

ECE 206 Advanced Calculus 2, Solutions to Assignment 2

1: Let $(u, v) = f(t) = (\cos t + 2, 2 \sin t - 1)$ and let $(x, y) = g(u, v) = \left(\frac{u}{v}, \frac{v}{u}\right)$. Use the Chain Rule to find the tangent vector to the curve $r(t) = g(f(t))$ at the point where $t = \frac{\pi}{2}$.

Solution: We express the solution in two ways; with and without matrix notation. First we express the solution without matrix notation. We use the Chain Rule in the form

$$\begin{aligned}\frac{dx}{dt} &= \frac{\partial x}{\partial u} \frac{du}{dt} + \frac{\partial x}{\partial v} \frac{dv}{dt} \\ \frac{dy}{dt} &= \frac{\partial y}{\partial u} \frac{du}{dt} + \frac{\partial y}{\partial v} \frac{dv}{dt}\end{aligned}$$

We have

$$\frac{\partial x}{\partial u} = \frac{1}{v}, \quad \frac{\partial x}{\partial v} = -\frac{u}{v^2}, \quad \frac{\partial y}{\partial u} = -\frac{v}{u^2}, \quad \frac{\partial y}{\partial v} = \frac{1}{u}, \quad \frac{du}{dt} = -\sin t, \quad \frac{dv}{dt} = 2 \cos t.$$

When $t = \frac{\pi}{2}$ we have $u = \cos t + 2 = 2$ and $v = 2 \sin t - 1 = 1$, and so

$$\frac{\partial x}{\partial u} = 1, \quad \frac{\partial x}{\partial v} = -2, \quad \frac{\partial y}{\partial u} = -\frac{1}{4}, \quad \frac{\partial y}{\partial v} = \frac{1}{2}, \quad \frac{du}{dt} = -1, \quad \frac{dv}{dt} = 0.$$

Put all these values into the two formulas given by the Chain Rule to get

$$\begin{aligned}\frac{dx}{dt} &= \frac{\partial x}{\partial u} \frac{du}{dt} + \frac{\partial x}{\partial v} \frac{dv}{dt} = (1)(-1) + (-2)(0) = -1 \\ \frac{dy}{dt} &= \frac{\partial y}{\partial u} \frac{du}{dt} + \frac{\partial y}{\partial v} \frac{dv}{dt} = \left(-\frac{1}{4}\right)(-1) + \left(\frac{1}{2}\right)(0) = \frac{1}{4}.\end{aligned}$$

Thus the tangent vector is $r'(\frac{\pi}{4}) = (x'(\frac{\pi}{4}), y'(\frac{\pi}{4})) = (-1, \frac{1}{4})$.

Here is the same solution in matrix notation. By the Chain Rule, we have $r'(t) = Dg(f(t)) f'(t)$, where

$$r'(t) = \begin{pmatrix} \frac{dx}{dt} \\ \frac{dy}{dt} \end{pmatrix}, \quad f'(t) = \begin{pmatrix} \frac{du}{dt} \\ \frac{dv}{dt} \end{pmatrix} = \begin{pmatrix} -\sin t \\ 2 \cos t \end{pmatrix}, \quad \text{and } Dg(u, v) = \begin{pmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{pmatrix} = \begin{pmatrix} \frac{1}{v} & -\frac{u}{v^2} \\ -\frac{v}{u^2} & \frac{1}{u} \end{pmatrix}$$

When $t = \frac{\pi}{2}$ we have $(u, v) = f(\frac{\pi}{2}) = (2, 1)$, and $f'(\frac{\pi}{2}) = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$ and $Dg(2, 1) = \begin{pmatrix} 1 & -2 \\ -\frac{1}{4} & \frac{1}{2} \end{pmatrix}$ so the tangent vector at $t = \frac{\pi}{2}$ is

$$r'(\frac{\pi}{2}) = Dg(2, 1) f'(\frac{\pi}{2}) = \begin{pmatrix} 1 & -2 \\ -\frac{1}{4} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} -1 \\ 0 \end{pmatrix} = \begin{pmatrix} -1 \\ \frac{1}{4} \end{pmatrix}$$

2: Let $u = f(x, y, z) = 4x \tan^{-1} \left(\frac{y}{z} \right)$ where $(x, y, z) = g(s, t) = \left(s^3 + t, \sqrt{s}t, \frac{t}{s} \right)$. Use the Chain Rule to find $\frac{\partial u}{\partial s}$ and $\frac{\partial u}{\partial t}$ when $(s, t) = (1, -2)$.

Solution: First we give a solution which does not use matrix notation. Note that when $(s, t) = (1, -2)$ we have $(x, y, z) = (-1, -2, -2)$, and at this point we have

$$\begin{aligned}\frac{\partial u}{\partial x} &= 4 \tan^{-1} \frac{y}{z} = \pi, \quad \frac{\partial u}{\partial y} = \frac{4x}{1 + (y/z)^2} \cdot \frac{1}{z} = 1, \quad \frac{\partial u}{\partial z} = \frac{4x}{1 + (\frac{y}{z})^2} \left(-\frac{y}{z^2} \right) = -1 \\ \frac{\partial x}{\partial s} &= 3s^2 = 3, \quad \frac{\partial x}{\partial t} = 1, \quad \frac{\partial y}{\partial s} = \frac{t}{2\sqrt{s}} = -1, \quad \frac{\partial y}{\partial t} = \sqrt{s} = 1, \quad \frac{\partial z}{\partial s} = -\frac{t}{s^2} = 2, \quad \frac{\partial z}{\partial t} = \frac{1}{s} = 1\end{aligned}$$

and so

$$\begin{aligned}\frac{\partial u}{\partial s} &= \frac{\partial u}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial u}{\partial y} \frac{\partial y}{\partial s} + \frac{\partial u}{\partial z} \frac{\partial z}{\partial s} = (\pi)(3) + (1)(-1) + (-1)(2) = 3\pi - 3, \text{ and} \\ \frac{\partial u}{\partial t} &= \frac{\partial u}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial u}{\partial y} \frac{\partial y}{\partial t} + \frac{\partial u}{\partial z} \frac{\partial z}{\partial t} = (\pi)(1) + (1)(1) + (-1)(1) = \pi\end{aligned}$$

Here is the same solution, using matrix notation. Write $u = h(s, t) = f(g(s, t))$. By the Chain Rule, we have $Dh(s, t) = Df(g(s, t))Dg(s, t)$. When $(s, t) = (1, -2)$ we have $(x, y, z) = h(s, t) = (-1, -2, -2)$, and at this point

$$\begin{aligned}\begin{pmatrix} \frac{\partial u}{\partial s} & \frac{\partial u}{\partial t} \end{pmatrix} &= Dh(s, t) = Df(x, y, z) \cdot Dg(s, t) = \begin{pmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial z} \end{pmatrix} \begin{pmatrix} \frac{\partial x}{\partial s} & \frac{\partial x}{\partial t} \\ \frac{\partial y}{\partial s} & \frac{\partial y}{\partial t} \\ \frac{\partial z}{\partial s} & \frac{\partial z}{\partial t} \end{pmatrix} \\ &= \begin{pmatrix} 4 \tan^{-1} \frac{y}{z} & \frac{4x(1/z)}{1 + (y/z)^2} & \frac{4x(-y/z^2)}{1 + (y/z)^2} \end{pmatrix} \begin{pmatrix} 3s^2 & 1 \\ \frac{1}{2\sqrt{s}} & \frac{1}{2\sqrt{s}} \\ -\frac{t}{s^2} & \frac{1}{s} \end{pmatrix} \\ &= (\pi, 1, -1) \begin{pmatrix} 3 & 1 \\ -1 & 1 \\ 2 & 1 \end{pmatrix} = (3\pi - 3, \pi).\end{aligned}$$

3: Let $u = f(x, y, z) = (x + y)e^{y^2+z}$.

(a) Find $\nabla f(1, 2, -4)$.

Solution: $\nabla f(x, y, z) = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right) = e^{y^2+z} \left(1, 1 + (x+y)(2y), (x+y)\right)$, so $\nabla f(1, 2, -4) = (1, 13, 3)$.

(b) Find the equation of the tangent plane at $(1, 2, -4)$ to the surface $f(x, y, z) = 3$.

Solution: The gradient $(1, 13, 3)$ is a normal vector, so the equation is of the form $x + 13y + 3z = c$, and by putting in $(x, y, z) = (1, 2, -4)$, we find that $c = 15$. Thus the equation is $x + 13y + 3z = 15$.

(c) Find $D_u f(1, 2, -4)$, where $u = \frac{1}{7}(2, -3, 6)$.

Solution: $D_u f(1, 2, -4) = \nabla f(1, 2, -4) \cdot u = \frac{1}{7} (1, 13, 3) \cdot (2, -3, 6) = -\frac{19}{7}$.

4: Let $f(x, y) = x^2y - y^3$. Find $\nabla f(3, -1)$, then for each of the values $m = 0, 6, 6\sqrt{2}$ and 10, find a unit vector u , if one exists, such that $D_u f(3, -1) = m$.

Solution: $\nabla f(x, y) = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right) = (2xy, x^2 - 3y^2)$ and so $\nabla f(3, -1) = (6, 6)$. For each value of m , we need to find a vector $u = (a, b)$ with $a^2 + b^2 = 1$ such that $m = D_u f(3, -1) = \nabla f(3, -1) \cdot u = (6, 6) \cdot (a, b) = 6a + 6b$, thus we need to solve the two equations $a^2 + b^2 = 1$ (1) and $a + b = \frac{1}{6}m$ (2).

When $m = 0$, equation (2) becomes $a + b = 0$ so $b = -a$. Put $b = -a$ into equation (1) to get $a^2 + (-a)^2 = 1 \implies 2a^2 = 1 \implies a^2 = \frac{1}{2} \implies a = \pm \frac{\sqrt{2}}{2}$. Since $b = -a$, we obtain $(a, b) = \pm \left(\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}\right)$.

When $m = 6$, equation (2) becomes $a + b = 1$ so $b = 1 - a$. Put this into equation (1) to get $a^2 + (1 - a)^2 = 1 \implies a^2 + 1 - 2a + a^2 = 1 \implies 2a^2 - 2a = 0 \implies 2a(a - 1) = 0 \implies a = 0$ or $a = 1$. Since $b = 1 - a$, we obtain $(a, b) = (0, 1)$ or $(1, 0)$.

When $m = 6\sqrt{2}$, equation (2) becomes $a + b = \sqrt{2}$ so $b = \sqrt{2} - a$. Put this into equation (1) to get $a^2 + (\sqrt{2} - a)^2 = 1 \implies a^2 + 2 - 2\sqrt{2}a + a^2 = 1 \implies 2a^2 - 2\sqrt{2}a + 1 = 0 \implies 2(a - \frac{1}{\sqrt{2}})^2 = 0 \implies a = \frac{1}{\sqrt{2}}$. Since $b = \sqrt{2} - a$, we obtain $(a, b) = \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$.

Finally, note that since the vector $(a, b) = \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$ is in the direction of the gradient vector $(6, 6)$, it gives the maximum possible value for the directional derivative. So the maximum possible value for $D_u f(3, -1)$ is equal to $6\sqrt{2}$; there is no unit vector such that $D_u f(3, -1) = 10$.

5: A boy is standing at the point $(5, 10, 2)$ on a hill whose shape is given by

$$z = \frac{600}{100 + 4x^2 + y^2}$$

(where x, y and z are in meters).

(a) At the point where the boy is standing, in which direction is the slope steepest?

Solution: Write $z = f(x, y) = \frac{600}{100 + 4x^2 + y^2}$ and $a = (5, 10)$. Then $\nabla f = \left(\frac{-4800x}{(100 + 4x^2 + y^2)^2}, \frac{-1200y}{(100 + 4x^2 + y^2)^2}\right)$ and so $\nabla f(a) = \left(-\frac{24,000}{90,000}, -\frac{12,000}{90,000}\right) = \left(-\frac{4}{15}, -\frac{2}{15}\right) = \frac{2}{15}(-2, -1)$. Thus the slope is the steepest in the direction of the unit vector $\frac{1}{\sqrt{5}}(-2, -1)$.

(b) If the boy walks southeast, then will he be ascending or descending?

Solution: The southeasterly direction is in the direction of the unit vector $v = \frac{1}{\sqrt{2}}(1, -1)$, and we have $D_v f(a) = \frac{2}{15\sqrt{2}}(-2, -1) \cdot (1, -1) = -\frac{\sqrt{2}}{15} < 0$, so the boy would be descending.

(c) If the boy walks in the direction of steepest slope, then at what angle (from the horizontal) will he be climbing?

Solution: If the boy walks in the direction of the unit vector $u = \frac{1}{|\nabla f(a)|} \nabla f(a)$, then the slope in that direction is $D_u f(a) = |\nabla f| = \frac{2}{15} |(-2, -1)| = \frac{2\sqrt{5}}{15}$, so the angle of ascent is $\theta = \tan^{-1} \frac{2\sqrt{5}}{15} \cong 16.6^\circ$.

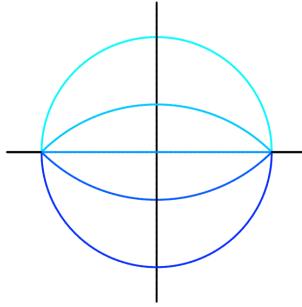
6: The temperature around the outer circle of a metal disc of radius 1 meter is held constant, with the top half of the circle held at 0° C and the bottom half of the circle held at 20° C.

It can be shown that the temperature at all points of the disc is given by

$$T(x, y) = 10 + \frac{20}{\pi} \tan^{-1} \left(\frac{2y}{x^2 + y^2 - 1} \right).$$

(a) Sketch the isotherms (level curves of constant temperature) $T = 0, 5, 10, 15, 20$.

Solution: We know that $T = 0$ along the top half of the boundary circle, and $T = 20$ along the bottom half. We have $T = 5 \iff \frac{20}{\pi} \tan^{-1} \left(\frac{2y}{x^2 + y^2 - 1} \right) = -5 \iff \tan^{-1} \left(\frac{2y}{x^2 + y^2 - 1} \right) = -\frac{\pi}{4} \iff \frac{2y}{x^2 + y^2 - 1} = -1 \iff 2y = -x^2 - y^2 + 1 \iff x^2 + y^2 + 2y = 1 \iff x^2 + (y+1)^2 = 2$, and this is the circle of radius $\sqrt{2}$ centered at $(0, -1)$. Similarly, we have $T = 15 \iff x^2 + y^2 - 2y = 1 \iff x^2 + (y-1)^2 = 2$, and this is the circle of radius $\sqrt{2}$ centered at $(0, 1)$. Also, we have $T = 10 \iff \frac{20}{\pi} \tan^{-1} \left(\frac{2y}{x^2 + y^2 - 1} \right) = 0 \iff \frac{2y}{x^2 + y^2 - 1} = 0 \iff 2y = 0 \iff y = 0$. These isotherms are shown below.



(b) Find $T \left(\frac{1}{2}, \frac{1}{2} \right)$ and $\nabla T \left(\frac{1}{2}, \frac{1}{2} \right)$.

Solution: We have $T \left(\frac{1}{2}, \frac{1}{2} \right) = 10 + \frac{20}{\pi} \tan^{-1} \left(\frac{1}{-1/2} \right) = 10 - \frac{20}{\pi} \tan^{-1} 2 \cong 2.95$. Also, we have

$$\begin{aligned} \nabla T(x, y) &= \left(\frac{\partial T}{\partial x}, \frac{\partial T}{\partial y} \right) = \frac{20}{\pi} \left(\frac{1}{1 + \left(\frac{2y}{x^2 + y^2 - 1} \right)^2} \cdot \frac{-4xy}{(x^2 + y^2 - 1)^2}, \frac{1}{1 + \left(\frac{2y}{x^2 + y^2 - 1} \right)^2} \cdot \frac{2(x^2 + y^2 - 1) - 4y^2}{(x^2 + y^2 - 1)^2} \right) \\ &= \frac{20}{\pi} \left(\frac{-4xy}{(x^2 + y^2 - 1)^2 + 4y^2}, \frac{2(x^2 - y^2 - 1)}{(x^2 + y^2 - 1)^2 + 4y^2} \right) \end{aligned}$$

and so $\nabla T \left(\frac{1}{2}, \frac{1}{2} \right) = \frac{20}{\pi} \left(\frac{-1}{\frac{1}{4} + 1}, \frac{-2}{\frac{1}{4} + 1} \right) = \frac{20}{\pi} \left(-\frac{4}{5}, -\frac{8}{5} \right) = \frac{16}{\pi}(-1, -2)$.

(c) Find the equation of the tangent line to the isotherm through $\left(\frac{1}{2}, \frac{1}{2} \right)$.

Solution: The tangent line to this isotherm is perpendicular to $\nabla T \left(\frac{1}{2}, \frac{1}{2} \right) = \frac{16}{\pi}(-1, -2)$, so it is in the direction of the vector $(2, -1)$. A vector equation for the tangent line is $(x, y) = \left(\frac{1}{2}, \frac{1}{2} \right) + t(2, -1)$.

(d) Show that if an ant starts at the point $\left(\frac{1}{2}, \frac{\sqrt{3}}{2} \right)$ (where the temperature is 0°) and it walks on the disc in the direction of ∇T (that is, in the direction in which the temperature increases most rapidly), then it will walk along the circle of radius $\sqrt{3}$ centered at $(2, 0)$.

Solution: By the formula for $\nabla T(x, y)$ that we found in part (b), we see that at each point $\nabla T(x, y)$ is in the direction of the vector $(-4xy, 2(x^2 - y^2 - 1))$, which has slope $\frac{2(x^2 - y^2 - 1)}{-4xy} = \frac{-x^2 + y^2 + 1}{2xy}$. The circle of radius $\sqrt{3}$ centered at $(2, 0)$ has equation $(x - 2)^2 + y^2 = 3$. Differentiating implicitly gives $2(x - 2) + 2y y' = 0$ and so $y' = \frac{2-x}{y}$. For any point (x, y) on this circle, we have $(x - 2)^2 + y^2 = 3 \implies x^2 - 4x + 4 + y^2 = 3 \implies 4x = x^2 + y^2 + 1$, and so at such a point $y' = \frac{2-x}{y} = \frac{4x-2x^2}{2xy} = \frac{(x^2+y^2+1)-2x^2}{2xy} = \frac{-x^2+y^2+1}{2xy}$, which is the same as the slope of the gradient vector.