface at position q = (u, v, w)
of area dA carries a charge of dQ = ρdA and makes a contribution to the electric field E at the point
p = (x, y, z) equal to

dE =
ρ dA

4πε0|p− q|2
· p− q
|p− q|

=
ρ

4πε0
· p− q
|p− q|3

dA,

and the total electric field at p is

E = E(p) =

∫∫
S

ρ

4πε0
· p− q
|p− q|3

dA.

Now let S be the given cone. Note that S is given parametrically by

q = (u, v, w) = σ(r, θ) =
(
r cos θ, r sin θ, r

)
with 0 ≤ r ≤ 2 , 0 ≤ θ ≤ 2π

and we have ∣∣σr × σθ∣∣ =
∣∣(cos θ, sin θ, 1)× (−r sin θ, r cos θ, 0)

∣∣ =
∣∣(−r cos θ,−r sin θ, r)

∣∣ =
√

2 r.

By symmetry, the electric field at p = (0, 0, 2) is vertical. The z-component of E is

Ez =

∫∫
S

w

4πε0
· 2− w

(u2 + v2 + (2− w)2)3/2
dA

=

∫ 2

r=0

∫ 2π

θ=0

r

4πε0
· 2− r(

(r cos θ)2 + (r sin θ)2 + (2− r)2
)3/2 · √2 r dθ dr

=

∫ 2

r=0

∫ 2π

θ=0

1

4πε0
·
√

2 r2(2− r)
(2r2 + 4− 4r)3/2

dθ dr

=

∫ 2

r=0

1

2ε0
·

√
2 r2(2− r)

2
√

2(r2 − 2r + 2)3/2
dr =

∫ 2

r=0

1

4ε0
· r2(2− r)

((r − 1)2 + 1)3/2
dr.

We make the substitution tanφ = r − 1 so that secφ =
√

(r − 1)2 + 1 to get

Ez =

∫ π/4

φ=−π/4

1

4ε0
· (1 + tanφ)2(1− tanφ) sec2 φdφ

sec3 φ

=

∫ π/4

φ=−π/4

1

4ε0
· (1 + tanφ− tan2 φ− tan3 φ) cosφ dφ

By symmetry, since cosφ and tan2 φ cosφ are even and tanφ cosφ and tan3 φ cosφ are odd, we have

Ez =
1

2ε0

∫ π/4

φ=0

(1− tan2 φ) cosφ dφ =
1

2ε0

∫ π/4

φ=0

(
1− sin2 φ

cos2 φ

)
cosφ dφ

=
1

2ε0

∫ π/4

π=0

(
cos2 φ− sin2 φ

cos2 φ

)
cosφ dφ =

1

2ε0

∫ π/4

φ=0

(
1− 2 sin2 φ

1− sin2 φ

)
cosφ dφ.

We make the substitution u = sinφ, du = cosφ dφ to get

Ez =
1

2ε0

∫ 1/
√
2

u=0

1− 2u2

1− u2
du =

1

2ε0

∫ 1/
√
2

u=0

2−
1
2

1 + u
−

1
2

1− u
du

=
1

2ε0

[
2u− 1

2 ln 1+u
1−u

]1/√2

u=0
=

1

2ε0

(√
2− 1

2 ln
√
2+1√
2−1

)
=

1

2ε0

(√
2− 1

2 ln(
√

2 + 1)2
)

=
1

2ε0

(√
2− ln(

√
2 + 1)

)
.

Thus E(0, 0, 2) = 1
2ε0

(√
2− ln(

√
2 + 1)

)
(0, 0, 1).



5: Recall that for a scalar-valued function f : U ⊆ R3 → R the Laplacian of f is given by∇2f = ∂2f
∂x2 + ∂2f

∂y2 + ∂2f
∂z2 .

For a vector-valued function F : U ⊆ R3 → R3, given by F = (P,Q,R), we define the Laplacian of F to be

∇2F =
(
∇2P,∇2Q,∇2R

)
.

(a) Show that for F : U ⊆ R3 → R3 we have ∇× (∇× F ) = ∇(∇.F )−∇2F .

Solution: When F = (P,Q,R) we have

∇× (∇× F ) = ∇×
(
∂R
∂y −

∂Q
∂z ,

∂P
∂z −

∂R
∂x ,

∂Q
∂x −

∂P
∂y

)
=
(
∂
∂y

(
∂Q
∂x −

∂P
∂y

)
− ∂

∂z

(
∂P
∂z −

∂R
∂x

)
, · · ·

)
=
(
∂2Q
∂x∂y −

∂2P
∂y2 −

∂2P
∂z2 + ∂2R

∂x∂z , · · ·
)

and
∇
(
∇.F )−∇2F = ∇

(
∂P
∂x + ∂Q

∂y + ∂R
∂z

)
−
(
∇2P,∇2Q,∇2R

)
=
(
∂2P
∂x2 + ∂2Q

∂x∂y + ∂2R
∂x∂z , · · ·

)
−
(
∂2P
∂x2 + ∂2P

∂y2 + ∂2P
∂z2 , · · ·

)
=
(
∂2Q
∂x∂y + ∂2R

∂x∂z −
∂2P
∂y2 −

∂2P
∂z2 , · · ·

)
.

This shows that the x-components of ∇× (∇× F ) and ∇
(
∇.F )−∇2F are equal, and similar calculations

show that the y- and z- components are also equal.

(b) Show that in a vacuum (where ρ = 0 and J = 0) the electric and magnetic fields E and B both satisfy
the wave equation

∇2E = µ0ε0
∂2E

∂t2
and ∇2B = µ0ε0

∂2B

∂t2
.

(We remark that it follows from this that µ0ε0 = 1
c2 where c is the speed of light).

Solution: Using the formula from Part (a) together with Maxwell’s Equations ∇.E = 0, ∇ × E = −∂B∂t ,

∇.B = 0 and ∇×B = µ0ε0
∂E
∂t we obtain

∇2E = ∇(∇.E)−∇× (∇× E) = ∇(0)−∇×
(
− ∂B

∂t

)
= ∂

∂t (∇×B) = ∂
∂t

(
µ0ε0

∂E
∂t

)
= µ0ε0

∂2E
∂t2

and similarly
∇2B = ∇(∇.B)−∇× (∇×B) = ∇(0)−∇×

(
µ0ε0

∂E
∂t

)
= −µ0ε0

∂
∂t (∇× E) = −µ0ε0

∂
∂t

(
− ∂B

∂t

)
= µ0ε0

∂2B
∂t2



6: Find a formula for the gradient of a scalar-valued function in spherical coordinates.

Solution: In case there is not enough time to present this material in the lectures, we provide a solution
which may be applied to other orthogonal coordinate systems. Let (x, y, z) = g(u, v, w) be a change of
coordinate map. Let gu, gv and gw denote the columns of the derivative matrix Dg so we have Dg =
(gu, gv, gw). Suppose that {gu, gv, gw} is an orthogonal set. Let eu = gu

|gu| , ev = gv
|gv| and ew = gw

|gw| . Note

that {eu, ev, ew} is an orthonormal set so we have (eu, ev, ew)T (eu, ev, ew) = I. Let f : U ⊆ R3 → R be a
smooth scalar-valued function. When we use the map g to change coordinates, we replace f(x, y, z) by the
map h(u, v, w) = f(g(u, v, w)). By the Chain Rule, we have Dh = Df Dg and so

Df = Dh · (Dg)−1 = Dh · (gu, gv, gw)−1

= Dh ·

(eu, ev, ew)

 |gu| |gv|
|gw|

−1 = Dh


1
|gu|

1
|gv|

1
|gw|


 eu

T

ev
T

ew
T


and so

∇f = (Df)T =
(
eu, ev, ew

)
1
|gu|

1
|gv|

1
|gw|


 ∂h

∂u
∂h
∂v
∂h
∂w


= 1
|gu|

∂h
∂u eu + 1

|gv|
∂h
∂v ev + 1

|gw|
∂h
∂wew.

In particular, when g is the spherical coordinates map given by

(x, y, z) = g(r, φ, θ) =
(
r sinφ cos θ, r sinφ sin θ, r cosφ

)
we have

Dg =

 sinφ cos θ r cosφ cos θ −r sinφ sin θ
sinφ sin θ r cosφ sin θ r sinφ cos θ

cosφ −r sinφ 0


so that |gr| = 1, |gφ| = r and |gθ| = r sinφ, and so

∇f = ∂h
∂r er + 1

r
∂h
∂φeφ + 1

r sinφ
∂h
∂θ eθ.


